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Abstract: To help facilitate expertise in loT technologies, the Netherlands eScience Center
(NLeSC) and SURF worked together on a project focusing on loT applications and platforms.
The information included in this case study show the results of NLeSC and SURF’s
investigation, examining different features offered by cloud and self-maintained IloT
platforms with an overall summary of an loT architecture.

1 Introduction

Internet of Things (1oT) is a paradigm shift, in which all inanimate and animate ‘things’, are
connected and made intelligent while at the same time are embedded and part of the
environment. loT is an integrated technology composed of collaborative sensing, wireless
(opportunistic) networking, pervasive computing, in-situ intelligence, sensor data analytics,
and active interaction.

Although not an entirely new concept, it has recently gained much popularity especially
because of its adoption in many domains, for example health, real-time monitoring and
control, and logistics, and new prediction regarding an explosion in number of connected
devices in coming years. Unlike their predecessor, i.e., wireless sensor network applications,
loT applications are not application specific, but domain specific and as such bring
heterogeneity (in technology, use, requirements, etc), dynamicity, scale, autonomy, and
adaptability challenges to a new dimension.

While currently there exist a number of solutions, architectures and platforms supporting
co-creation of loT eco-systems, the diversity and heterogeneity of technological solutions,
application segments, requirements, and use cases make it difficult to identify which
platform is the best suitable. The challenge is not only to select a platform that solves the
interoperability and unification problem of existing loT technologies and applications, but
also the ones yet unforeseen.

This technical note examines different features offered by cloud and self-maintained loT
platforms with an overall summary of an loT architecture. It is organized as follows: Section
2 describes a generic architecture of loT platform and its components. In Section 3, we
describe and compare most promising open-source loT platforms. We conclude the note
with recommendations in Section 4.



2 The architecture of loT platform

The term Internet of Things (loT) loosely refers to the number of devices (including vehicles
and appliances) interconnected with each other and exchanging data via a so-called /oT
platform. A careful approach to the architectural design can ensure proper integration of a
large variety of devices. We will now describe individual components of a generic loT
platform (see an overall architecture in Figure 1), and discuss different options for realizing
each component. The interested reader is referred to other surveys [7, 1, 8, 23] and the
references as examples of studies on loT architecture and loT taxonomy.
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Figure 1: Schematic depiction of the components of an loT environment. The blue box depicts the scope of the platform.

Device management

The device management component handles the interaction with the devices. Examples of
these interactions are: device registration and activation, monitoring and firmware updates.
How to implement this functionality is very dependent on the device types and connectivity.
This can make it difficult to provide a generic solution. An advantage is that this component
does not interact much with the other components of the platform and is therefore
independent.

Preprocessing

Preprocessing concerns the transformation of the raw data received from the device before

storing it in the data store. This transformation can be done for various different reasons.

Three common reasons are applying quality control, adding metadata and data

restructuring:

® Quality control Devices might send corrupt data or have sensor malfunctions. During
this step we want to detect these malfunctions where possible and either drop the
corrupt data or flag the suspicious records so we can decide how to handle this in the
processing/enrichment.

* Adding metadata Adding addition meta data to the records is very important for data
provenance and can be required for reproducible science. Examples are information
about the device (identifier, software version), time received, and version of the
preprocessing software.



® Data restructuring The data format sent by devices is usually optimized for minimal
bandwidth and on-device computation requirements. When storing the data, it is more
important to have it structured in a way that allows efficient processing, has good
compression and contains schema information/versioning.

There are additional concerns for the preprocessing that depend on the nature of the data
transfer between the device and the platform. The first is the grouping of the data: does it
received one record at a time, or in batches of data based on time or size? Secondly, is the
data flow constant in volume over time, or can there be a sudden peak or large bursts of
records?

Data store

The data store is responsible for the long-term persistent storage of the data. The two most
important aspects of the data store are durability, not losing data after it has been stored,
and the ability to handle ever growing data volumes (a form of scalability). Additionally, it is
convenient if the data store has good access methods: both efficient querying of subsets of
the data and the ability to do parallel reads of large data volumes.

Although we use the singular term of Data Store, this component might include multiple
subsystems that each contain either the full dataset or a subset. A common setup uses a
scalable file or object store (sometimes called the data lake) for all the raw data as received
from the preprocessing component, and one or more databases that contain a subset of the
processed/enriched data. These databases are designed and optimized for specific
applications.

When choosing the systems used by the data store there are a few different

options:

® File-based Data is stored in a file-system hierarchy in multiple files. A single file usually
contains many records. Data can be accessed via filename, and additional query
capabilities are limited. Because of the storage requirements, this is often a distributed
file-system where the data is stored on multiple servers and accessible by different
clients via a network protocol. Some, but not all, offer a POSIX-like interface to clients to
access the data as if it was locally available.

* Object-based Similar to file-based storage, but with a flat instead of a hierarchical
namespace were just the object label is used to access the data. This has limited
capabilities (no in-place editing) with no or limited POSIX-like interface.

* Database (relational) In a relational database the data is stored in tables consisting of
rows and columns. Relational databases are useful when all rows (also known as
records) have the same structure. In practice all relational databases are based on SQL.

e Database (non-relational) These are sometimes called NoSQL databases. These
databases have different object modes. Examples are document stores, graph
databases, key-value stores, column family stores. Often they focus on functioning at a
large scale, sacrificing query capabilities or strong consistency to accomplish this.

Additional data sources
Often the data stream from sensors or other loT devices is combined with ‘static' datasets.
These datasets can be part of the research project, or could be from an external party.



Examples of these datasets with are the GPS location of all the sensors, or weather
information. The platform needs to be able to incorporate these additional datasets and
either store a copy or interface with the source data.

Processing/Enrichment

Having the raw data available in the data store can be useful, but is often not sufficient. To
give meaningful results to the end-user additional processing is needed. This can be simple
data processing that only restructures the data, or data enrichment where we refine or
enhance the data, for example by combining it with additional data sources. There are few
different aspects to the processing/enrichment component.

e Control flow Control flow can be defined as what triggers the enrichment/processing.
There are multiple options that could make sense for separate parts of the processing.
This could be event-driven, triggered by new input data; request-driven, triggered by
user/AP| requests; or periodically. The best option depends on the update frequency
and if higher latency is acceptable.

® Storage The results of the processing can be stored in a database as part of the data
store or recomputed on every new user request.

® Batch/streaming Depending on the requirements of the application the processing can
be done in large batches, or should be using a streaming system.

® Scalability It can be the case that a single machine cannot keep up with the processing
requirements, as new data keeps coming in and results should be delivered within a
short time frame. The processing solution therefore should be scalable in that the work
can be distributed over multiple machines. If all records can be processes independent
from each other this need not be complicated, but if there are dependencies or
aggregations a suitable distributed data processing framework should be used.

® Validation There should be a way to check the validity of the data processing, and
processing should be annotated to allow the development and improvement in a
reproducible fashion.

External gateway

We decided that the visualization, dashboards and analysis are out of scope for the core
research loT platform. But these are very important and need a way to interface with the
system. This interface (APIl) is provided by the external gateway. This gateway handles
requests from the end-user and returns data based on the request. This data can be be
processed before it is returned. The data could be returned as files that the user downloads
and processes off-line, or directly handled by a web application. It is important that the API
and the structure of the returned data are properly documented.

User management (external users/researchers)

Research is never done in isolation, so the external gateway should provide access to end-
users from different institutes. We do want to apply some access restrictions, so some form
of authentication and authorization is required. Ideally, we do not want to force them to
create yet another account but be able to use the credentials from their home institute.
With SURFconext [18], SURF (which is part of the national e-infrastructure for research and
education in the Netherlands) offers federative access for academia in the Netherlands.



SURFconext enables single sign-on access to web, cloud, institutional services based on the
user’s institutional account (and therefore re-using the university identity management user
registrations). With millions of authentications per month SURFconext is a very successful
solution for any HTTP-based application.

A limitation of SURFconext is the fact that by default it only handles web-based applications.
Rich client/non-web applications cannot make easy use of it. If the external gateway is only
accessed as a web application, this is not an issue. However, we can imagine some cases
where there would be a need for non-web access. A solution for this could be the use of an
authorization proxy.

SURF is currently working on a setup of such a proxy, in a project called the Science
Collaboration Zone [17], which includes a solution called COmanage [11]. COmanage is a
tool that adds a number of useful features, such as on-boarding researchers to one or more
virtual collaborative organization (groups) and functionality to register ssh keys to generate
one-time passwords and application-specific passwords to enable access to non-web-based
resources but all after initial on-boarding based on a verified institutional account.

3 Summary of open source candidates

We started this project with the aim to develop a prototype of the loT platform that works
with a wide range of loT applications as a final deliverable. We were looking for a scalable
solution (so able to serve multiple applications/use cases) with minimal changes to the
platform, especially with respect to interfaces. To this end, we identified two categories of
open-source loT platforms, cloud-centric and self-maintained.

Table 1: Comparison of the cloud-centric platforms and their components.

| Amazon Web Services | Microsoft Azure | Google Cloud Platform | 1BM Cloud
Device management loT Platform loT Hub Cloud IoT Core |oT Platform
Preprocessing (Compute)
Virtual machines EC2, Lambda, Kinesis Virtual Machines Compute Engine Bare Metal Servers,

Cloud Virtual Servers

Containers Elastic Container Ser- | Azure Containers Ser- | Google Container | Container Service
vice vices/Instances Engine
FaaS Lambda Functions Cloud Functions Cloud Functions
Streaming Kinesis Stream Analytics Cloud Dataflow Streaming Analytics
Data Store
File/object based S3, Elastic File System Blob Storage, Azure | Cloud storage File Storage, Object
Data Lake Storage

Database (relational) RDS, Redshift SQL Database, SQL Data Cloud SQL, Spanner IBM Compose (MySQL,

Warehouse PostgreSQL), Db2 Ware-
house

Database (non-relational) DynamoDB CosmosDB, Table Stor- | Cloud Bigtable, Datas- | IBM Compose (Scyl-
age tore |aDB)

Additional data sources Glue - - Weather Data APIs

Processing/Enrichment EMR HDInsight Dataproc Analytics Engine

External gateway AP| Gateway APl Management Apigee API Connect

User management IAM Security Center Cloud IAM App ID




Table 2: Comparison of the self-maintained platforms and their components.

| Kaa | loTivity | ThingsBoard | OpenHAB 2
Device management SDK SDK, Device Manage- | Tenant Administrator Paper Ul
ment
Preprocessing (Compute)
Virtual machines Kaa Sandbox loTivity Simulator - VM
Containers (Local) Docker con- | — Kubernetes Ready-made packages
tainer
Streaming Apache Spark Stream- | Data transmission Apache Spark Streaming REST
ing
Data Store
File/object based - - - db4o, RRD4J
Database (relational) PostgreSQL Resource Data Query | PostgreSQL, HSQLDB JDBC (PostgreSQL,
Processor MysSgL), InfluDB
Database (non-relational) MongoDB, Cassandra Data Management Cassandra Amazon DynamoDB,
MapDB
Additional data sources PubNub Log Appen- | Protocol Plugin Man- | Apache Kafka plugin, Sig- | HTTP binding
der ager fox extension
Processing/Enrichment custom modules Soft Sensor Manager Rule Engine Eclipse SmartHome
External gateway REST, Apache Flume loT REST AP| REST “Home” Gateway
Server [10]
User management Administration Ul Scene Manager Tenant Administrator -

Cloud-centric solutions
For the cloud-centric loT platforms, we refer to the recent detailed comparison by Guth et
al. [9]. This includes the open-source platforms such as FIWARE?, OpenMTC, SiteWhere, and
Webinos as well as the proprietary solutions such as AWS loT, IBM’s Watson loT Platform,
Microsoft Azure loT Hub, and Samsung SmartThings. Some of these commercial solutions
are surveyed in Table 2.

Self-maintained solutions
For the self-maintained solutions (also known as on-site or on-premise), we identified four
promising open-source community projects: Kaa, loTivity, ThingsBoard and OpenHAB.

The summary of the survey is presented in Table 2. We discarded one of the criteria from
the previous comparison table, FaaS. None of the four platforms offer function platform
solutions (FaaS) as a part of the software stack. However, there are a lot of on-premise Faa$S
that one can embed such as Iron.io (2014), Apache OpenWhisk (2016), Fission (2016),
Galactic Fog’s Gestalt (2016), OpenLambda (2016), and OpenFaa$ (2017).

! Additional
information about FIWARE [2]: It is open-source platform developed out of an EU-funded project (which is now
completed). As a cloud-centric solution, it provides a set of standardized APIs to support the creation of smart
applications or applications for smart devices (see, for example, Fi-Beer [14] and the Pilot project [16]).
Generally speaking, FIWARE is a ““curated framework of open source platform components" which can be
assembled together with other third-party components to facilitate the development of smart applications
including FiWare loT [12].
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Figure 2: Kaa IoT platform: Conceptual Architecture (left), and connecting Kaa to Arbela. (Kaa loT Technologies,
https.//www.kaaproject.org.)

Kaa [19] is an open-source middleware platform for implementing loT applications and
applications for smart devices. The platform software is easy to install thanks to Kaa
Sandbox which is a complete virtual machine image. The sandbox comes with a complete
Kaa installation, the sandbox environment, sample applications, three types of databases
(PostgreSQL, MongoDB, and Cassandra), Android SDK, and other third-party integration
related to enabling different hardware vendors. Fig. 2 (left) depicts a conceptual
architecture of Kaa; for more details on the components, we refer to the Kaa
documentation (http://kaaproject.github.io/kaa/docs/v0.10.0/Architecture-overview/). It is
released under an Apache 2.0 licence  via a GitHub repository
(https://github.com/kaaproject). Kaa enables collecting data from devices that use PAN-
based protocols such as Bluetooth, ZigBee, and Z-Wave. Kaa endpoint software
development kits (SDKs) handle client-server communication, authentication, data
marshaling, encryption, persistence and other services provided by the Kaa platform. In
principle, Kaa can handle both structured and unstructured data, though it can manage
devices that share the same set of data schemas (Apache Avro-compatible). Kaa supports a
framework of pluggable log appenders (e.g., PubNub Log Appender) in order to load data
into a database. The data can be send to stream processing or can be made available to
custom data processing modules via REST or Apache Flume. The Kaa Cluster uses Apache
Zookeeper for the coordination of servers, Kaa node elections, failure mitigation, and load
balancing. To enable real-time monitoring, Arbela [22] can be used as a Kaa loT Dashboard
using the PubNub channel (see Fig. 2 (right)).



http://kaaproject.github.io/kaa/docs/v0.10.0/Architecture-overview/
https://github.com/kaaproject
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Figure 3: ThingsBoard loT Platform: archltecture (left); and an example of the ThingsBoard loT Gateway for Sigfox devices
(right). (ThingsBoard, Inc. https://thingsboard.io.)
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ThingsBoard Community Edition [20] is an open-source loT platform available from a
GitHub repository (https://github.com/thingsboard/thingsboard) under the Apache License
version 2.0. The company behind the platform also offers a commercial — professional
edition" with additional support and extra platform integrations. The general architecture of
ThingsBoard is shown in Fig. 3 (left). Connectivity with devices is handled via different
transport components. In addition to the IoT platform there is also the ThingsBoard loT
Gateway to integrate loT devices connected to third-party systems with ThingsBoard. An
example of the usage of the loT Gateway can be seen in Fig. 3 (right). Messages received are
handled by the rule engine, which allows for both the processing of the data and triggering
external alerts based on the content of the message. Data can be stored in an external
PostgreSQL or Cassandra database. ThingsBoard utilizes Apache Zookeeper for cluster
coordination and Cassandra as a NoSQL database. The core services are responsible for the
device management, user management and dashboards. The server-side APl Gateway
provides a REST gateway that allows access to time-series data, and also allows registered
users to send commands to devices. ThingsBoard has a plug-in architecture that allows
coupling to external components. Existing plug-ins for Apache Kafka and sending emails are
available. Internally, ThingsBoard uses Akka for event-driven message processing.



https://github.com/thingsboard/thingsboard
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openHAB 2 [15] openHAB 2 is an open-source home automation platform, which is used for
controlling and monitoring devices in the smart homes. It is licensed under Eclipse Public
License 1.0, and uses a couple of Eclipse 10T projects (https://iot.eclipse.org/) mainly Eclipse
SmartHome framework; see the reference architecture in Fig. 4. This platform has a well-
documented, actively maintained GitHub repository (https://github.com/openhab), and
provides an excellent support for variety of the smart devices. We had initial concerns about
the applicability of a mobility use case, namely if there is a restriction on the number of
smart devices that can be connected to the platform. It turns out scalability is not an issue;
however, the security component is entirely missing from the architecture design, and it
needs to be implemented from scratch. This is because of the intrinsic assumption that
openHAB is used behind the home router firewall within one internal network. This ruled
out the use of openHAB for our project.
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Figure 5: loTivity 1.2 Conceptual Architecture. (Open Interconnect Consortium, https://iotivity.org.)

loTivity [3] started out as a device management platform which enables seamless
connectivity between devices. Upon merging it with another project Allloyn, Open
Connectivity Foundation (OCF) defined the purpose of loTivity to be a set of ““specifications
by OCF to ensure interoperability among connected devices", as well as “a reference
implementation of the OCF specifications to the open-source community".


https://github.com/openhab
https://iot.eclipse.org/

loTivity is an active project with the source code available via the GitHub repository (https://
github.com/iotivity). Similar to FiIWARE, loTivity offers cloud interface at the external
gateway, it also supports discovery, messaging and security services within its base layer.
This can be used to integrate the platform components with third-party systems. (For more
details on the cloud part, we refer to one of the recent publications [4].) It is worth to
mention that the platform provides a tool called Simulator which can help developers test
their implementations without purchasing real hardware. The project also offers software
components for the loT device side for handshaking, resource registration/discovery, etc.
The conceptual architecture of loTivity is depicted in Fig. 5, and more details on the
functionality of each component can be found at https://wiki.iotivity.org/architecture. There
are Docker containers to ease the setup procedure, and it can be installed on various Linux
distributions and Android system.

4 Conclusions

This project wanted to investigate the possible 10T platforms and look at the different
features offered by each platform. In general, the choice of a suitable platform depends on
the applications (use cases) researchers are trying to serve. We identified Kaa and
ThingsBoard as candidate solutions based on the following criteria: permissible license, an
actively maintained GitHub repository, clear architecture, and good documentation.
However, if the aim is to have multiple applications served by the loT platform, then it is
best to start with a generic framework for interoperability reasons. In this case, the best
suited platforms are loTivity and FIWARE (e.g., smart city use case [13]), although they might
require more effort in the implementation.

There are a lot of active developments in this field that researchers should to be aware of.
For instance, Eclipse has a few loT projects (https://iot.eclipse.org/), which look promising
including Eclipse Agail [6], and other open-source projects that have been reviewed by the
recently published technical report [21].

There are advantages and disadvantages for using cloud-centric or self-maintained
solutions. The self-maintained platform requires the presence of dedicated servers and an
administrator maintaining the setup, connection, and is responsible for the backup. Finding
a good hosting platform for the self-maintained systems is also a challenge. When arranging
this on-premise, inside the academic institution, this will require collaboration with the
centralized ICT services in the institute. Since the platform has strong requirements for the
external network availability and access, centralized ICT might be hesitant in supporting it.
External hosting providers will bring additional costs and risks concerning data security and
availability.

In contrast, a cloud-centric solution comes with the cost determined by the service provider
but will fully bypass the aforementioned issues. However, this type of solution means a full
dependency on the service provider, including any changes to the API and service costs.


https://iot.eclipse.org/
https://wiki.iotivity.org/architecture
https://github.com/iotivity
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