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Butcher Series
A Story of Rooted Trees and Numerical Methods for

Evolution Equations
Robert I McLachlan, Klas Modin, Hans Munthe-Kaas and Olivier Verdier

Abstract. Butcher series appear when Runge–Kutta
methods for ordinary differential equations are ex-
panded in power series of the step size parameter. Each
term in a Butcher series consists of a weighted elemen-
tary differential, and the set of all such differentials
is isomorphic to the set of rooted trees, as noted by
Cayley in the mid 19th century. A century later Butcher
discovered that rooted trees can also be used to obtain
the order conditions of Runge–Kutta methods, and he
found a natural group structure, today known as the
Butcher group. It is now known that many numerical
methods can also be expanded in Butcher series; these
are called B-series methods. A long-standing problem
has been to characterize, in terms of qualitative fea-
tures, all B-series methods. Here we tell the story of
Butcher series, stretching from the early work of Cayley,
to modern developments and connections to abstract
algebra, and finally to the resolution of the character-
isation problem. This resolution introduces geometric
tools and perspectives to an area traditionally explored
using analysis and combinatorics.

1. From Cayley to Butcher

Butcher series are mathematical objects that were
introduced by the New Zealand mathematician
John Butcher in the 1960s. He introduced them
as part of his study of Runge–Kutta methods, a
popular class of numerical methods for evolu-
tion equations such as initial-value problems for
ordinary differential equations, and they remain
indispensable in the numerical analysis of differ-
ential equations. In this article we provide a brief
introduction to Butcher series, survey their early
history up to their introduction by John Butcher,
and relate the story of the many connections that
have recently been discovered between Butcher
series and other parts of mathematics, notably
algebra and geometry.1 We begin, however, with
the traditional definition.

Butcher series are intimately associated with
the set of smooth (infinitely differentiable) vector

1This article is not a comprehensive review and is focussed
on our own interests. Useful companions to this article are
the detailed mathematical review of Butcher series by Sanz-
Serna and Murua [35] and the textbook treatments of Hairer
et al. [21, 23].

fields on vector spaces. Indeed, let f be a smooth
vector field on a vector space V, defining the
ordinary differential equation (ODE)

ẋ = f (x), (1.1)

where ẋ = dx
dt denotes the derivative with respect

to time t. One way to study (1.1) is to develop
the Taylor series of its solutions. Let x(h) be the
solution to (1.1) at time t = h subject to the initial
condition x(0) = x0. The Taylor series of x(h) in h is

x(h) = x(0) + hẋ(0) +
1
2

h2ẍ(0) + · · · . (1.2)

We already know that x(0) = x0 and ẋ(0) = f (x0).
The additional terms can be found by repeat-
edly applying the chain and product rules. For
example,

ẍ =
d
dt

ẋ =
d
dt

f (x) = f ′(x)ẋ = f ′(x) f (x),

or, relative to a basis in which x = x1e1 + · · ·+xnen,

ẍi =

n∑
j=1

∂f i

∂xj (x) f j(x),

where f (x) = f 1(x)e1 + · · · + f n(x)en. Continuing in
this way gives

ẋ = f (x),

ẍ = f ′(x) f (x),
...
x = f ′(x) f ′(x) f (x) + f ′′(x)( f (x), f (x)),

....
x = f ′(x) f ′(x) f ′(x) f (x) + f ′(x) f ′′(x)( f (x), f (x))

+ 3f ′′(x)( f ′(x) f (x), f (x)) + f ′′′(x)( f (x), f (x), f (x)),
...

(1.3)
Here the kth derivative f (k)(x) of the vector field
f is regarded as a multilinear map Vk → V. For
example, f ′′( f , f ) is the vector field on V whose
ith coordinate is

n∑
j,k=1

∂2f i

∂xj∂xk
(x) f j(x) f k(x).

A vector field of the form appearing in (1.3), com-
bining f and its derivatives, is called an elementary
differential. Using (1.3), the Taylor series (1.2) for
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the solution of (1.1) can be written as

x(h) = x0 + hf +
1
2

h2f ′f +
1
6

h3f ′f ′f +
1
6

h3f ′′( f , f ) + · · ·
(1.4)

where each elementary differential is evaluated
at x0. Notice that the power of h in each term is
determined by the multiplicity of f in the elemen-
tary differential. However, the coefficients 1, 1,
1/2, 1/6, 1/6, and so on are not determined by their
corresponding elementary differentials. A Butcher
series, shortly denoted B-series, is a generalisation
of (1.4) allowing arbitrary coefficients, i.e. a formal
series of the form

B(c, f ) := c0x0 + c1hf + c2h2f ′( f ) + c3h3f ′( f ′( f ))

+ c4h3f ′′( f , f ) + · · · (1.5)

where ci ∈ R. Although presented here in coor-
dinates, we shall see that Butcher series do not
depend on the choice of basis.

2. Early History

Butcher series are named in honour of the New
Zealand mathematician John Butcher. In a pub-
lication career spanning (so far) 60 years he has
written 167 papers and books, all but 18 of them
concerned with Runge–Kutta methods and their
generalisations. Most of them involve in some
way the fundamental structure that bears his
name. Butcher series were introduced in a remark-
able series of ten sole-authored papers in the years
1963–1972.

A Runge–Kutta method is a numerical ap-
proximation xn �→ xn+1 of the exact flow of (1.1)
defined by the following equations in xn, xn+1,
X1, . . . , Xν ∈ V:

Xi = xn + h
ν∑

j=1

aij f (Xj),

xn+1 = xn + h
ν∑

j=1

bj f (Xj).

(2.1)

Here ν is the number of stages of the method
and aij, bj are real numbers parameterising the
Runge–Kutta method. Associated with the ab-
stract Runge–Kutta method (2.1) are its order con-
ditions, polynomials equations in aij and bj — one
equation per elementary differential — that deter-
mine the order of convergence of the method and
its local error. Their derivation has been simplified
over the years; a modern exposition can be found

in Hairer, Lubich and Wanner [21], and a detailed
history in Butcher and Wanner [9].

The first breakthrough paper dates from 1963
[5]. Here Butcher found for the first time the
coefficients ci of the B-series (1.5) of xn+1 of the
Taylor expansion in h of an arbitrary Runge–
Kutta method. This gave the order conditions
for Runge–Kutta methods in complete generality.
As previous studies had laboriously expanded
the solutions of particular (e.g. explicit) meth-
ods by hand, this was an enormously important
development.

Butcher did have, however, some precursors.
The most notable example is the paper of Mer-
son [32] from 1957. Robert Henry ‘Robin’ Merson
(1921–1992) was a scientist at the Royal Aircraft
Establishment, Farnborough, UK, who was in-
vited along with more senior numerical analysts
to a conference on Data Processing and Automatic
Computing Machines at Australia’s Weapons Re-
search Establishment in Salisbury, South Aus-
tralia.2 It seems like a long way to go for a
conference in 1957. However, the UK was still per-
forming above-ground atomic bomb tests in South
Australia at that time and the Australian govern-
ment was very keen to be a part of the emerging
era. Merson’s work is bound up with one of
the most significant events of 1957, the launch
of Sputnik 1 on 4 October 1957, and the tale of
Farnborough’s involvement is told in detail by
one of the key participants, Desmond King-Hele,
in his book A Tapestry of Orbits [28]. The short
version is that with the aid of a large radio an-
tenna hastily erected in a nearby field, and some
calculations of Robin Merson, within two weeks
they had an accurate orbit for Sputnik 1. This
allowed them to estimate the density of the upper
atmosphere and (after Sputnik 2) the shape of the
earth. Robin Merson became an expert in prac-
tical numerical analysis and orbit determination.

Merson’s paper explains clearly the struc-
ture of the elementary differentials f ′( f ), f ′′( f , f ),
etcetera, and, crucially, shows how they are in
one-to-one correspondence with rooted trees. He

2Flight-related research at Farnborough began with the Army
Balloon Factory in 1904, which became the Royal Aircraft
Factory in 1912, the Royal Aircraft Establishment in 1918,
and then the Royal Aerospace Establishment in 1988. It was
merged into the Defence Research Agency in 1991 and then
into the Defence Evaluation and Research Agency in 1995.
This was split up in 2001, with Farnborough becoming part of
the private company Qinetiq. Desmond King-Hele’s version
of these later developments is recorded at [29].
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also introduces various basic operations on rooted
trees. This development, perhaps regarded ini-
tially as a bookkeeping device for finding and
keeping track of the different terms, has over time

become central to the combinatorial and algebraic
study of B-series.

The rooted trees
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Merson introduces a method for carrying out
the required Taylor series expansions in elemen-
tary differentials and gives an example of a 4th
order Runge–Kutta method he derived. However,
the actual expansions, although greatly simplified
by the use of elementary differentials and rooted
trees, are still carried out term by term. He did not
have the coefficients of all elementary differentials
at once, as Butcher achieved.

As it happens, the required mathematics and
structures had already been discovered a century
earlier by Arthur Cayley in 1857 [12] (see Fig. 2.2).
This is the actual discovery of the objects called
trees (connected, cycle-free graphs). In popular
treatments of graph theory, the development of
graph theory is closely linked with recreational
mathematics (the bridges of Königsberg) and with
chemistry (Cayley’s enumeration of alkanes and
other families of molecules). One common inter-
pretation of the story is that Cayley introduced
the trees as a purely abstract structure and 17
years later — behold the power of mathematics! —
found that he could use them to count molecules.
However, Cayley actually needed trees for exactly
the purpose we are using them here — to keep
track of how vector fields interact when applied
repeatedly to one another — and this purpose was
then forgotten for a hundred years. As the need
for better numerical integration methods arose
towards the end of the 19th century, the required
tools for a complete theory were indeed already
there, but they had been forgotten.

As Frank Harary wrote [24],

In very many cases and in disciplines in the
physical sciences, the social sciences, com-
puter science, and the humanities, graphs
frequently occur as a natural, useful, and in-
tuitive mathematical model. The consequence
is that those investigators who were not aware
of the existence of graph theory as a study in
its own right were led to rediscover it in order
to apply it.

Interestingly enough, Merson does cite Cayley.
However, from the context, it is not clear that he
actually laid eyes on Cayley’s paper. He writes,

A formula for the number of trees of a given
order was discovered by CAYLEY [our [12]]
and quoted by ROUSE–BALL. . .

This was probably the original 1892 edition of
Rouse Ball’s famous book Mathematical Recreations
and Essays, as later editions included Coxeter as
coauthor. This first edition contains just one page
on trees, stating Cayley’s formulae for the number
of trees. Now this same section of Rouse Ball also
discusses the famous Knight’s Tour problem, an
astonishingly long-lived problem dating from an
Arabic manuscript of 840 AD. For example, there
were three articles on Knight’s Tours published in
the Mathematical Gazette in 1956 alone. This prob-
lem became a life-long interest of Merson’s, who
published tours in 1974 and 1999 (posthumously,
in Games and Puzzles magazine, from letters writ-
ten in 1990–91) that are still in many cases the
best known tours. Although Merson stated [27]
that he first became interested in the problem in
1972, it is not unlikely that in 1957 he rediscov-
ered trees independently because, like Cayley, he
needed them, and from his interest in recreational
mathematics remembered Rouse Ball’s discussion
of Cayley without ever chasing it up.

John Butcher, at that time a PhD student in
physics at the University of Sydney, was actually
present at Robin Merson’s talk in 1957, but says
[4] that he did not understand it at all. However,
the seed was planted there. To return to Butcher’s
1963 paper, he closes with the following statement:

It happens that this situation is capable of
extensive generalisation and, for example,
keeping this same value ν = 3 it is possible
to satisfy the 37 conditions necessary for a
sixth order process. Similarly for any value
of ν a process of order up to 2ν is possible. It
is intended that details of such processes will
be discussed in a later publication.
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Fig. 2.1. Merson’s [32] 1957 diagram of rooted trees repre-
senting elementary differentials, and (bottom) an example of a
product of trees, in this case the pre-Lie product explained in
Sec. 4.

Fig. 2.2. Cayley’s [12] 1857 diagram of rooted trees represent-
ing elementary differentials.

This was an announcement of Butcher’s dis-
covery of the family of Gauss Runge–Kutta meth-
ods and the first hint of extra structure contained
within the Runge–Kutta order conditions. Meth-
ods with 3 stages have 12 free parameters (aij

and bj for i, j = 1, 2, 3) and Butcher was extremely
excited to discover that there were values of the
parameters that satisfied not just the 8 conditions
for order 4, and the 17 conditions required for
order 5, but even the 37 conditions required for
order 6! He recalls running through the empty
corridors of the mathematics department at the
University of Canterbury, where he was then
lecturing, desperately trying to find someone to
understand and to share the excitement [4]. He
fulfilled his intention to publish the details in his
very next paper [6].

One approach taken by Butcher to approach
the structure of the order conditions, suggested
by this discovery, was to introduce certain simpli-
fying assumptions. These became the cornerstone
of the construction of the efficient high-order ex-
plicit integrators that are used today. However, the
source of these simplifying assumptions remained
mysterious; only very recently has their algebraic
origin been explained [30]. This has allowed them
to be embedded in systematic families and further
reduced the number of stages needed at high
order. We take this as further evidence that after
50 years Butcher’s vision is alive and well.

This initial intensely creative and productive
period came to a head with the publication of

An algebraic theory of integration methods in 1972
[7] — submitted in 1968 — in which John Butcher
introduced what is now called the Butcher group.
The B-series (1.5) with c0 = 1 correspond formally
to diffeomorphisms close to the flow of f , and the
Butcher group operation arises from a product of
rooted trees that corresponds to the composition
of these diffeomorphisms.

To give an example of the group operation of
the Butcher group, consider the B-series

α := x0 + hf (x0).

This is associated with the map x0 �→ x1 := x0 +

hf (x0) of the forward Euler method. The compo-
sition of this map with itself (i.e. two steps of
forward Euler) is the map

x0 �→ x1 + hf (x1)

= x0 + hf (x0) + hf (x0 + hf (x0))

= x0 + hf + h
(

f + hf ′f +
1
2!

h2f ′′( f , f )

+
1
3!

h3f ′′′( f , f , f ) + · · ·
)

= x0 + 2hf + h2f ′f +
1
2!

h3f ′′( f , f )

+
1
3!

h4f ′′′( f , f , f ) + · · · .

The last line is the B-series of the Butcher product
αα.

The inverse α−1 of the B-series α is the series
associated with the inverse map x1 �→ x0. This map
is one step of backward Euler with time step −h.
Its B-series is

x0 − hf + h2f ′f − h3
(

f ′f ′f +
1
2

f ′′( f , f )
)

+ h4
(

1
6

f ′′′( f , f , f ) + f ′f ′f ′f + f ′′( f , f ′f )

+
1
2

f ′( f ′′( f , f ))
)
+ · · · .

The coefficient of any elementary differential in
these series can be found using simple combina-
torial operations on trees.

This paper [7] aroused an interest that lead
to a crucial event. In Innsbruck, the 28-year-
old dozent Gerhard Wanner was studying John
Butcher’s early papers and his hard-to-understand
preprint [7]. In 1970 the University of Innsbruck
was celebrating its 300th anniversary and asked
each professor to invite a guest lecturer. Wanner’s
professor, Wolfgang Gröbner, asked Wanner for
a suggestion, and so John Butcher was invited.
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Ernst Hairer, who had been Wanner’s best fresh-
man analysis student the year before, attended the
lectures. In Wanner’s words [37], “In my opinion,
at that time, nobody in the world made the necessary
efforts to understand Butcher’s papers, except Ernst.
He then explained them to me, and I tried to put them
in a more understandable form,” and in Butcher’s
words [8], “This led to my own contribution being
recognised, through their eyes, in a way that might
otherwise not have been possible.” In 1974 Hairer and
Wanner [22] introduced both Butcher series and the
term Butcher group; they also clearly demonstrate
the uses of the series for much more than Runge–
Kutta methods. In Butcher [7], the group elements
are functions from rooted trees to the reals, such as
those functions induced from (traditional and con-
tinuous stage) Runge–Kutta methods; in Hairer
and Wanner [22] the primary objects are the B-
series (1.5) themselves, which obey the group law
found by Butcher.

These discoveries triggered a period of huge
development in numerical methods for evolution
equations. The subsequent modern history of the
area has been reviewed extensively [9, 21, 23, 35].
Here we confine ourselves to some remarks as to
the role and significance of Butcher series.

3. How Important are Butcher Series?

Many areas of inquiry show a tendency to divide
adherents into ‘lumpers’ and ‘splitters’. For ex-
ample, in taxonomy, lumpers prefer to name few
species, splitters many. Lumpers emphasise sim-
ilarity, splitters emphasise difference. Numerical
analysis, like most parts of mathematics, shows
a gradual tendency over time towards splitting,
as the true differences between instances are ap-
preciated and exploited. Thus structure-preserving
methods have been developed for finer and finer
divisions of matrices, differential equations and so
on, that, by restricting the problem class, are able
to offer superior performance. Iserles [25] alludes
to this when he compares ordinary differential
equations to Tolstoy’s happy families, that (‘per-
haps’, Iserles cautions) all resemble each other,
while each partial differential equation is unhappy
in its own way. Indeed, a mighty strength, and also
a potential weakness, of Runge–Kutta methods
and of B-series is that they treat all ODEs in a
uniform way. They are an extreme example of
lumping. One might wonder if they are perhaps
too extreme. Do they over-lump ODEs?

In our view they have held up pretty well.
The first widely-acknowledged division of ODEs
in numerical analysis was into stiff and nonstiff
equations. Implicit Runge–Kutta methods turned
out to be ideal for stiff equations and explicit
ones for nonstiff. With the advent of symplectic
integrators for Hamiltonian systems, that preserve
a quadratic conservation law on first variations of
solutions, Runge–Kutta methods were found to be
suitable too. New classes of methods have been
introduced that have features that Runge–Kutta
methods do not, such as exponential integrators
like

xn+1 = xn + φ(hf ′(xn))hf (xn), φ(z) =
ez − 1

z
, (3.1)

which can beat implicit Runge–Kutta methods on
some stiff equations, and the AVF (Average Vector
Field) method

xn+1 = xn +

∫ 1

0
f (ξxn+1 + (1 − ξ)xn) dξ (3.2)

that preserves energy H(x) when f = J−1∇H is a
Hamiltonian vector field. Both (3.1) and (3.2) have
expansions in B-series.

On the other hand, some methods such as the
leapfrog or Störmer–Verlet method, widely used
in molecular dynamics and in video game engines
for systems of the form ẍ = −∇V(x), do not have
B-series — indeed they are not even defined for all
first order systems ẋ = f (x) — and should certainly
not be discarded on that account. Our view is lump
if you can, but split if you must.

In fact some would say that there is no practical
reason for preferring methods with a B-series and
that the whole concept is merely a mathematical
abstraction or (perhaps) convenience. However,
note that (1.5) lumps not only ODEs, but also nu-
merical methods. A very large class of numerical
methods for ODEs are represented by (1.5). Even
before getting to the question of what the posses-
sion of a B-series confers on a numerical method,
the lumping of numerical methods by B-series
presents a fairly rare opportunity in computational
science. All too often one analyzes the complexity
or behaviour of a particular algorithm, or perhaps
of a small class. Meaningful lower bounds for
complexity or behaviour over all algorithms are
almost never obtained. One should not miss the
opportunity given by B-series to better understand
an infinite-dimensional set of methods, without
regard to particular details of the method.
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Several times, new numerical methods have
been reflected in the discovery of new structure
within B-series. For example, if f = J−1∇H for some
H and J, where JT = −J defines a symplectic struc-
ture on the vector space V, then f is Hamiltonian
and energy preserving and we can ask which B-
series have these properties. The trivial B-series
B( f ) = c1f are the only ones which are both
Hamiltonian and energy-preserving. At first sight
it is surprising that the first nontrivial B-series,
f ′f , is neither Hamiltonian nor energy-preserving.
At the next order, f ′f ′f is energy preserving and
f ′′( f , f )− 2f ′f ′f is Hamiltonian. The spaces of such
B-series have been completely described [15].

4. Algebraic Characterisations

The topic of B-series can be approached from
many different points of view; topics in numer-
ical analysis, geometry and abstract algebra are
connected via B-series. The fundamental algebraic
structure of a pre-Lie algebra unifies three seem-
ingly very different papers all written in 1963:
John Butcher’s first paper on Runge–Kutta meth-
ods [5], Ernest Vinberg’s paper on the geometry
of symmetric cones [36] and Murray Gersten-
haber’s work on homology and deformations of
algebras [19]. The differential geometric picture
starts with the basic notion of parallel transport of
vectors, which is infinitesimally described in terms
of a connection or covariant derivation of vector
fields. The connection is a bilinear operation of
vector fields ( f , g) �→ f � g (often written as ∇f g)
which describes the rate of change of g as it is
parallel-transported along the flow of f . On the
vector space Rn parallel transport is the obvious
rule, and the corresponding connection is given as

f � g = g′( f ) =
n∑

i,j=1

∂gi

∂x j f j ∂

∂xi .

The curvature R and the torsion T are the two
basic invariants of a connection. On flat spaces,
such as the above defined connection on Rn, both
R = 0 and T = 0. It can be shown that in this
case the connection satisfies the following pre-Lie
relation:

f � ( g � h) − ( f � g) � h = g � ( f � h) − ( g � f ) � h.

An algebra with a product satisfying this relation-
ship is called a pre-Lie algebra. So, the set of smooth
vector fields on Rn with the standard connection is

an example of a pre-Lie algebra.3 Another example
is the linear combination of rooted trees, where the
pre-Lie product is given by grafting: for two trees
τ1 and τ2 the pre-Lie product τ1 � τ2 is computed
by attaching the root of τ1 with an edge to each of
the nodes of τ2 and adding all these terms together
(see Fig. 2.1). The pre-Lie algebra perspective of B-
series was promoted by Calaque, Ebrahimi-Fard,
and Manchon [10]. A fundamental result, which
was essentially known already to Cayley in 1857,
but which has been revisited in a modern algebraic
setting by Chapoton and Livernet in 2001 [13], is
that the space of all trees with the grafting product
is the free pre-Lie algebra. This means that this
structure ‘knows all there is to know’ about basic
algebraic properties of pre-Lie algebras, and any
algebraic computation which relies only on the
pre-Lie relationship can be expressed as a compu-
tation on trees. It also means that any example of a
concrete pre-Lie algebra can be realised as a quo-
tient of the free pre-Lie algebra with some ideal
(that is, as trees with some equivalence relation).
This is indeed a useful result for computations.

The correspondence between abstract trees and
concrete elements in a given pre-Lie algebra (e.g. a
vector field on Rn) is exactly the elementary differ-
ential map of Butcher. The elementary differential
map
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The first breakthrough paper dates from 1963 [5]. Here Butcher found for the
first time the coefficients ci of the B-series (1.5) of xn+1 of the Taylor expansion in
h of an arbitrary Runge–Kutta method. This gave the order conditions for Runge–
Kutta methods in complete generality. As previous studies had laboriously expanded
the solutions of particular (e.g. explicit) methods by hand, this was an enormously
important development.

Butcher did have, however, some precursors. The most notable example is the
paper of Merson [32] from 1957. Robert Henry ‘Robin’ Merson (1921–1992) was
a scientist at the Royal Aircraft Establishment, Farnborough, UK, who was invited
along with more senior numerical analysts to a conference on Data Processing and
Automatic Computing Machines at Australia’s Weapons Research Establishment in
Salisbury, South Australia.2 It seems like a long way to go for a conference in 1957.
However, the UK was still performing above-ground atomic bomb tests in South
Australia at that time and the Australian government was very keen to be a part of
the emerging era. Merson’s work is bound up with one of the most significant events
of 1957, the launch of Sputnik 1 on 4 October 1957, and the tale of Farnborough’s
involvement is told in detail by one of the key participants, Desmond King-Hele,
in his book A Tapestry of Orbits [28]. The short version is that with the aid of a
large radio antenna hastily erected in a nearby field, and some calculations of Robin
Merson, within two weeks they had an accurate orbit for Sputnik 1. This allowed
them to estimate the density of the upper atmosphere and (after Sputnik 2) the shape
of the earth. Robin Merson became an expert in practical numerical analysis and orbit
determination.

Merson’s paper explains clearly the structure of the elementary differentials f ′( f ),
f ′′( f , f ), etcetera, and, crucially, shows how they are in one-to-one correspondence
with rooted trees. He also introduces various basic operations on rooted trees. This de-
velopment, perhaps regarded initially as a bookkeeping device for finding and keep-
ing track of the different terms, has over time become central to the combinatorial
and algebraic study of B-series.

The rooted trees T and their associated elementary differentials F (T ) are

T =
{

/0, , , , , , , , , . . .
}

,

F (T ) =
{

x, f , f ′( f ), f ′( f ′( f )), f ′′( f , f ), f ′′′( f , f , f ), f ′′( f , f ′( f )), f ′( f ′′( f , f )), f ′( f ′( f ′( f ))), . . .
}
.

Merson introduces a method for carrying out the required Taylor series expan-
sions in elementary differentials and gives an example of a 4th order Runge–Kutta
method he derived. However, the actual expansions, although greatly simplified by
the use of elementary differentials and rooted trees, are still carried out term by term.

2 Flight-related research at Farnborough began with the Army Balloon Factory in 1904, which be-
came the Royal Aircraft Factory in 1912, the Royal Aircraft Establishment in 1918, and then the Royal
Aerospace Establishment in 1988. It was merged into the Defence Research Agency in 1991 and then
into the Defence Evaluation and Research Agency in 1995. This was split up in 2001, with Farnborough
becoming part of the private company Qinetiq. Desmond King-Hele’s version of these later developments
is recorded at [29].

(τ), taking trees to vector fields, respects
the structure of the pre-Lie product,
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(τ2), where the triangle on the left is
grafting of trees and on the right is the covari-
ant derivative of vector fields. All the elementary
differentials are obtained this way. For example,
since = � ( � ) − ( � ) � , we must have that if
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Merson introduces a method for carrying out the required Taylor series expan-
sions in elementary differentials and gives an example of a 4th order Runge–Kutta
method he derived. However, the actual expansions, although greatly simplified by
the use of elementary differentials and rooted trees, are still carried out term by term.

2 Flight-related research at Farnborough began with the Army Balloon Factory in 1904, which be-
came the Royal Aircraft Factory in 1912, the Royal Aircraft Establishment in 1918, and then the Royal
Aerospace Establishment in 1988. It was merged into the Defence Research Agency in 1991 and then
into the Defence Evaluation and Research Agency in 1995. This was split up in 2001, with Farnborough
becoming part of the private company Qinetiq. Desmond King-Hele’s version of these later developments
is recorded at [29].

( ) = f �( f �f )−( f �f )�f . Similarly,
all the terms of the B-series can be expressed in
terms of the pre-Lie product, and hence we can
regard a B-series as an infinite expansion in a pre-
Lie product.

Are there other important examples of pre-
Lie algebras where B-series might play a role?
There was a great surprise in the late 1990s when
Christian Brouder pointed out [2] that the so-
called Hopf algebra of Alain Connes and Dirk
Kreimer [16] had the same algebraic structure that
John Butcher had been studying in detail in his
1972 paper. Connes and Kreimer had been in-

3Also called a Vinberg, Koszul–Vinberg, left-symmetric, or
Gerstenhaber algebra. The name reflects the fact that the skew
product [x, y] := x � y − y � x defines a Lie bracket. However
it should be noted that the pre-Lie relation is not the most
general form of a product with this property.
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terested in renormalisation processes in quantum
field theory and discovered a rich algebraic struc-
ture of trees. Indeed Arne Dür [17] had already
observed in 1986 that Butcher had given rooted
trees the structure of a Hopf algebra. Rereading
Butcher [7] in light of these more recent develop-
ments, it is striking how close his perspective is
to the modern Hopf algebraic view. As Brouder
commented, “Butcher found an explicit expression
for all the operations of the Hopf structure of the
algebra of rooted trees.” After Brouder’s work the
Fields medallist Alain Connes wrote [16] “We re-
gard Butcher’s work on the classification of numerical
integration methods as an impressive example that
concrete problem-oriented work can lead to far-reaching
conceptual results.” Pierre Cartier has also written a
very clear exposition of the significance of pre-Lie
algebras and the algebraic origin of the Connes–
Kreimer approach [11] .

More recently these algebraic structures appear
in other important areas, such as in stochastic
processes, where the Rough Paths Theory gives a
precise meaning to integrating functions along
highly irregular paths. This theory originated from
the work of Terry Lyons and was celebrated by the
Fields medal awarded to Martin Hairer in 2014
for his work on regularity structures. Relations
between rough paths and B-series have been de-
veloped in the work of Massimo Gubinelli [20].

In a completely different direction, expansions
in rooted trees can be used to dramatically sim-
plify and also to sharpen known results in com-
plex dynamics [18] (“this amounts to a novel ap-
proach to formal linearisation by means of a powerful
and elegant combinatorial machinery”).

Considering B-series as an expansion in a (flat
and torsion free) connection, we may ask what
are the characterising geometric properties of a
B-series? A partial answer comes from the ques-
tion of which invertible mappings φ : Rn → Rn

preserve the connection �. Let φ act on vector
fields in the ‘natural’ way (i.e., as a differential
equation transforms under change of coordinates)
φ · f := (φ′) ◦ f ◦ φ−1, where φ′ is the Jacobian
matrix. Then it can be shown that φ · ( f � g) =
(φ · f ) � (φ · g) for all vector fields f and g if and
only if φ(x) = Ax + b is an affine map. However,
it turns out that this condition is not enough to
nail precisely the question of What is a B-series?,
but we shall see towards the answer. Before we
explore this issue further in the next section, we

remark on other recent geometric developments of
the theory.

Concerning the group structure of B-series,
Bogfjellmo and Schmeding [1] have recently
proved that the space of B-series is an infinite-
dimensional Lie group with respect to a natu-
ral Fréchet topology. Among numerical analysts,
B-series have long been treated as Lie groups
without a rigorous justification; the result by
Bogfjellmo and Schmeding resolves this and un-
veils interesting possibilities to apply tools from
infinite-dimensional geometry to the backward
error analysis of ODE methods.

The question of characterising geometries by
invariance properties goes a long time back to
the 19th century work of Felix Klein, who in
his Erlangen program of 1872 raised fundamental
questions about geometries and symmetries. An
example is the study of affine geometries as a gen-
eralisation of Euclidean spaces. In this geometric
context it is interesting to ask if other geometries
have algebras describing their connections, such
as pre-Lie algebras for affine geometries. Recent
developments have shown that this is indeed the
case. For Lie groups and homogeneous spaces
there are naturally defined connections which give
rise to post-Lie algebras, and from this we obtain B-
series types of expansions valid for flows evolving
on manifolds (‘Lie–Butcher’ series) [33]. Yet an-
other algebra appears in the context of symmetric
spaces such as, for example, spheres and Rieman-
nian spaces with constant curvature. This is an
active area of research, where differential geome-
try, algebraic combinatorics, differential equations,
computations and applications go hand-in-hand.

5. Geometric Characterisations

Many mathematical objects can be defined in
different ways: axiomatically, constructively, or
by characterising their relationship to another,
known, object. The original, and still the tradi-
tional, approach to Butcher series [21] is construc-
tive. It is motivated by the Taylor series of the
exact solution. It starts by constructing the rooted
trees, most easily done recursively using the oper-
ation of adding a root to a forest (set of rooted
trees). Then the elementary differentials are de-
fined and associated to the rooted trees, and finally
it is shown that various objects (Runge–Kutta and
other integration methods) can be expanded in
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Butcher series. The algebraic approach of the pre-
vious section is axiomatic. However, if we recall
the origin of Butcher series in numerical analysis,
and note that not all numerical integrators have
a Butcher series, it is natural to ask why these
particular combinations, f ′′( f , f ) and so on, keep
coming up. What is special about them? What
geometric property characterises those numerical
integrators that have a Butcher series?

A crucial clue is provided in the definition of
Runge–Kutta methods, (2.1). Apart from evalua-
tion of f , these involve only scalar multiplication
and addition — the defining operations of the
vector space V. This suggests that Runge–Kutta
methods are defined intrinsically on V and do
not depend on the choice of basis. Indeed, as
already mentioned previously in the context of
pre-Lie algebras, slightly more is true: Runge–
Kutta methods (and B-series) are affine-equivariant.
Indeed, let, as before, smooth invertible mappings
φ : V → V act on the vector space V and on
vector fields on V in the natural way. Then B-series
with c0 = 1, such as the expansions of numerical
integrators, obey

φ · B(c, f ) = B(c, φ · f )

for all invertible affine maps φ(x) = Ax+b, A ∈ Rn×n,
det A � 0. Could it be the case that any affine-
equivariant method has a Butcher series? In other
words, does affine-equivariance characterise B-
series methods?

In [34], two of us showed that this is not the
case. There are many methods that are affine-
equivariant but do not have Butcher series. The
simplest example is the first-order method

x1 = x0 + hf (x0)(1 + h(∇ · f )(x0)).

Under an affine transformation x �→ φ(x) = Ax + b,
f transforms to Af ◦ φ−1, and the Jacobian f ′

transforms to A( f ′ ◦ φ−1)A−1. The divergence of f ,
namely tr f ′, transforms to (tr f ′)◦φ−1, and the new
term f ∇ · f transforms to A( f ∇ · f ) ◦ φ−1 — that is,
it is affine equivariant.

It turns out that any affine-equivariant method
can be expanded in terms of more general objects,
the aromatic series. Combinatorically, these are rep-
resented by ‘aromatic trees’, forests consisting of
one rooted tree and any number of directed graphs
with one cycle (self-loops allowed). The name is
suggested by aromatic compounds, such as ben-
zene, that contain cycles of atoms. An aromatic

Table 5.1. Enumeration of rooted and aromatic trees with up to
10 nodes.

n 1 2 3 4 5 6 7 8 9 10
# rooted trees 1 1 2 4 9 20 48 115 286 719
# aromatic trees 1 2 6 16 45 121 338 929 2598 7261

series begins

c0x + c1hf

+ h2(c2 f ′f + c3 f∇ · f )

+ h3(c4 f ′′( f , f ) + c5 f ′f ′f + c6 f ( f · ∇(∇ · f ))

+ c7 f ′f ∇ · f + c8 f (∇ · f )2 + c9 f tr( f ′2))

+ · · ·

which may be represented as an element in the
span of the aromatic trees

,

, ,

, , , , , ,

. . .

There are clearly many more aromatic than rooted
trees. The aromatic trees of order n are in 1–1
correspondence with functions from {2, . . . , n} to
{1, . . . , n}, ‘forgetting the labels’, that is, modulo
permutations of {2, . . . , n}. (Here the element 1
identifies the root.) For example, the aromatic tree

1
4

2 3

is associated with the function 2 �→ 1, 3 �→ 4, 4 �→ 4
and with the (generalised) elementary differential

n∑
i1,i2,i3,i4=1

f i1
i2

f i2 f i3 f i4
i3i4

∂

∂xi1
= f ′( f ) ( f · ∇(∇ · f )).

The numbers of such ‘shapes of partially defined
functions’ is given in sequence A126285 in the
Online Encyclopedia of Integer Sequences and tab-
ulated in Table 5.1.The number of rooted trees, first
evaluated by Cayley, are shown for comparison.
The apparently terrifying numbers of rooted trees
were tamed by Butcher. What will happen to the
even more plentiful aromatic trees?

The existence of the aromatic series shows that
affine-equivariance of a method is not enough to
ensure that it can be expanded in a B-series. What
else is needed? The second big clue is that Runge–
Kutta methods are defined without reference to
the dimension of the underlying vector space. It
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does not seem to play any role at all. Clearly, at
a minimum, the expansion of the method in each
dimension must have the same coefficients. But
what rules out the aromatic terms like f ∇ · f ?

The answer is that these terms do not respect
affine-relatedness. Consider two vector spaces V and
W of possibly different dimension, together with
an affine map φ : V → W, x �→ Ax + b. The
vector fields f on V and g on W are said to be
φ-related if g(Ax + b) = Af (x) for all x ∈ V. B-series
preserve affine-relatedness in the sense that for
any affine φ, if f and g are φ-related then B(c, f )
is φ-related to B(c, g). In [31] we prove that this
property characterises B-series: a numerical method
has a Butcher series if and only if it preserves affine-
relatedness.

Preserving affine-relatedness has a fairly direct
physical interpretation. It means that the method
is immune to changes of scale, such as changes of
units. It means that the method preserves invari-
ant affine subspaces automatically, whenever the
system has any such. It means that the method
preserves affine symmetries, again automatically;
the method does not even have to ‘know’ (or be
told) that the system has the symmetries. It means
that the method leaves decoupled systems decou-
pled, again automatically. All these properties are
desirable when designing general-purpose ODE
software. Furthermore, we now see that many
of the more subtle properties of B-series, origi-
nally discovered through combinatorial analysis
of trees, must in fact be a direct consequence of
affine-relatedness. Examples include special prop-
erties with respect to symplecticity, preservation of
quadratic invariants, and preservation of energy
[14] and non-preservation of volume [26].

The proof of the theorem on affine equivariance
[34] relies on some classical results in functional
analysis and invariant theory. First it is established
that the Taylor series in f of an arbitrary map
depends only on the derivatives of f , and that
the terms of order n are in fact a polynomial of
degree n in f and its partial derivatives. Second,
the invariant polynomials that are functions of f
and its partial derivatives, whose values at x0 are
regarded now as arbitrary symmetric tensors, are
sought using the ‘invariant tensor theorem’. The
conclusion at 2nd order is that only f if j

i and f if j
j are

equivariant, these giving the two aromatic trees of
order 2. At 3rd order, to the tensor f if jf k the partial
derivatives j and k can be attached to any two

of the factors, leading to the 6 aromatic trees of
order 3.

The proof of the theorem on affine related-
ness, characterising B-series [31], begins with an
arbitrary affine-related method. Since, in partic-
ular, it is affine-equivariant, it has an aromatic
series. Each aromatic tree containing loops is to be
knocked out. For each such tree, a special pair of
affine-related vector fields is constructed such that
affine-relatedness of the method means that the
coefficient of this tree must be zero. For example,
for the tree , associated with f ∇ · f , the vector
fields are f (1) : ẋ1 = 1, ẋ2 = x2 and f (2) : ẋ1 = 1.
These vector fields are related by the affine map
(x1, x2) �→ x1. Since f (1) ∇ · f (1) = 1 and f (2) ∇ · f (2) = 0,
this term cannot appear in the expansion of a
method that preserves affine-relatedness.

To summarise, Butcher series are objects in-
trinsically associated to the set of vector fields on
affine spaces of all dimensions, and will show up
naturally in any analysis that respects the affine
structure and does not depend on the dimen-
sion. This explains their ubiquity. It is fascinating
that natural and practical demands of numerical
methods for ODE — black-box solvers defined
uniformly on all affine spaces — has led to the
discovery of a fundamental invariant object.

On the other hand, where does this leave
the aromatic series? We suggest that they will
show up naturally in problems posed in a specific
dimension. Although traces and divergences are
common in physics, we have not seen aromatic
series before. They arose purely from a question
in numerical analysis, but are fundamental in their
own way. Moreover, they can have properties that
no B-series can have. For example, many aromatic
series, but no B-series, are divergence free.
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