High Performance Computing with R

For many years, R had a reputation for being slow, unable to
process large datasets. This was true until c2012 when its compiler
caw switched from "parse tree’ to byte code’. Its speed is now
similar to Python, Java, Matlab & IDL. All of these are slower than
Fortran, C and C++.

Benchmarking R: Ten million element vector on MacBook laptop

w <- rnorm(10000000) # 0.9 sec

wsort <- sort(w) # 1.4 sec

wfft <- fft(w) # 1.8 sec
foo<-0

loop <- function(n) { for(i in 1:n) {
if(tan(i) > 0.5) foo = foo + atan(i)*{2/3 * w[i]} } }
loop(10000000) # 6.6 sec Loop with nonlinear computation
quartz() ; plot(w) # 190 sec
write(format(w, digits=2)) # 34 sec
save(w, file='w.out') # 0.1 sec

R programming tools
library(help="utils’) & ‘base’ & ‘tools’

Program flow (if, for, else, while, repeat, break, next, stop)

Host computer (system, list.files, source, readline, Rscript, pipe)

Editors, IDEs and GUIs (Rstudio, Jupyter, edit, emacs, vi)

Debugging (debug, browser, try, traceback, Rprof, testthat)

LaTeX (xtable, Sweave, knitr)

Language interfaces (C, C++, Fortran, Python, Java, Julia, Matlab,
SQL, HTML, Oracle, Tcl/Tk, BUGS, JAGS, Stan)

D N NI NI NI NN

Use rpy2 to access R from Python:
conda install rpy2 ## on terminal, installs R and rpy2
pip install rpy2 ## in (i)Python, requires R previously installed
import rpy2
import rpy2.robjects as robjects
R =robjects.r
ranGauss = R.rnorm(100)
print(ranGauss)

Strategies for speeding up R code

Precompile user-created functions
User vector/matrix operations where possible
Avoid for(iin 1:N) loops where possible

Use external C, Fortran or C++ routines for computationally
intensive steps

Profile your code: Rprof, CRAN rbenchmark, microbenchmark

CRAN packages for parallel processing

R is not intrinsically designed for parallel processing but, due to utilities for
interaction with the host computer, dozens of CRAN packages are now
available to facilitate parallel & distributed computing

<> parallel and foreach functions distributes for loop to resident cores
multicore, batch & condor serve multicore computers

mclapply applies any function to each element of a vector in parallel

h2o facilitates machine learning (e.g. RFs, ANNs) in a parallel environment
CRAN HadoopStream & hive serve MapReduce in Hadoop environment
CRAN cloudRmpi serves MPI and

Gputools, magma & OpenCl| serve GPU clusters

RevoScaleR integrates R with Microsoft SQL Server

datatable, ff & bigmemory treat large out-of-memory datasets

IR SRR S

While originally designed for an individual
exploring small datasets,
R can be pipelined and can treat megadatsets

also
R scripts are very compact

Two Penn State Ph.D. theses completed in
107 lines of code

