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METHODS
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Ice-atmosphere covariability in the Northern
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The formulation of Arctic-midlatitudes teleconnec- and 0y j(m,y) 1s defined similarly. In the presented analysis, I can be the tendency of N or I (respectively W= | oo
tions is often shaped around the idea of forcings Ny and I;) or heat fluxes (F)). Monthly tendencies are defined as I'(m + 1,y) — I'(m, y). 3 datasets have N |

inside the Arctic region that affect the atmosphere
non-locally. Location, magnitude and timing of the
forcing involve processes on the decadal and multi-
decadal time scale and faster atmospheric processes
as well. The problem of the atmospheric response to
the forcing lies in the seasonal-to-subseasonal time
scale. We present an analysis of ice-atmosphere co-
variability that emphasizes the entanglement of the
two time scales. Presented results are based on
the ERA-Interim reanalysis. (Geopotential height
(500 hPa) has been used to define indexes of atmo-
spheric circulation (e.g. NAO, Siberian High). Sea-
ice cover has been used to define indexes referred to
the Labrador sea, the Barents sea and the whole Arc-
tic Ocean (fig. 1). It is found that surface heat fluxes
are controlled by the state of ice and atmosphere (fig.
2) and the system shows a peculiar behavior that en-
tangles the two time scales (fig. 3-4). The presented
approach can help us formulate questions around
Arctic-Midlatitudes interaction in a way that is an-
chored to observational evidence. Results encourage
to explore, under suitable modelling framework, the
decadal modulation of the coupled ice-atmosphere
interaction on a subseasonal-to-seasonal time scale

(e.g. fig. 5 and table 1).

Averaging domains

Figure 1: Averaging domains used in the analysis.

been used but only results from ERA-Interim are presented.
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Figure 2: a) Scatter plot of index Ny40 and index Ipy as
defined in section 2, in the cold season (NDJFM) for 1979-
2017. The radius of the marker is proportional to the magnitude
of anomalous surface turbulent heat fluxes in the BK area. b)
Surface turbulent heat fluxes in BK versus a linear combination
of the Ny 40 index and the Ipx index. Errorbars correspond to

two standard deviations.
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Figure 3: Seasonal evolution of the average Ny 40 index and
| index for 4 clusters of years. Clusters are defined selecting
individual years that had either the N or the | index above (be-
low) the 88th (12th) percentile in January. Two bars indicate
the 95th percentile of the distribution of the difference for each

index between December and March from 2000 random clusters.
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Figure 4: December and February/March values of the Ny 40
index and the Iz index for individual years used in 2 clusters

of figure 3.
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Figure 5: Diagrams of I, i.e. surface turbulent heat fluxes
averaged using eq. 1, over the Barents-Kara (155 ) seas using
a) the Ny 40 index and b) the Siberian index (Ng;5). Arrows
indicate the average tendencies N, and I, in each of the 4

sectors bounded by solid lines.

INDEXES I 11 111 |1AY

NAO/BK -0.6/-0.2 -0.7/0.5 009/0.1 0.3/-0.25
SIB/BK -1.4/-0.0 -0.0/05 1.3/-0.0 -0.5/-0.1
NAO/LAB -0.9/0.2 -0.5/0.8 1.0/-0.1 0.1/-0.5
NAO/PC -0.7/-0.2 -0.6/0.0 1.1/0.2 0.3/-0.4

Table 1: N, and I, for couples of indexes.

MAIN FINDINGS

« A robust relationship is demonstrated between
the state of Arctic sea-ice and the subseasonal
tendency of the NAO and vice versa.

« [t is possible to define sets of case studies with
similar ice-atmosphere conditions to test
causal links in the aforementioned relationship.

This research was supported by the Blue-Action project
(European Union’s Horizon 2020 research and innovation
programme, grant number: 727852)

CINCC . - praimy

sui Cambiamenti Climatici

Arctic Impact on Weather and Climate



