
Synthesizing realistic neural population activity patterns using Generative Adversarial Networks

Manuel Molano-Mazon1, Arno Onken1,2, Eugenio Piasini1,3 and Stefano Panzeri1
1. Laboratory of Neural Computation, Istituto Italiano di Tecnologia Rovereto, 38068 Rovereto, Italy. 2. University of Edinburgh, Edinburgh EH8 9AB,

UK. 3. University of Pennsylvania, Philadelphia, PA 19104

• We use GANs to simulate the concerted activity of a population of neurons.
• Spike-GAN generates spike trains that match the first- and second-order

statistics of populations of tens of neurons.
• We apply Spike-GAN to a real dataset recorded from salamander retina and

showed that it performs as well as state-of-the-art approaches.
• We exploit a trained Spike-GAN to construct importance maps to detect the

most relevant statistical structures present in a spike train.

Summary

Spike-GAN

Generative Adversarial Networks
Generative Adversarial Networks (GANs) (Goodfellow et al.) are based on the competition between two deep
neural networks: the generator tries to produce samples that are indistinguishable from the ones contained in a
given training dataset; the discriminator aims at distinguishing between samples from the training dataset and
samples produced by
 the generator.

Spike-GAN adapts the Wasserstein-GAN variant described by Arjovsky et al.. Samples are transposed so as to
input the neurons’ activities into different channels. The convolutional filters (red box) span thus all neurons but
share weights across the time dimension. The architecture of the generator is the same as that of the critic,
used in the opposite direction and with sigmoid units in the last layer.

Importance maps: We infer the most relevant
features characterizing a given neural activity
pattern by enquiring a trained critic:
1. Compute the output produced by the critic

for that particular pattern.
2. Shuffle across time the spikes emitted by a

neuron during a specific period of time and
compute again the output of the critic.

3. The absolute difference between the two
outputs gives the importance of shuffled
spikes.

4. Multiply the masked original sample by the
importance.

5. Sum up all resulting maps for all neurons
and time periods to get the importance
map.

Hypothetical experiment: N repetitions of a behavioral task, where a mouse has to discriminate two
different stimuli (vertical/horizontal stripes). By means of two-photon calcium imaging the activity of a
population of V1 neurons in the visual cortex of the mouse is recorded in response to the two stimuli.

critic

critic

-

shuffle

Importance of
shuffled spikes

x

Finding relevant patterns of neural activity

(Gulrajani et al.)

Ideal packet Patterns

Importance
Maps

Fitting the whole probability distribution
We simulated activity patterns for a small ‘population’ of 2 neurons during 12 ms and evaluated how well
Spike-GAN fits the whole probability density function from which the patterns are drawn.

Novel samples

55% | 56%

Not in Underlying
distribution

3.8% | 3.2%

Underlying
distribution
(numerical

probabilities)

Training
dataset

Surrogate
dataset

Spike-GAN
distribution

Blue tones

Red tones

14.6 bits

14.6 bits

14.3 bits

Sample Example

Fitting neural data from salamander retina
We tested Spike-GAN on recordings coming from the retinal ganglion cells of the salamander retina
(Marre et al.). Spike-GAN performs as well as state-of-the-art approaches based on the maximum
entropy (Tkacik et al.) and the dichotomized Gaussian (Lyamzin et al.) frameworks.

1. Arjovsky et al. arXiv 2017. 2. Goodfellow et al. NIPS 2014.
3. Gulrajani et al. NIPS 2017. 4. Odena et al. Distill 2016. 5.
Marre et al. IST Austria 2014. 6. Tkacik et al. Plos Comp. Biol.
2014. 7. Lyamzin et al. Front. Comp. Neurosci. 2010.

References Acknowledgements
This project has received funding from the European
Union's Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No
699829.

https://github.com/manuelmolano/Spike-GAN

Code

Comparison with a multi-layer perceptron Less reliable packets Different number of samples

tr
u

e
 p

o
si

ti
ve

 r
at

e

false positive rate

lo
g

n
u

m
e

ri
ca

l p
ro

b
ab

ili
ti

es

log probabilities in surrogate & generated distr.

TRAINING DATA

GENERATOR SAMPLE

SAMPLE

DISCRIMINATOR

FAKE

REAL

LO
SS

la
te

n
t

sp
ac

e

Samples from neural recordings

Generated Sample Example

Final values (red lines) are drawn from a Bernoulli
distribution with probability defined by the continuous
values output by the generator (black lines).

