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• We use GANs to simulate the concerted activity of a population of neurons. 
• Spike-GAN generates spike trains that match the first- and second-order 

statistics of populations of tens of neurons. 
• We apply Spike-GAN to a real dataset recorded from salamander retina and 

showed that it performs as well as state-of-the-art approaches. 
• We exploit a trained Spike-GAN to construct importance maps to detect the 

most relevant statistical structures present in a spike train. 

Summary 

Spike-GAN 

Generative Adversarial Networks 
Generative Adversarial Networks (GANs) (Goodfellow et al.) are based on the competition between two deep 
neural networks: the generator tries to produce samples that are indistinguishable from the ones contained in a 
given training dataset; the discriminator aims at distinguishing between samples from the training dataset and 
samples produced by 
 the generator.  

Spike-GAN adapts the Wasserstein-GAN variant described by Arjovsky et al.. Samples are transposed so as to 
input the neurons’ activities into different channels. The convolutional filters (red box) span thus all neurons but 
share weights across the time dimension. The architecture of the generator is the same as that of the critic, 
used in the opposite direction and with sigmoid units in the last layer.  

Importance maps: We infer the most relevant 
features characterizing a given neural activity 
pattern by enquiring a trained critic: 
1. Compute the output produced by the critic 

for that particular pattern. 
2. Shuffle across time the spikes emitted by a 

neuron during a specific period of time and 
compute again the output of the critic.  

3. The absolute difference between the two 
outputs gives the importance of shuffled 
spikes. 

4. Multiply the masked original sample by the 
importance. 

5. Sum up all resulting maps for all neurons 
and time periods to get the importance 
map. 

Hypothetical experiment: N repetitions of a behavioral task, where a mouse has to discriminate two 
different stimuli (vertical/horizontal stripes). By means of two-photon calcium imaging the activity of a 
population of V1 neurons in the visual cortex of the mouse is recorded in response to the two stimuli. 
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Finding relevant patterns of neural activity 

(Gulrajani et al.) 

Ideal packet Patterns 
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Fitting the whole probability distribution 
We simulated activity patterns for a small ‘population’ of 2 neurons during 12 ms and evaluated how well 
Spike-GAN fits the whole probability density function from which the patterns are drawn. 
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Fitting neural data from salamander retina 
We tested Spike-GAN on recordings coming from the retinal ganglion cells of the salamander retina 
(Marre et al.). Spike-GAN performs as well as state-of-the-art approaches based on the maximum 
entropy (Tkacik et al.) and the dichotomized Gaussian (Lyamzin et al.) frameworks. 
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https://github.com/manuelmolano/Spike-GAN 
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Samples from neural recordings 

Generated Sample Example  

Final values (red lines) are drawn from a Bernoulli 
distribution with probability defined by the continuous 
values output by the generator (black lines). 


