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Identification of the allosteric P2X7 
receptor antagonist [11C]SMW139 
as a PET tracer of microglial 
activation
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The P2X7 receptor plays a significant role in microglial activation, and as a potential drug target, the 
P2X7 receptor is also an interesting target in positron emission tomography. The current study aimed 
at the development and evaluation of a potent tracer targeting the P2X7 receptor, to which end four 
adamantanyl benzamide analogues with high affinity for the human P2X7 receptor were labelled with 
carbon-11. All four analogues could be obtained in excellent radiochemical yield and high radiochemical 
purity and molar activity, and all analogues entered the rat brain. [11C]SMW139 showed the highest 
metabolic stability in rat plasma, and showed high binding to the hP2X7 receptor in vivo in a hP2X7 
receptor overexpressing rat model. Although no significant difference in binding of [11C]SMW139 was 
observed between post mortem brain tissue of Alzheimer’s disease patients and that of healthy controls 
in in vitro autoradiography experiments, [11C]SMW139 could be a promising tracer for P2X7 receptor 
imaging using positron emission tomography, due to high receptor binding in vivo in the hP2X7 receptor 
overexpressing rat model. However, further investigation of both P2X7 receptor expression and binding 
of [11C]SMW139 in other neurological diseases involving microglial activation is warranted.

Neuroinflammation plays a central role in a variety of pathologies affecting the central nervous system (CNS), 
such as neurodegenerative and neuropsychiatric disorders. CNS-specific immune cells, microglia and astro-
cytes, are the main cellular effectors of neuroinflammation, although peripheral immune cells (monocytes, mac-
rophages and T cells) can also be recruited to a site of insult. Purinergic signalling through P2X and P2Y receptors 
is involved in regulation and mediation of the neuroinflammatory response. For P2X receptors, the strongest 
body of evidence for involvement in mediating neuroinflammation exists for the P2X7 subtype1. Microglia 
undergo a morphological change upon pathological disturbances in the brain, and the morphological change 
goes along with a disease-specific phenotype shift, resulting in alteration of expression of e.g. cell surface recep-
tors, one of which is the P2X7 receptor (P2X7R)2. Although P2X7R expression has also been demonstrated on 
neurons, oligodendrocytes and astrocytes, the highest levels of expression are found on microglia2,3. The affinity 
of its natural ligand adenosine triphosphate (ATP) for P2X7R is low and therefore the receptor is insensitive to 

1Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, 
Amsterdam, The Netherlands. 2School of Chemistry, University of Sydney, Sydney, Australia. 3Laboratory for 
Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 
Belgium. 4UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. 5Department of Pathology, VU University 
Medical Center, Amsterdam, The Netherlands. 6Pharmidex Pharmaceutical Services Ltd., London, United Kingdom. 
7Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium. 8Center of Excellence 
on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 
Milan, Italy. 9BV Cyclotron VU, Amsterdam, The Netherlands. Correspondence and requests for materials should be 
addressed to B.J. (email: bieneke.janssen@pennmedicine.upenn.edu) or A.D.W. (email: ad.windhorst@vumc.nl)

Received: 31 October 2017

Accepted: 15 March 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-9573-8558
http://orcid.org/0000-0002-7445-916X
http://orcid.org/0000-0002-1250-7656
mailto:bieneke.janssen@pennmedicine.upenn.edu
mailto:ad.windhorst@vumc.nl


www.nature.com/scientificreports/

2SCiENTifiC RepOrts |  (2018) 8:6580  | DOI:10.1038/s41598-018-24814-0

micromolar changes in extracellular ATP concentrations. On the other hand, millimolar changes in ATP concen-
trations, e.g. in the case of cell damage or death, leads to activation of the receptor. P2X7R signalling is involved in 
the activation of the inflammasome and the release of the inflammatory cytokine interleukin 1β. Prolonged stim-
ulation of P2X7R by ATP results in over-activation of the receptor, leading to pore formation, which allows for 
transport of macromolecules of up to 900 Da.1,3. Due to its up-regulation in CNS pathologies such as Alzheimer’s 
disease (AD) and multiple sclerosis (MS), P2X7R is considered to be a promising drug target for blockade of the 
neuroinflammatory cascade2. In line with this, P2X7R is also emerging as a target in positron emission tomogra-
phy (PET), with four radiolabelled antagonists reported to date4–9. Recently, Wilkinson et al. reported a series of 
benzamides as potent P2X7R antagonists10, based on previously developed benzamide 111. In this study four of 
these benzamide analogues (1, 2, 3 and SMW139, with Ki values of respectively 9, 22, 23 and 32 nM for human 
P2X7R) were radiolabelled and evaluated in vivo in healthy rats. The most promising radiotracer, [11C]SMW139, 
was evaluated in a recently developed rat model overexpressing human P2X7R6. In addition, to assess the poten-
tial of [11C]SMW139 in a clinical setting, in vitro autoradiography studies on post mortem brain material of AD 
patients were performed, including extensive immunohistochemical staining.

Results
Chemistry.  Benzamide precursor 5 was obtained via demethylation of benzamide 1 (Fig. 1) in quantitative 
yield and with high purity. As for the fluorinated adamantanyl analogues, demethylation using boron tribromide 
would lead to trans-halogenation of the fluorine, analogues 6–8 were synthesised in good yields (73–79%) via 
a chemoselective coupling of 2-chloro-5-hydroxybenzoic acid 12 and the appropriate adamantanemethylamine 
(9–11, Fig. 1).

Radiochemistry.  Desmethyl benzamide analogues 5–8 were subjected to carbon-11 methylation (Fig. 2) by 
reaction with [11C]methyl iodide in the presence of sodium hydroxide at elevated temperature. After purification 
by high performance liquid chromatography (HPLC), [11C]1–3 and [11C]SMW139 were all obtained in good 
decay corrected (d.c.) radiochemical yields (RCY) and radiochemical purity (RCP) and high molar activity (Am), 
listed in Table 1. For [11C]1, the collected fraction (eluent: 50 mM NH4OAc (pH 10)/ethanol (EtOH)) was neutral-
ised with 1 mL of citrate buffer and then further diluted with 7.09 mM NaH2PO4 in saline to contain ≤10% EtOH 
before use in vivo. For [11C]2, 3 and [11C]SMW139, the collected fraction was subjected to solid phase extraction 
before use in vivo, resulting in a formulation solution of the products in ≤10% EtOH in 7.09 mM NaH2PO4. Total 
synthesis time for all tracers was 35–40 minutes. All product formulations were stable up to 2 hours, as deter-
mined by analytical HPLC.

Determination of LogDoct,7.4.  The LogDoct,7.4 of analogues [11C]1–3 and [11C]SMW139 ([11C]4) was deter-
mined using the shake-flask method (partitioning between 1-octanol and 0.2 M phosphate buffer (pH 7.4)). 
Determined LogDoct,7.4 values (Table 1) show the same trend as LogD values reported by Wilkinson et al.10.

Ex vivo biodistribution.  All four analogues entered the rat brain and no abnormalities in peripheral uptake 
were observed (Fig. 3). In striatum, initial standardized uptake values (SUVs) were 1.07–1.46 at 5 min post injec-
tion (p.i.) and decreased to 0.14–0.32 at 45 min p.i. All analogues primarily showed clearance via the liver. For 
clarity, Fig. 3 only shows distribution of [11C]1–3 and [11C]SMW139 at 5 and 45 min p.i. Full biodistribution data, 
including data for separate brain regions, are provided in the Supplementary Information (Figures S1–S4).

Figure 1.  Synthesis of adamantanyl benzamide precursors 5–8. Reagents and conditions: (a) BBr3, CH2Cl2, 0 °C 
to rt, 48 h, quant. (b) PyBOP, DiPEA, CH2Cl2, rt, 18 h, 73% (6), 77% (7), 79% (8).
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Metabolite analysis.  In vivo stability of analogues [11C]1–3 and [11C]SMW139 was assessed in healthy male 
Wistar rats at 15 and 45 minutes after injection of 30–40 MBq of formulated tracer. In plasma, metabolism of 
[11C]1–3 showed similar patterns (15–25% of intact tracer at 45 min p.i.), but metabolic stability of [11C]SMW139 
in plasma was enhanced (42% of intact tracer at 45 min p.i.; Table 2). Results obtained in plasma correspond with 
previously reported stability results in rat liver microsomes10. A higher level of intact tracer was found in brain 
(Table 3) for [11C]1 and [11C]SMW139 compared with [11C]2 and [11C]3. Despite optimisation of the extraction 
method, the percentage of total radioactivity that could be extracted from brain homogenates was not optimal 
for all four compounds (59 ± 6% for [11C]1; 58 ± 7% for [11C]2; 61 ± 4% for [11C]3; 62 ± 3% for [11C]SMW139). 
Therefore, based on its highest stability in plasma in vivo, [11C]SMW139 was selected for further in vivo studies. 
As imaging studies were performed in female rats, plasma metabolites were also determined in two female rats, 
and no differences were found between plasma metabolism of [11C]SMW139 in male and female rats (Table S1; 
Supplementary Information).

Autoradiography in a rat model overexpressing hP2X7R.  Binding of [11C]SMW139 to the human 
P2X7 receptor (hP2X7R) was assessed in vitro on transversal cryosections of rat brains that locally overexpress 
hP2X7R, induced by an adeno-associated viral (AAV) vector. Sections incubated with [11C]SMW139 (28 nM) 
showed on average 10-fold increased binding (10 ± 2, n = 2) in the rAAV_3flag-hP2X7R injected striatum 
(Fig. 4A; mean intensity 678 ± 55 counts) compared with the rAAV_3flag-eGFP injected striatum (mean inten-
sity 69 ± 10 counts). Co-incubation with two structurally different P2X7R antagonists (10 µM; A-74000312,13 and 
JNJ-4796556714,15) decreased [11C]SMW139 binding in the rAAV_3flag-hP2X7R injected striatum with 79–93%, 
depending on the blocker used (Fig. 4B,C). P2X7R expression in the rAAV_3flag-hP2X7R injected striatum was 
confirmed with immunohistochemical staining (Fig. 5).

Figure 2.  Carbon-11 methylation of benzamide analogues 1–3 and [11C]SMW139.

Product Isolated yield (GBq)* RCY (%, d.c.) RCP (%) Am (GBq·µmol−1)* LogDoct,7.4 (n = 3)

[11C]1 (n = 6) 5.0 ± 1.7 33 ± 9 97 ± 1 159 ± 77 2.88 ± 0.14

[11C]2 (n = 5) 3.9 ± 0.8 30 ± 8 97 ± 1 84 ± 59 2.93 ± 0.02

[11C]3 (n = 3) 5.1 ± 0.5 41 ± 9 99 ± 0 239 ± 90 2.71 ± 0.01

[11C]SMW139 
(n = 10) 4.8 ± 1.0 37 ± 9 96 ± 2 209 ± 83 2.70 ± 0.01

Table 1.  Radiolabelling results and LogDoct,7.4 of [11C]1–3 and [11C]SMW139. Values are given as 
mean ± standard deviation. *Measured at end of synthesis.

Figure 3.  Ex vivo biodistribution following intravenous administration of 13–23 MBq of [11C]1–3 and [11C]SMW139 
in healthy male Wistar rats (n = 3 per tracer per time point). Good initial brain uptake was observed for all four 
analogues. Data are expressed as standardized uptake value (SUV) ± standard error of the mean (SEM).
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PET imaging.  In vivo PET imaging was performed in female rats injected with rAAV_3flag-hP2X7R to induce 
overexpression of hP2X7R in the right striatum. Uptake of [11C]SMW139 was 1.5-fold higher in the right stria-
tum compared with the contralateral striatum at 4–15 min p.i. (n = 3; Fig. 6A,B, and Supplementary Figure S5, 5 
weeks after vector injection). [11C]SMW139 uptake in rAAV_3flag-hP2X7R striatum was significantly increased 
from 2 min p.i. (2.85 ± 0.69 vs. 2.30 ± 0.36 in contralateral striatum) throughout the remainder of the scanning 
time. Pre-treatment with JNJ-47965567 (30 mg·kg−1)14,15 45 min prior to tracer injection reduced the uptake of 
[11C]SMW139 down to baseline levels (2.40 ± 0.22 at 2 min p.i.; n = 3; Fig. 6C,D, 11 weeks after vector injection).

Extended single microdose toxicity study.  Following intravenous administration of a single dose 
of non-radiolabelled SMW139 (0.12 mg·kg−1), no abnormalities, complications or toxic clinical effects were 
observed in healthy male and female rats. In both male and female animals, body weight curves were positive and 
did not differ between vehicle injected animals and animals injected with SMW139 (p ≥ 0.05). In addition, food 
consumption was stable in all groups. No treatment-related changes were found in the groups receiving SMW139 
in any of the parameters used for haematology, coagulation and clinical chemistry (summary of full report in 
Supplementary Information). No significant differences in organ weights were found between groups and no 
abnormalities suggesting a toxic effect of SMW139 was observed during necropsy.

Autoradiography and immunohistochemical staining in post mortem human brain tissue.  
Cryosections of post mortem brain of human AD patients (7 patients, temporal cortex, Braak stage 5–6) and post 
mortem age-matched non-neurological controls (CTRL, 7 subjects, temporal cortex, Braak stage 0–1) were incu-
bated with [11C]SMW139 (28 nM), as well as with [11C]SMW139 together with JNJ-47965567 (10 µM; Fig. 7). To 
be able to correlate binding of [11C]SMW139 to (activated) microglia and plaque formation, adjacent sections were 
immunohistochemically stained for respectively P2X7R, Iba1, MHC-II, CD68 and amyloid β (Aβ) and tau (Fig. 8).

Quantification of immunohistochemical staining showed significantly increased levels of the microglial 
markers Iba1, MHC-II, CD68 and P2X7R in both white and grey matter of AD patients (Fig. 9) vs. controls. As 
expected, immunohistochemical positive staining for tau and Aβ was only found in grey matter of AD patients. 

Plasma

[11C]1 [11C]2 [11C]3 [11C]SMW139

15 min 45 min 15 min 45 min 15 min 45 min 15 min 45 min

Intact tracer (%) 37 ± 5 25 ± 1 37 ± 7 15 ± 2 35 ± 1 16 ± 1 60 ± 1 42 ± 2

Non-polar metabolites (%) 53 ± 6 39 ± 1 36 ± 8 12 ± 2 29 ± 1 23 ± 1 11 ± 1 14 ± 1

Polar metabolites (%) 10 ± 1 36 ± 1 27 ± 1 73 ± 3 36 ± 1 61 ± 2 29 ± 2 44 ± 2

Table 2.  Metabolic profiles of [11C]1–3 and [11C]SMW139 in rat plasma.

Brain

[11C]1 [11C]2 [11C]3 [11C]SMW139

15 min 45 min 15 min 45 min 15 min 45 min 15 min 45 min

Intact tracer (%) 82 ± 1 76 ± 2 67 ± 5 32 ± 4 62 ± 2 32 ± 2 79 ± 1 66 ± 2

Non-polar metabolites (%) 18 ± 1 24 ± 2 33 ± 5 68 ± 4 38 ± 2 68 ± 2 21 ± 1 34 ± 3

Table 3.  Metabolic profiles of [11C]1–3 and [11C]SMW139 in rat brain.

Figure 4.  Autoradiograms of transversal cryosections of rAAV-3flag-hP2X7R vector injected rat brain.  
(A) Increased [11C]SMW139 binding is observed in rAAV_3flag-hP2X7R injected striatum (left on image).  
(B) [11C]SMW139 binding in rAAV_3flag-hP2X7R striatum is blocked (79 ± 10%, n = 2) by co-incubation with 
A-740003 (10 µM). (C) [11C]SMW139 binding in rAAV_3flag-hP2X7R striatum is blocked (93 ± 1%, n = 2) by 
co-incubation with JNJ-47965567 (10 µM).



www.nature.com/scientificreports/

5SCiENTifiC RepOrts |  (2018) 8:6580  | DOI:10.1038/s41598-018-24814-0

Immunohistochemical staining for P2X7R correlated with Iba1 (r2 = 0.7934) and MHC-II (r2 = 0.9082) stain-
ing in white matter of AD patients. In grey matter of both AD patients and controls, no correlation was found 
between P2X7R and any other marker. In autoradiography experiments, binding of [11C]SMW139 did not dif-
fer significantly between AD patients and controls (Fig. 10), neither in grey nor white matter, and in both AD 
patients and controls, tracer binding was higher in white matter than in grey matter. Although visually binding 
of [11C]SMW139 correlated with immunohistochemical staining for P2X7R, quantification showed no significant 
correlation between tracer binding and immunohistochemical staining.

Discussion
Fluorinated analogues of adamantyl benzamide 1 were designed for higher brain uptake and enhanced metabolic 
stability in vivo10. To assess biodistribution and metabolism of these analogues in vivo, desmethyl precursors 
5–8 were successfully radiolabelled via carbon-11 methylation to obtain [11C]1–3 and [11C]SMW139 in good 
radiochemical yields with excellent radiochemical purity and with high molar activity. Ex vivo biodistribution 
studies in male Wistar rats showed no key differences between the four analogues, and all four analogues entered 
the brain. Fluorination at the bridgeheads of the adamantane moiety was suspected to block hydroxylation of 
the adamantane in vivo, and therefore increase metabolic stability, as was shown in a rat liver microsome assay 
(half-lives of 8, 5, 18 and 47 min for 1, 2, 3 and SMW139 respectively)10. Indeed, [11C]SMW139 was also found to 
have a lower fraction of radiometabolites in plasma in vivo (42 ± 2% of intact tracer at 45 min p.i.) in male Wistar 
rats. Interestingly, amounts of intact tracer in brain were significantly higher for both [11C]1 and [11C]SMW139, 
compared with [11C]2 and [11C]3. Radiometabolites were not identified for any of the analogues, but using the 
MetaPrint2D-React metabolite predictor16,17, possible radiometabolites could be formed by hydroxylation of the 
aromatic ring or cleavage at the amide bond. However, as all four analogues have these properties in common, it 
is unlikely that these would explain the observed differences in metabolism, which are therefore probably solely 
attributable to the adamantane moiety. The presence of a brain penetrant radiometabolite may be a limitation for 
the clinical use of [11C]SMW139, as this could hamper proper quantification. Despite optimisation of the extrac-
tion method used, the percentage of radioactivity that could be extracted from brain homogenates was on average 
only 60 ± 3% for all compounds. In addition, due to low expression of P2X7R in healthy brain, all analogues show 
rapid washout, leading to a low level of radioactivity in brain at 15 and 45 min p.i., and thus quantification of radi-
ometabolites in brain is less accurate than that in plasma. Therefore, based on the highest amount of intact tracer 
in plasma, [11C]SMW139 was selected for further evaluation.

A rat model overexpressing human P2X7R, recently developed by Ory et al.6, is an excellent model to validate in 
vitro and in vivo tracer binding to the human receptor in a preclinical setting. The amount of binding of [11C]SMW139  
that could be blocked in in vitro autoradiography studies using rAAV-hP2X7R injected rat brains, differed between 
the two compounds that were used for blocking. Where JNJ-47965567 blocked virtually all [11C]SMW139 binding 
to the rAAV-hP2X7R injected striatum, A-740003 only blocked 79 ± 10% of [11C]SMW139 binding. This can be 
explained by different binding sites for A-740003 versus [11C]SMW139 and JNJ-47965567. Whereas A-740003 is 
an orthosteric antagonist that binds to the ATP binding site of the receptor, [11C]SMW139 and JNJ-47965567 are 
allosteric antagonists10,15. Interestingly, the partial blocking of [11C]SMW139 observed with A-740003 suggests 
that both binding pockets have a significant overlap, a finding already proposed before by Bhattacharya et al.15.

In vivo PET in the same rat model revealed a 1.5-fold increase of [11C]SMW139 binding in the rAAV_
3flag-hP2X7R injected striatum compared with the rAAV_3flag-eGFP injected striatum. This ratio was stable 
over time (Figure S5; Supplementary Information) and peaked within 15 min after tracer injection, suggesting 
good pharmacokinetic properties for a carbon-11 labelled PET tracer. Data obtained with [11C]SMW139 are com-
parable with those recently reported by Ory et al. using [11C]JNJ-54173717 in the same rat model6. Pre-treatment 
with JNJ-47965567 significantly decreased binding of [11C]SMW139 in the rAAV_3flag-hP2X7R injected stria-
tum, showing specific binding of [11C]SMW139 to the hP2X7 receptor. Complete blocking also suggests either a 
high percentage of intact [11C]SMW139 left throughout the scanning time, as already indicated by the metabolite 
analysis, or the presence of a metabolite with affinity for P2X7R. The latter may also explain the difference in 
ipsi- to contralateral ratio between PET (1.5-fold) and AR experiments (10-fold), although to a lesser extent, this 
difference between in vitro and in vivo experiments is also seen with [11C]JNJ-541737176. In an extended single 
microdose toxicity study in both male and female rats, no adverse or toxic effects of SMW139 (0.12 mg·kg−1) were 
observed, which allows for further evaluation of [11C]SMW139 in a clinical setting.

Results of the immunohistochemical staining of post mortem human brain tissue were as expected for 
Aβ and tau. Aβ staining showed disease related depositions in AD and diffuse Aβ deposits were observed in 

Figure 5.  Immunohistochemical staining for P2X7R of transversal cryosections of rAAV-3flag-hP2X7R vector 
injected rat brain. Left: rAAV_3flag-eGFP injected striatum with magnification in upper left corner. Right: 
rAAV_3flag-hP2X7R injected striatum with magnification in upper right corner.
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Figure 6.  PET imaging with [11C]SMW139 in rAAV_3flag-hP2X7R rat model. (A) Representative PET-CT 
image (summed images 0–60 min) of [11C]SMW139 showing increased uptake in rAAV_3flag-hP2X7R 
injected striatum compared with rAAV_3flag-eGFP (control vector) injected striatum (n = 3). (B) Time-
activity curves (TACs) of rAAV_3flag-hP2X7R injected striatum and contralateral (rAAV_3flag-eGFP 
injected) striatum. Ellipsoid regions of interest (ROIs) were defined within striatum (dimensions: x = 3.4 mm, 
y = 3.6 mm, z = 2.9 mm) (C) Representative PET-CT image (summed images 0–60 min) of [11C]SMW139 after 
pre-treatment with JNJ-47965567 (30 mg·kg−1 s.c., 45 min prior to tracer injection). (D) TACs of rAAV_3flag-
hP2X7R injected and contralateral striatum after pre-treatment. Ellipsoid ROIs were defined within striatum 
(dimensions: x = 3.4 mm, y = 3.6 mm, z = 2.9 mm).

Figure 7.  Autoradiograms of post mortem human brain tissue (temporal cortex). (A) Total binding of  
[11C]SMW139 (28 nM). Upper row: AD patients, lower row: non-neurological controls (CTRL). Binding of 
[11C]SMW139 does not differ significantly between AD patients and controls. Higher tracer binding was observed 
in white matter compared with grey matter. (B) Binding of [11C]SMW139 could be fully blocked with 10 µM of 
JNJ-47965567 in both AD patients (upper row) and non-neurological age-matched controls (lower row).
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non-neurological control cases. Tau staining was present in grey matter of AD patients compared with absence 
of staining in non-neurological controls, which is in line with previous findings in AD pathology18. Staining for 
Iba1, a general marker for microglia, was not significantly different between AD and controls in white matter. 
Increased Iba1 staining was however observed in AD grey matter, as well as increased staining for activated 
microglia markers MHC-II and CD68. The latter two follow the same trend in AD white matter, suggesting a 
concerted neuroinflammatory reaction. Autoradiography experiments with [11C]SMW139 on human post mor-
tem brain tissue did not show a statistically significant difference between AD patients and non-neurological 
controls, whereas immunohistochemical staining for P2X7R showed slightly increased expression in AD patients. 
The inability of [11C]SMW139 to show this difference may be explained by the lower spatial resolution that can 
be obtained in autoradiography experiments (25 µm) compared with that of immunohistochemical staining on a 
cellular level, in combination with the non-focal character of neuroinflammation in AD. Therefore, AD is prob-
ably not the appropriate neurological disease to study [11C]SMW139 in a clinical setting. However, although 
no statistical correlation was found, immunohistochemical staining for P2X7R seemed to overlap with binding 

Figure 8.  Representative images of immunohistochemical stainings on post mortem brain material of AD 
patients and non-neurological controls. Overall, staining for all markers is more pronounced in AD patients 
compared with non-neurological controls (CTRL), particularly in grey matter (GM). Staining for P2X7R is 
slightly, but significantly increased in both GM and WM of AD patients vs. CTRL. Scale bars indicate 100 µm, 
except in MHC-II images (50 µm).

Figure 9.  Quantification of immunohistochemical staining in human post mortem brain tissue. (A) 
Quantification of immunohistochemical staining in grey matter depicted per marker (Aβ, tau, Iba1, MHC-II,  
CD68 and P2X7R). Levels of pathological markers Aβ and tau were higher in AD patients (red circles) 
than in controls (blue diamonds) Levels of microglial markers Iba1, MHC-II, CD68 and P2X7R were 
significantly higher in AD patients compared with controls. *p < 0.05, **p < 0.01. (B) Quantification of 
immunohistochemical staining in white matter depicted per marker (Aβ, tau, Iba1, MHC-II, CD68 and P2X7R). 
Levels of microglial markers MHC-II, CD68 and P2X7R were significantly higher in AD patients (red circles) 
compared with controls (blue diamonds). *p < 0.05, **p < 0.01.
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of [11C]SMW139, which was confirmed by the virtually complete blocking of tracer binding with the selective, 
non-structurally related P2X7R antagonist JNJ-4796556715. In general, higher tracer binding was observed in WM 
compared with GM in the human brain sections. The high level of binding in WM may be explained by the higher 
abundance of microglia in WM compared with GM19, which would in turn explain higher P2X7R expression in 
WM, as the receptor is mainly expressed in microglia cells2. This effect was not observed in PET images in rats, 
however, differences in binding of [11C]SMW139 were also much less pronounced in autoradiography experi-
ments between rat WM and rat GM compared with the human situation.

Despite these somewhat disappointing results in vitro for AD, recent results of Territo et al. with [11C]GSK14821607  
and Fantoni et al. with [18F]EFB8, both showing increased P2X7R targeted tracer uptake in brain, after systemic 
administration of LPS in rodents, indicates the involvement of P2X7R in microglial activation. However, it should 
be noted that currently knowledge of actual P2X7R expression levels in human is lacking, both in health and 
disease. Therefore, the usefulness of P2X7R as a target in PET imaging of microglial activation remains to be elu-
cidated. This is hampered by differences between rat and human P2X7 receptor, often resulting in a lower affinity 
of compounds for the rodent receptors compared with the human receptor, complicating preclinical evaluation of 
tracers targeting P2X7R. However, using [3H]A-740003, a non-brain penetrant P2X7R antagonist with similar affin-
ities for rat (18 nM) and human P2X7R (40 nM)12,13, increased P2X7R expression was recently shown to be highest 
at the peak of the disease in a rat model of MS in vitro20. In line with that, using the same tracer in human brain 
sections of MS patients, high P2X7R expression was found in active MS lesions. As the affinity of [11C]SMW139  
is 6-fold lower for mouse P2X7R compared with hP2X7R10, evaluation of [11C]SMW139 on post mortem brain 
tissue of patients diagnosed with MS would be interesting to validate the potential of this tracer.

In conclusion, [11C]SMW139 binds specifically to P2X7R in vivo in a rat model overexpressing the human 
P2X7 receptor. In addition, as a first step in translation to human application, SMW139 showed no toxic effects 
in an extended single microdose toxicity study in rats. Although in vitro, in brain tissue of Alzheimer’s disease 
patients no significant difference in P2X7R expression was observed compared with brain tissue of healthy con-
trols, recent results using different tracers targeting P2X7R in animal models of neuroinflammation and MS7–9,20 
indicate the involvement of the receptor in specific neuroinflammatory conditions. [11C]SMW139 could there-
fore be a promising PET tracer for P2X7R imaging in microglial activation and warrants further investigation in 
other diseases involving neuroinflammation, particularly in those in which an increased expression of P2X7R is 
expected. Clinical validation of [11C]SMW139 in MS patients is currently ongoing.

Methods
Chemistry.  Synthesis of precursors 5–8 was performed either by demethylation (5) or a PyBOP coupling 
(6–8) between 2-chloro-5-hydroxybenzoic acid 12 and the appropriate adamantan-1-ylmethylamine and is 
described in detail in the Supplementary Information.

Radiosynthesis.  [11C]1–3 and [11C]SMW139 were obtained by reaction of the appropriate precursor (5–8) 
with [11C]methyl iodide in the presence of NaOH for 4 min at 85 °C in an overall synthesis time of 35–40 min. 
Radiosynthesis, including purification, formulation and analysis is described in detail in the Supplementary 
Information.

LogDoct,7.4 of [11C]1–3 and [11C]SMW139 was determined by the shake-flask method as described in the 
Supplementary Information.

In vivo evaluation in healthy rats.  For each of the carbon-11 labelled benzamide analogues [11C]1–3 
and [11C]SMW139, a biodistribution study and metabolite analysis in healthy male Wistar rats was performed, 
as described in detail in the Supplementary Information. Briefly, tracer distribution in blood, brain, and periph-
eral organs was measured at 5, 15, 30 and 45 min after intravenous injection of 13–23 MBq of formulated tracer. 
Metabolite analysis was performed at 15 and 45 min after intravenous injection of 30–40 MBq of formulated 
tracer in both blood plasma and brain.

Figure 10.  Quantification of binding of [11C]SMW139 in autoradiography experiments with human post 
mortem brain tissue. Both in grey (left) and white (right) matter, no significant differences were observed 
between AD patients (red circles) and non-neurological controls (blue squares).



www.nature.com/scientificreports/

9SCiENTifiC RepOrts |  (2018) 8:6580  | DOI:10.1038/s41598-018-24814-0

In vitro autoradiography.  Snap frozen brain tissue was cut on a cryostat into 20 μm sections. Sections were 
incubated with either [11C]SMW139 (28 nM) alone, or tracer in the presence of a blocking compound: A-740003 
(10 μM) or JNJ-47965567 (10 μM). Autoradiography experiments are described in detail in the Supplementary 
Information.

Immunohistochemical staining.  Frozen brain tissue was cut into section of 5 μm and fixed with ace-
tone. The following primary antibodies were used: Mouse monoclonal anti-phospho-tau (AT8 for tau pSer202 
and pThr205, 1:800, Pierce Biotechnology), mouse monoclonal anti-Aβ (IC16 1:200, Prof. C. Korth, Heinrich 
Heine University Düsseldorf, Germany), Rabbit polyclonal anti-Iba1 (1:3200, Wako), mouse monoclonal anti–
MHC class II (CR3/43, 1:200, Dako), mouse monoclonal anti-CD68 (KP1, 1:600, Dako), and rabbit polyclonal 
anti-P2X7 (ab77413, 1:600, Abcam). Further details of the immunohistochemical staining procedure can be 
found in the Supplementary Information.

PET imaging in rats locally overexpressing hP2X7R.  Adeno-associated viral (AAV) vectors overex-
pressing hP2X7 and eGFP were constructed and produced as described by Ory et al.6. Female rats were injected 
with the hP2X7R expressing vector in the right striatum, and eGFP expressing vector in the left striatum, which 
is described in detail in the Supplementary Information. Rats were sacrificed for in vitro autoradiography at 3 
(n = 2) and 12 (n = 5) weeks after vector injection. Scanning experiments were performed at 5 and 11 weeks after 
viral vector injection. Stable expression of rAAV vectors in rat brain has been previously demonstrated between 5 
and 10 weeks after vector expression6,21. To confirm stable expression of hP2X7R during the time period in which 
PET scanning studies were conducted, autoradiography experiments were performed both prior to and following 
PET experiments. In a dedicated small animal PET scanner (nanoPET, Mediso Ltd.), 60 min dynamic PET scans 
were acquired immediately after intravenous administration of 16–20 MBq of [11C]SMW139. For blocking exper-
iments, rats were injected subcutaneously with JNJ-47965567 (30 mg·kg−1)14,15 45 min prior to tracer injection. 
After data reconstruction (details in Supplementary Information), images were analysed using the freely available 
AMIDE software (version 0.9.2; http://amide.sourceforge.net). ROIs were drawn around ipsi- and contralateral 
striata. Results are expressed as standardised uptake values (SUVs) and error bars indicate standard deviation.

Extended single microdose toxicity study.  A single microdose toxicity study for P2X7R antagonist 
SMW139 was performed according to EMEA guideline EMA/CPMP/ICH/286/1995 (December 2009) in healthy 
Wistar rats (male and female) at a dose of 0.12 mg·kg−1. Rats were administered SMW139 or vehicle and param-
eters assessed post-dose were clinical signs and mortality, changes in body weight, food consumption, terminal 
haematology, coagulation and clinical chemistry parameters, gross pathology and organ weights. Further details 
are described in the Supplementary Information.

Ethics approval.  All animal studies were conducted in accordance with the European Community Council 
Directive 2010/63/EU or UK Home Office regulations for laboratory animal ethics and welfare and experiments 
were approved by the animal ethics committees of local authorities (Dierexperimentencommissie (DEC) of the 
VU and VUmc Amsterdam; KU Leuven University Ethics Committee for Animals; UK Home Office and Animal 
Welfare and Ethical Review Body at Pharmidex Ltd., London, UK).

Human brain tissue samples from Alzheimer’s disease patients and non-neurological control cases were 
obtained from The Netherlands Brain Bank (NBB, www.brainbank.nl), Netherlands Institute for Neuroscience 
(Amsterdam, the Netherlands). The NBB’s procedures are in accordance with all national laws and regulations 
and have been approved by the Medical Ethics Committee of the VU University Medical Center (Amsterdam, 
the Netherlands). All donors or their next of kin gave written informed consent for a brain autopsy and the 
use of the material and clinical information for research purposes. All tissue samples were handled according 
to Dutch national ethical guidelines (Code for Proper Secondary Use of Human Tissue, Dutch Federation of 
Medical Scientific Societies).

Data availability.  The data generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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