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Abstract 
The aim of this study was to investigate why Collatz series, starting with positive whole 
numbers, always seem to converge (i.e. end in the 4,2,1 cycle), regardless of their initial 
behaviour. The results presented here appear to show that symmetrical, Gaussian-like 
distributions may be inherently involved in the generation of these sequences. The 
Collatz process appears to draw at random (although not proven or tested in this 
preliminary report) from this distribution, presumably resulting in its convergent 
behaviour. It is noted that this is not an attempt or claim to prove or disprove the 
Collatz conjecture, but only a collection of the results obtained in the aforementioned 
investigation.  
 
Introduction 
Collatz sequences are constructed by taking some arbitrary positive whole number and 
iterating it through the Collatz function. The latter divides a given number by 2 if it is 
even, multiplies it by 3 and adds 1 if it is odd: 
 

Ci = Ci-1/2 if Ci-1 is even 
 

Ci = 3Ci-1+1 if Ci-1 is odd 
 
An alternative, but equivalent form of the Collatz function is one which includes a 
division by 2 for odd, as well as even numbers: 
 

Ci = Ci-1/2 if Ci-1 is even 
 

Ci = (3Ci-1+1)/2 if Ci-1 is odd 
 
The Collatz conjecture is that all such sequences eventually reach unity, or more 
correctly result in the 4,2,1 cycle [1-7]. Some starting numbers exhibit partially divergent 
trajectories, for example, the starting number 27, only to eventually converge back 
towards unity.  
 
Methods 
For the purposes of this investigation, we write the Collatz process as follows:  
 
Given an odd starting number: 
 

2
n
q-1 (q odd) 

 
(1) Carry out the operation (3x+1)/2, n times to obtain the even number: 
 

2
m
r (r odd) 

 
(2) Carry out the operation x/2, m times to obtain the odd number r. 
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(3) Repeat the whole process for the new starting number, until unity is reached. 
 
Alternatively, given an even starting number: 
 

2
m
r (r odd) 

 
(1) Carry out the operation x/2, m times to obtain the odd number: 

 
2

n
q-1 (q odd) 

 
(2) Carry out the operation (3x+1)/2, n times to obtain the even number: 
 

3
n
q-1 (q odd) 

 
(3) Repeat the whole process for the new starting number, until the number 2 is 
reached. 
 
This investigation studies the quantity m-n. 
 
Results 
Figures 1 and 2 show the histograms of all initial m-n values for all starting numbers 
from 1 to 2

z
-1 for z=10 and z=18. In both cases, the distributions are approximately 

symmetrical, and Gaussian-like with an approximately zero mean. In the case of Figure 
2, the distribution spans a greater range of m-n values in accordance with the larger 
range of starting numbers studied. 
 
Figures 3 and 4 show the sequence of m-n values encountered for the complete Collatz 
sequences starting at an arbitrary, large, odd number, and an arbitrary, large, even 
number, and the corresponding histograms. The m-n values appear to be randomly 
distributed (although not proven or tested in this preliminary report) around zero, while 
the histograms also appear approximately symmetrical, and Gaussian-like, with 
approximately zero means. 
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Figure 1 - The histogram of all initial m-n values for all starting numbers from 1 to 2
10

-1.  
 

 

Figure 2 - The histogram of all initial m-n values for all starting numbers from 1 to 2
18

-1.  
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Figure 3 - The sequence of m-n values encountered for the Collatz sequence starting 
with an arbitrary, large, odd number 5

6799 
(top) and the corresponding histogram 

(bottom).  
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Figure 4 - The sequence of m-n values encountered for the Collatz sequence starting 
with an arbitrary, large, even number 77

999
+1

 
(top) and the corresponding histogram 

(bottom).  
 
Discussion 
This working paper highlighted that approximately symmetrical, Gaussian-like 
distributions may be inherently involved in the generation of Collatz sequences. Clearly, 
the relative increases in Collatz sequences represented by (3x+1)/2 are smaller or equal 
to the decrements by a factor of 2 represented by the x/2 operations, and for continued 
series growth, increments must overwhelm decrements. The numbers of these 
operations depend on the numbers of odd and even numbers encountered by the 
Collatz process, which the mathematical literature indicates, are difficult to analyze 
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analytically. The new method of analysis presented in this paper shows that the 
difference of the numbers of the two operations may be following an approximately 
symmetrical, Gaussian-like distribution which has an approximately zero mean. This 
means that, despite the behaviour of Collatz sequences appearing without structure and 
random [1], there may be an inherent statistical order in the process. It also means that 
continued Collatz series growth may be not viable because these distributions will 
ensure that (3x+1)/2 and x/2 operations will become approximately equal in numbers as 
more iterations are carried out, thus not allowing the former to overwhelm the latter. 
Therefore, the Conjecture, perhaps, will always be true unless cycles other than the 
trivial 4, 2, 1 cycle exist. 
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