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Abstract6

P versus NP is considered as one of the most important open problems in computer science. This7

consists in knowing the answer of the following question: Is P equal to NP? This question was8

first mentioned in a letter written by John Nash to the National Security Agency in 1955. A9

precise statement of the P versus NP problem was introduced independently in 1971 by Stephen10

Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.11

Another major complexity classes are LOGSPACE and NLOGSPACE. Whether LOGSPACE =12

NLOGSPACE is another fundamental question that it is as important as it is unresolved. SAT is13

easier if the number of literals in a clause is limited to at most 2, in which case the problem is called14

2SAT. This problem can be solved in polynomial time, and in fact is complete for the complexity15

class NLOGSPACE. If additionally all OR operations in literals are changed to XOR operations,16

the result is called exclusive-or 2-satisfiability, which is a problem complete for the complexity17

class LOGSPACE. Given an instance of exclusive-or 2-satisfiability and a positive integer K, the18

problem maximum exclusive-or 2-satisfiability consists in deciding whether this Boolean formula19

has a truth assignment with at leat K satisfiable clauses. We prove that maximum exclusive-or20

2-satisfiability is in NLOGSPACE. Moreover, we demonstrate this problem is NP-complete. To21

attack the P versus NP question the concept of NP-completeness has been very useful. If any22

single NP-complete problem can be solved in polynomial time, then every NP problem has a23

polynomial time algorithm. Since every language in the class NLOGSPACE is in P, then we24

show that our problem is in P and NP-complete and thus, P = NP.25
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1 Introduction30

The P versus NP problem is a major unsolved problem in computer science [5]. This is31

considered by many to be the most important open problem in the field [5]. It is one of32

the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a33

US$1,000,000 prize for the first correct solution [5]. It was essentially mentioned in 1955 from34

a letter written by John Nash to the United States National Security Agency [1]. However,35

the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in36

a seminal paper [5].37

In 1936, Turing developed his theoretical computational model [19]. The deterministic38

and nondeterministic Turing machines have become in two of the most important definitions39

related to this theoretical model for computation [19]. A deterministic Turing machine has40

only one next action for each step defined in its program or transition function [19]. A41

nondeterministic Turing machine could contain more than one action defined for each step42

of its program, where this one is no longer a function, but a relation [19].43

Another relevant advance in the last century has been the definition of a complexity44

class. A language over an alphabet is any set of strings made up of symbols from that45
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alphabet [6]. A complexity class is a set of problems, which are represented as a language,46

grouped by measures such as the running time, memory, etc [6].47

The set of languages decided by deterministic Turing machines within time f is an48

important complexity class denoted TIME(f(n)) [16]. In addition, the complexity class49

NTIME(f(n)) consists in those languages that can be decided within time f by non-50

deterministic Turing machines [16]. The most important complexity classes are P and NP .51

The class P is the union of all languages in TIME(nk) for every possible positive fixed52

constant k [16]. At the same time, NP consists in all languages in NTIME(nk) for every53

possible positive fixed constant k [16]. Whether P = NP or not is still a controversial and54

unsolved problem [1]. Our goal is to prove the answer P = NP .55

2 Motivation56

If any single NP–complete problem can be solved in polynomial time, then everyNP problem57

has a polynomial time algorithm [6]. No polynomial time algorithm has yet been discovered58

for any NP–complete problem [8]. The biggest open question in theoretical computer science59

concerns the relationship between these classes: Is P equal to NP? In 2012, a poll of 15160

researchers showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer61

is yes, 5 (3%) believed the question may be independent of the currently accepted axioms62

and therefore impossible to prove or disprove, 8 (5%) said either do not know or do not care63

or don’t want the answer to be yes nor the problem to be resolved [10]. It is fully expected64

that P 6= NP [16]. Indeed, if P = NP then there are stunning practical consequences [16].65

For that reason, P = NP is considered as a very unlikely event [16]. Certainly, P versus66

NP is one of the greatest open problems in science and a correct solution for this incognita67

will have a great impact not only for computer science, but for many other fields as well [8].68

3 Theory69

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings70

over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w71

in Σ∗ there is a computation associated with M on input w [3]. We say that M accepts w if72

this computation terminates in the accepting state, that is M(w) = “yes” [3]. Note that M73

fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,74

or if the computation fails to terminate [3].75

The language accepted by a Turing machine M , denoted L(M), has an associated al-76

phabet Σ and is defined by:77

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.78

We denote by tM (w) the number of steps in the computation of M on input w [3]. For79

n ∈ N we denote by TM (n) the worst case run time of M ; that is:80

TM (n) = max{tM (w) : w ∈ Σn}81

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial82

time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this83

means the language L(M) can be accepted by the Turing machine M in polynomial time.84

Therefore, P is the complexity class of languages that can be accepted in polynomial time85

by deterministic Turing machines [6]. A verifier for a language L is a deterministic Turing86
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machine M , where:87

L = {w : M(w, c) = “yes” for some string c}.88

We measure the time of a verifier only in terms of the length of w, so a polynomial time89

verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,90

represented by the symbol c, to verify that a string w is a member of L. This information is91

called certificate. NP is also the complexity class of languages defined by polynomial time92

verifiers [16].93

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic94

Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape95

[19]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗96

is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a97

polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:98

x ∈ L1 if and only if f(x) ∈ L2.99

An important complexity class is NP–complete [11]. A language L ⊆ {0, 1}∗ is NP–complete100

if101

L ∈ NP , and102

L′ ≤p L for every L′ ∈ NP .103

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard [6].104

Moreover, if L ∈ NP , then L ∈ NP–complete [6]. A principal NP–complete problem is SAT105

[9]. An instance of SAT is a Boolean formula φ which is composed of106

1. Boolean variables: x1, x2, . . . , xn;107

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such108

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);109

3. and parentheses.110

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A111

satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A112

formula with a satisfying truth assignment is a satisfiable formula. The problem SAT asks113

whether a given Boolean formula is satisfiable [9]. We define a CNF Boolean formula using114

the following terms. A literal in a Boolean formula is an occurrence of a variable or its115

negation [6]. A Boolean formula is in conjunctive normal form, or CNF , if it is expressed as116

an AND of clauses, each of which is the OR of one or more literals [6]. A Boolean formula117

is in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct literals118

[6].119

For example, the Boolean formula:120

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)121

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three122

literals x1,⇁ x1, and⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,123

or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.124

Many problems have been proved that belong to NP-complete by a polynomial time reduction125

from 3SAT [9]. For example, the problem 1-IN-3 3SAT defined as follows: Given a Boolean126

formula φ in 3CNF , is there a truth assignment such that each clause in φ has exactly one127

true literal?128
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A logarithmic space Turing machine has a read-only input tape, a write-only output129

tape, and a read/write work tape [19]. The work tape may contain O(logn) symbols [19].130

In computational complexity theory, LOGSPACE is the complexity class containing those131

decision problems that can be solved by a logarithmic space Turing machine which is de-132

terministic [16]. NLOGSPACE is the complexity class containing the decision problems133

that can be solved by a logarithmic space Turing machine which is nondeterministic [16]. A134

Boolean formula is in 2-conjunctive normal form, or 2CNF , if it is in CNF and each clause135

has exactly two distinct literals. There is a problem called 2SAT , where we asked whether136

a given Boolean formula φ in 2CNF is satisfiable. 2SAT is complete for NLOGSPACE137

[16]. Another special case is the class of problems where each clause contains XOR (i.e.138

exclusive or) rather than (plain) OR operators. This is in P , since an XOR SAT formula139

can also be viewed as a system of linear equations mod 2, and can be solved in cubic time140

by Gaussian elimination [15]. We denote the XOR function as ⊕. The XOR 2SAT problem141

will be equivalent to XOR SAT, but the clauses in the formula have exactly two distinct142

literals. XOR 2SAT is complete for LOGSPACE [2], [18].143

4 Results144

We can give a certificate-based definition for NLOGSPACE [3]. The certificate-based145

definition of NLOGSPACE assumes that a logarithmic space Turing machine has another146

separated read-only tape [3]. On each step of the machine the machine’s head on that tape147

can either stay in place or move to the right [3]. In particular, it cannot reread any bit to148

the left of where the head currently is [3]. For that reason this kind of special tape is called149

“read once" [3].150

I Definition 1. A language L is in NLOGSPACE if there exists a deterministic logarithmic151

space Turing machine and a with an additional special read-once input tape polynomial152

p : N→ N such that for every x ∈ {0, 1}∗,153

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) such that M accepts 〈x, u〉154

where by M(x, u) we denote the computation of M where x is placed on its input tape155

and u is placed on its special read-once tape, and M uses at most O(log |x|) space on its156

read/write tape for every input x.157

I Definition 2. MAXIMUM EXCLUSIVE-OR 2-SATISFIABILITY158

INSTANCE: A positive integer K and a formula φ that is an instance of XOR 2SAT.159

QUESTION: Is there a truth assignment in φ such that at least K clauses are satisfiable?160

We denote this problem as MAX ⊕ 2SAT .161

I Theorem 3. MAX ⊕ 2SAT ∈ NLOGSPACE.162

Proof. Given a Boolean formula φ that is an instance of XOR 2SAT with n variables and163

m clauses, we enumerate from left to right the clauses in φ such that the leftmost clause164

has the index 1 and the rightmost the number m. Therefore, a combination of K clauses in165

φ corresponds to a subset of size K from the set {1, 2, 3, . . . ,m − 1,m}. This subset of K166

numbers will be a regular language, because it is finite [13]. Since it is a regular language,167

then it will be computable by a linear size NC1 circuit [13]. Since the number of input gates168

is at most dlogme, then the size of the circuit C which computes this subset is bounded by169

O(logm).170
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There will be a deterministic logarithmic space Turing machine which receives the circuit171

C in the special read-once input tape and in the input tape the given Boolean formula φ that172

is an instance of XOR 2SAT. Next, we copy the circuit C to the read/write work tape just173

reading each bit in the special read-once input tape from left to right until we find the blank174

symbol. We can copy it to the read/write work tape, because the size of C is O(logm).175

After that, we evaluate in ascending order the numbers in the set {1, 2, 3, . . . ,m−1,m} just176

to verify if there are at least K numbers which leads to an acceptance. This can be done177

in O(logm), because CIRCUIT VALUE can be solved in linear time [16]. Besides, we can178

count the number of different acceptances with a positive integer d ≤ m that will have at179

most dlogme bit-length. Furthermore, if we obtain in the counting that d > m, then we180

reject. In this way, the process remains in O(logm) space.181

Finally, if there are at least K acceptances between the numbers 1 and m, then we182

compute in the read/write work tape the Boolean formula ψ = ci1 ∧ ci2 . . . ∧ ciK
. . . such183

that each number ij is accepted by C. Since XOR 2SAT is complete for LOGSPACE [2],184

[18], then we can decide ψ in logarithmic space. Notice that, we do not need to copy ψ185

to the read/write work tape since the membership in ψ of any clause cij
in the input tape186

can be done in logarithmic space by an evaluation in C. In this way, we finally accept in187

case of ψ is satisfiable otherwise we reject the chosen input and certificate. All this process188

can be done in deterministic logarithmic space just reading at once the additional special189

tape. Moreover, the size of the certificate is polynomial due to the size and the depth of C190

is logarithmic. In conclusion, we show MAX ⊕ 2SAT complies with the certificate-based191

definition of NLOGSPACE and thus, MAX ⊕ 2SAT ∈ NLOGSPACE [3]. J192

I Theorem 4. MAX ⊕ 2SAT ∈ NP–complete.193

Proof. MAX⊕2SAT ∈ NP , because NLOGSPACE ⊆ NP [16]. Given a Boolean formula194

φ in 3CNF with n variables and m clauses. For each clause ci = (x ∨ y ∨ z) in φ, where x,195

y and z are literals, we create the following formulas,196

Pi = (⇁ x⊕⇁ y) ∧ (⇁ y⊕⇁ z) ∧ (⇁ x⊕⇁ z).197

We can see Pi has exactly two satisfiable clauses if and only if exactly 1 member of {x, y, z}198

is true. Hence, we can create the Boolean formula ψ as the conjunction of the Pi formulas199

for every clause ci in φ, such that ψ = P1 ∧ . . . ∧ Pm. Finally, we obtain that200

φ ∈ 1-IN-3 3SAT if and only if (ψ, 2×m) ∈MAX ⊕ 2SAT.201

To sum up, we show MAX ⊕ 2SAT ∈ NP–hard and MAX ⊕ 2SAT ∈ NP and thus,202

MAX ⊕ 2SAT ∈ NP–complete. J203

I Theorem 5. P = NP .204

Proof. If any single NP–complete problem can be solved in polynomial time, then every NP205

problem has a polynomial time algorithm [6]. Every language in the class NLOGSPACE206

is in P, and therefore, MAX ⊕ 2SAT ∈ P [16]. Hence, as a consequence of Theorems 3 and207

4, then P = NP . J208

5 Conclusion209

No one has been able to find a polynomial time algorithm for any of more than 300 important210

known NP–complete problems [9]. Most complexity theorists already assume P is not equal211
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to NP , but no one has found an accepted and valid proof yet [10]. There are several212

consequences if P is not equal to NP , such as many common problems cannot be solved213

efficiently [5]. However, a proof of P = NP will have stunning practical consequences,214

because it leads to efficient methods for solving some of the important problems in NP [5].215

The consequences, both positive and negative, arise since various NP–complete problems are216

fundamental in many fields [5]. This result explicitly concludes with the answer of the P217

versus NP problem: P = NP .218

Cryptography, for example, relies on certain problems being difficult. A constructive219

and efficient solution to an NP–complete problem such as 3SAT will break most existing220

cryptosystems including: Public-key cryptography [12], symmetric ciphers [14] and one-way221

functions used in cryptographic hashing [7]. These would need to be modified or replaced222

by information-theoretically secure solutions not inherently based on P–NP equivalence.223

There are enormous positive consequences that will follow from rendering tractable many224

currently mathematically intractable problems. For instance, many problems in operations225

research are NP–complete, such as some types of integer programming and the traveling226

salesman problem [11]. Efficient solutions to these problems have enormous implications for227

logistics [5]. Many other important problems, such as some problems in protein structure228

prediction, are also NP–complete, so this will spur considerable advances in biology [4].229

But such changes may pale in significance compared to the revolution an efficient method230

for solving NP–complete problems will cause in mathematics itself. Stephen Cook says:231

“ . . .it would transform mathematics by allowing a computer to find a formal proof of any232

theorem which has a proof of a reasonable length, since formal proofs can easily be recognized233

in polynomial time.” [5].234

Indeed, this proof of P = NP could solve not merely one Millennium Problem but all235

seven of them [1]. This observation is based on once we fix a formal system such as the236

first-order logic plus the axioms of ZF set theory, then we can find a demonstration in time237

polynomial in n when a given statement has a proof with at most n symbols long in that238

system [1]. This is assuming that the other six Clay conjectures have ZF proofs that are239

not too large such as it was the Perelman’s case [17].240

Besides, a P = NP proof reveals the existence of an interesting relationship between241

humans and machines [1]. For example, suppose we want to program a computer to create242

new Mozart-quality symphonies and Shakespeare-quality plays. When P = NP , this could243

be reduced to the easier problem of writing a computer program to recognize great works244

of art [1].245
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