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Abstract We present methyvim, a general algorithm for the nonparametric estimation of
treatment/exposure effects on DNA methylation at CpG sites, complete with straightforward
statistical inference for such estimates. This approach leverages variable importance mea-
sures, a class of parameters that arise in causal inference and are defined in such a manner
that they provide targeted estimates of the relative importance of individual CpG site with
respect to a binary exposure/treatment assigned at the level of subjects. Additionally, this
procedure is computationally efficient; incorporating a preliminary screening step to isolate
a subset of sites for which there is cursory evidence of differential methylation and a mul-
tiple testing correction step to control the False Discovery Rate as if all sites were tested.
This technique for analysis of differentially methylated positions provides an avenue to move
beyond linear models without the loss of interpretable statistical inference.
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Introduction

DNA methylation is a fundamental epigenetic process known to play an important role in the regulation of
gene expression. DNA CpG methylation involves the addition of a methyl group (CH3) to the fifth carbon of
the cytosine ring structure to form 5-methylcytosine. Numerous biological and medical studies have impli-
cated DNA CpG methylation as playing a role in disease and development [? ]. Perhaps unsurprisingly then,
biotechnologies have been developed to study the molecular mechanisms of this epigenetic process. Modern
assays, like the Illumina Infinium Methylation assay, allow for quantitative interrogation of DNA methylation
of CpG sites scattered across the genome at single-nucleotide resolution; moreover, much effort has been in-
vested, by the bioinformatics community, in the development of tools for properly removing technological
effects that may contaminate biological signatures measured by such assays. Despite these advances in both
biological and bioninformatical techniques, most statistical methods available for differential analysis of data
produced by such assays rely on over-simplified (often generalized linear) models. This is because typical sta-
tistical estimation approaches are not achievable for such high-dimensional data without restrictive modeling
assumptions. When these assumptions are violated, estimates of the population-level effect of an exposure or
treatment may have large bias. Data-adaptive estimation procedures that utilize machine learning can con-
trol for high-dimensional confounders when estimating treatment/exposure effects. However, interpretable
statistical inference (i.e. confidence intervals, hypothesis tests) resulting from these data-adaptive estimates
is challenging [? ].

In this paper, we present an alternative such statistical analysis approaches in the form of nonparametric
estimation procedures that provide simple and well interpretable statistical inference. Inspired by concepts
of counterfactual effects from the causal inference literature and machine learning algorithms, we provide
a computationally efficient technique for obtaining targeted estimates of nonparametric variable importance
measures (VIM) for a pre-screened set of CpGs, controlling for the False Discovery Rate (FDR) as if all sites were
tested. Under counterfactual assumptions, these estimators have asymptotic normal sampling distributions
and thus provide reliable inference. Counterfactuals are “counter”-fact, defined in terms of an unrealistic yet
ideal experiment. In the context of DNA methylation and for a binary treatment, we define the counterfactual
outcomes as the observed methylation value (whether Beta- or M-values) a CpG site would have if all subjects
were treated and the methylation value a CpG site would have if all subjects were not treated. Of course, these
counterfactual outcomes are impossible to observe but they are very helpful for us to asses the importance
of a CpG site relative to a subjects treatment/exposure and they can be statistically estimated [? ]. Our VIM
definition uses the concepts of counterfactuals and the framework for estimation is built on targeted maximum
likelihood estimation or targeted minimum loss-based estimation (TMLE) [? ]. This methodology targets the
individual importance of each CpG site by taking advantage of the prediction power of machine learning
algorithms. The mathematical properties of this approach have been explored in [? ] and we focus on our
contribution to it’s application, methyvim, an R package that make this technique for differential methylation
analysis easily accessible.

For a general discussion of the framework of targeted minimum loss-based estimation and the role this ap-
proach plays in statistical causal inference, the interested reader is invited to consult ? ] and ? ]. For a more
general introduction to (statistical) causal inference, ? ] and ? ] may be of interest.

Methods

Implementation

The core functionality of this package is made available via the eponymous methyvim function, which imple-
ments a statistical algorithm designed to compute targeted estimates of VIMs, defined in such a way that the
VIMs represent parameters of scientific interest in computational biology experiments; moreover, these VIMs
are defined such that they may be estimated in a manner that is very nearly assumption-free, that is, within a
fully nonparametric statistical model. The statistical algorithm consists in several major steps:

1. Pre-screening of genomic sites is used to isolate a subset of sites for which there is cursory evidence of dif-
ferential methylation. For the sake of computational feasibility, targeted minimum loss-based estimates
of VIMs are computed only for this subset of sites. Currently, the available screening approach adapts
core routines from the limma R package. Future releases will support functionality from other packages
(e.g., randomForest, tmle.npvi). Following the style of the function for performing screening via
limma, users may write their own screening functions and are invited to contribute such functions to
the core software package by opening pull requests at the GitHub repository.

2. Nonparametric estimates of VIMs, for the specified target parameter, are computed at each of the CpG
sites passing the screening step. The VIMs are defined in such a way that the estimated effects is of an
exposure/treatment on the methylation status of a target CpG site, controlling for the observed methy-
lation status of the neighbors of that site. Currently, routines are adapted from the tmle R package.
Future releases will support doubly-robust estimates of these VIMs (via the drtmle package) and add
parameters for continuous treatments/exposures (via the tmle.npvi package).

Page 2 of ??

http://bioconductor.org/packages/limma
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=tmle.npvi
https://CRAN.R-project.org/package=tmle
https://cran.r-project.org/package=drtmle
https://CRAN.R-project.org/package=tmle.npvi


F1000Research 2018 - DRAFT ARTICLE (PRE-SUBMISSION)

3. Since pre-screening is performed prior to estimating VIMs, we make use of a multiple testing correction
uniquely suited to such settings. Due to the multiple testing nature of the estimation problem, a variant
of the Benjamini & Hochberg procedure for controlling the False Discovery Rate (FDR) is applied [?
]. Specifically, we apply the “modified marginal Benjamini & Hochberg step-up False Discovery Rate
controlling procedure for multi-stage analyses” (FDR-MSA), which is guaranteed to control the FDR as
if all sites were tested (i.e., without screening) [? ].

Parameters of Interest For the CpG sites that passed the pre-screening step, the user chooses the parameter
of interest that will be computed at each site. In all cases, an estimator of the parameter of interest is constructed
via targeted minimum loss-based estimation.

For discrete-valued treatments or exposures:

• The average treatment effect (ATE): The effect of a binary exposure or treatment on the observed methy-
lation at a target CpG site is estimated, controlling for the observed methylation at all other CpG sites in
the same neighborhood as the target site, based on an additive form. Often denotedψ0 =ψ0(1)−ψ0(0),
the parameter estimate represents the additive difference in methylation that would have been observed
at the target site had all observations received the treatment versus the counterfactual under which none
received the treatment.

• The relative risk (RR): The effect of a binary exposure or treatment on the observed methylation at a
target CpG site is estimated, controlling for the observed methylation at all other CpG sites in the same
neighborhood as the target site, based on a geometric form. Often denoted, ψ0 =

ψ0(1)
ψ0(0)

, the parameter
estimate represents the multiplicative difference in methylation that would have been observed at the
target site had all observations received the treatment versus the counterfactual under which none
received the treatment.

Estimating the VIM corresponding to the parameters above, for discrete-valued treatments or exposures, re-
quires two separate regression steps: one for the treatment mechanism (propensity score) and one for the
outcome regression. Technical details on the nature of these regressions are discussed in ? ], and details for
estimating these regressions in the framework of targeted minimum loss-based estimation are discussed in ?
].

Support for continuous-valued treatments or exposures is planned but not yet available, though work is under-
way to incorporate into our methodology the following

• A nonparametric variable importance measure (NPVI) [? ]: The effect of continuous-valued exposure
or treatment (the observed methylation at a target CpG site) on an outcome of interest is estimated,
controlling for the observed methylation at all other CpG sites in the same neighborhood as the target
(treatment) site, based on a parameter that compares values of the treatment against a reference value
taken to be the null. In particular, the implementation provided is designed to assess the effect of
differential methylation at the target CpG site on a (typically) phenotype-level outcome of interest (e.g.,
survival), in effect providing an nonparametric evaluation of the impact of methylation at the target site
on said outcome.

Class methytmle We have adopted a class methytmle to help organize the functionality within this pack-
age. The methytmle class builds upon the GenomicRatioSet class provided by the minfi package so all
of the slots of GenomicRatioSet are contained in a methytmle object. The new class introduced in the
methyvim package includes several new slots:

• call - the form of the original call to the methyvim function.

• screen_ind - indices identifying CpG sites that pass the screening process.

• clusters - non-unique IDs corresponding to the manner in wich sites are treated as neighbors. These
are assigned by genomic distance (bp) and respect chromosome boundaries (produced via a call to
bumphunter::clusterMaker).

• var_int - the treatment/exposure status for each subject. Currently, these must be binary, due to the
definition of the supported targeted parameters.

• param - the name of the target parameter from which the estimated VIMs are defined.

• vim - a table of statistical results obtained from estimating VIMs for each of the CpG sites that pass the
screening procedure.

• ic - the measured array values for each of the CpG sites passing the screening, transformed into influence
curve space based on the chosen target parameter.

We refer the reader to the package vignette, “methyvim: Targeted Data-Adaptive Estimation and Inference
for Differential Methylation Analysis,” included in any distribution of the software package, for further details.
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Operation

A standard computer with the latest version of R and Bioconductor 3.6 installed will handle applications of
the methyvim package.

Use Cases

To examine the practical applications and the full set of utilities of the methyvim package, we will use a
publicly available example data set produced by the Illumina 450K array, from the minfiData R package.

Preliminaries: Setting up the Data We begin by loading the package and the data set. After loading the
data, which comes in the form of a raw MethylSet object, we perform some further processing by mapping to
the genome (with mapToGenome) and converting the values from the methylated and unmethylated channels
to Beta-values (via ratioConvert). These two steps together produce an object of class GenomicRatioSet,
provided by the minfi package.

suppressMessages(library(minfiData))
data(MsetEx)
mset <- mapToGenome(MsetEx)
grs <- ratioConvert(mset)
grs

## class: GenomicRatioSet
## dim: 485512 6
## metadata(0):
## assays(2): Beta CN
## rownames(485512): cg13869341 cg14008030 ... cg08265308 cg14273923
## rowData names(0):
## colnames(6): 5723646052_R02C02 5723646052_R04C01 ...
## 5723646053_R05C02 5723646053_R06C02
## colData names(13): Sample_Name Sample_Well ... Basename filenames
## Annotation
## array: IlluminaHumanMethylation450k
## annotation: ilmn12.hg19
## Preprocessing
## Method: Raw (no normalization or bg correction)
## minfi version: 1.21.2
## Manifest version: 0.4.0

We can create an object of class methytmle from any GenomicRatioSet object simply invoking the S4 class
constructor:

library(methyvim)

## methyvim v1.1.0: Targeted Variable Importance for Differential Methylation Analysis

mtmle <- .methytmle(grs)

Additionally, a GenomicRatioSet can be created from a matrix with the function makeGenomicRatioSetFromMatrix
provided by the minfi package.

Differential Methylation Analysis For this example analysis, we’ll treat the condition of the patients as the
exposure/treatment variable of interest. The methyvim function requires that this variable either be numeric
or easily coercible to numeric. To facilitate this, we’ll simply convert the covariate (currently a character):

var_int <- (as.numeric(as.factor(colData(grs)$status)) - 1)

n.b., the re-coding process results in “normal” patients being assigned a value of 1 and cancer patients a 0.

Now, we are ready to analyze the effects of cancer status on DNA methylation using this data set. We proceed
as follows with a targeted minimum loss-based estimate of the Average Treatment Effect.
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suppressMessages(
methyvim_cancer_ate <- methyvim(data_grs = grs, var_int = var_int,

vim = "ate", type = "Beta", filter = "limma",
filter_cutoff = 0.20, obs_per_covar = 2,
parallel = FALSE, sites_comp = 125,
tmle_type = "glm"

)
)

## Warning in set_parallel(parallel = parallel, future_param = future_param, : Sequential evaluation is strongly discouraged.
## Proceed with caution.

Note that we set the obs_per_covar argument to a relatively low value (2, where the recommended default is
20) for the purposes of this example as the sample size is only 10. We do this only to exemplify the estimation
procedure and it is important to point out that such low values for obs_per_covar will compromise the
quality of inference obtained because this setting directly affects the definition of the target parameter.

Further, note that here we apply the glm flavor of the tmle_type argument, which produces faster results by
fitting models for the propensity score and outcome regressions using a limited number of parametric models.
By contrast, the sl (for “Super Learning”) flavor fits these two regressions using highly nonparametric and
data-adaptive procedures (i.e., via machine learning). Obtaining the estimates via GLMs results in each of the
regression steps being less robust than if nonparametric regressions were used.

We can view a table of results by examining the vim slot of the produced methytmle object.

head(slot(methyvim_cancer_ate, "vim"))

## lwr_ci est_ate upr_ci var_ate pval
## cg14008030 -0.11956597 -0.031415962 0.056734049 2.022705e-03 4.848468e-01
## cg20253340 -0.08850637 -0.058866142 -0.029225917 2.286919e-04 9.917426e-05
## cg21870274 -0.09499057 -0.029118982 0.036752609 1.129495e-03 3.862537e-01
## cg17308840 -0.04626018 -0.007152452 0.031955277 3.981191e-04 7.199943e-01
## cg00645010 -0.02697515 -0.013809263 -0.000643373 4.512199e-05 3.980386e-02
## cg27534567 0.06745648 0.115711854 0.163967223 6.061486e-04 2.602936e-06
## n_neighbors n_neighbors_control max_cor_neighbors
## cg14008030 0 0 NA
## cg20253340 0 0 NA
## cg21870274 2 1 0.9443580
## cg17308840 2 1 0.9443580
## cg00645010 2 2 0.5236810
## cg27534567 1 0 0.9362968

Finally, we may compute FDR-corrected p-values, by applying a modified procedure for controlling the False
Discovery Rate for multi-stage analyses (FDR-MSA) [? ]. We do this by simply applying the fdr_msa function.

fdr_p <- fdr_msa(pvals = slot(methyvim_cancer_ate, "vim")$pval,
total_obs = nrow(methyvim_cancer_ate))

Having explored the results of our analysis numerically, we now proceed to use the visualization tools provided
with the methyvim R package to further enhance our understanding of the results.

Visualization of Results While making allowance for users to explore the full set of results produced by the
estimation procedure (by way of exposing these directly to the user), the methyvim package also provides
three (3) visualization utilities that produce plots commonly used in examining the results of differential
methylation analyses.

A simple call to plot produces side-by-side histograms of the raw p-values computed as part of the estimation
process and the corrected p-values obtained from using the FDR-MSA procedure.

plot(methyvim_cancer_ate, type = "raw_pvals")
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plot(methyvim_cancer_ate, type = "fdr_pvals")
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Remark: The plots displayed above may also be generated as side-by-side histograms in a single plot object.
This is the default for the plot method and may easily be invoked by specifying no additional arguments to
the plot function, unlike in the above.

While histograms of the p-values may be generally useful in inspecting the results of the estimation procedure,
a more common plot used in examining the results of differential methylation procedures is the volcano plot,
which plots the parameter estimate along the x-axis and −log10(p-value) along the y-axis. We implement such
a plot in the methyvolc function:

methyvolc(methyvim_cancer_ate)
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The purpose of such a plot is to ensure that very low (possibly statistically significant) p-values do not arise
from cases of low variance. This appears to be the case in the plot above (notice that most parameter estimates
are near zero, even in cases where the raw p-values are quite low).

Yet another popular plot for visualizing effects in such settings is the heatmap, which plots estimates of the
raw methylation effects (as measured by the assay) across subjects using a heat gradient. We implement this
in the methyheat function:

methyheat(methyvim_cancer_ate)
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Invoking methyheat in this manner produces a plot of the top sites (25, by default) based on the raw p-value,
using the raw methylation measures in the plot. This uses the exceptional superheat R package [? ].

Summary

Here we introduce the R package methyvim, an algorithm for differential methylation analysis that moves
beyond linear models. Additionally, this estimation procedure produces straightforward statistical inference.
Inspired by concepts of counterfactual effects from the causal inference literature and machine learning algo-
rithms, we provide a computationally efficient technique for obtaining targeted estimates of nonparametric
variable importance measures for a pre-screened set of CpGs, controlling for the False Discovery Rate as if all
sites were tested, and the estimation framework is built on targeted minimum loss-based estimation. By taking
advantage of the prediction power of machine learning algorithms, this methodology targets the individual
importance of each CpG site, providing a fully nonparametric statistical model for the analysis of differential
methylation.

Software availability

Latest source code (development version): https://github.com/nhejazi/methyvim

Bioconductor (stable release): https://bioconductor.org/packages/methyvim

Archived source code as at time of publication: https://github.com/nhejazi/methyvim

Software license: The MIT License, copyright Nima S. Hejazi
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