
High Performance Computing with R
For many years, R had a reputation for being slow, unable to
process large datasets. This was true until c2012 when its compiler
caw switched from `parse tree’ to `byte code’. Its speed is now
similar to Python, Java, Matlab & IDL. All of these are slower than
Fortran, C and C++.

Benchmarking R: Ten million element vector on MacBook laptop
w <- rnorm(10000000) # 0.9 sec
wsort <- sort(w) # 1.4 sec
wfft <- fft(w) # 1.8 sec

foo <- 0
loop <- function(n) { for(i in 1:n) {

if(tan(i) > 0.5) foo = foo + atan(i)^{2/3 * w[i]} } }
loop(10000000) # 6.6 sec Loop with nonlinear computation
quartz() ; plot(w) # 190 sec
write(format(w, digits=2)) # 34 sec
save(w, file='w.out') # 0.1 sec

R programming tools
library(help=‘utils’) & ‘base’ & ‘tools’

ü Program flow (if, for, else, while, repeat, break, next, stop)
ü Host computer (system, list.files, source, readline, Rscript, pipe)
ü Editors, IDEs and GUIs (Rstudio, Jupyter, edit, emacs, vi)
ü Debugging (debug, browser, try, traceback, Rprof, testthat)
ü LaTeX (xtable, Sweave, knitr)
ü Language interfaces (C, C++, Fortran, Python, Java, Julia, Matlab,

SQL, HTML, Oracle, Tcl/Tk, BUGS, JAGS, Stan)

Use rpy2 to access R from Python:
conda install rpy2 ## on terminal, installs R and rpy2
pip install rpy2 ## in (i)Python, requires R previously installed
import rpy2
import rpy2.robjects as robjects
R = robjects.r
ranGauss = R.rnorm(100)
print(ranGauss)

Strategies for speeding up R code

§ Precompile user-created functions
§ User vector/matrix operations where possible
§ Avoid for(i in 1:N) loops where possible
§ Use external C, Fortran or C++ routines for computationally

intensive steps
§ Profile your code: Rprof, CRAN rbenchmark, microbenchmark

CRAN packages for parallel processing

R is not intrinsically designed for parallel processing but, due to utilities for
interaction with the host computer, dozens of CRAN packages are now
available to facilitate parallel & distributed computing

² parallel and foreach functions distributes for loop to resident cores
² multicore, batch & condor serve multicore computers
² mclapply applies any function to each element of a vector in parallel
² h2o facilitates machine learning (e.g. RFs, ANNs) in a parallel environment
² CRAN HadoopStream & hive serve MapReduce in Hadoop environment
² CRAN cloudRmpi serves MPI and
² Gputools, magma & OpenCl serve GPU clusters
² RevoScaleR integrates R with Microsoft SQL Server
² datatable, ff & bigmemory treat large out-of-memory datasets

While originally designed for an individual
exploring small datasets,

R can be pipelined and can treat megadatsets

also

R scripts are very compact
Two Penn State Ph.D. theses completed in

102 lines of code

