
6/13/18, 10)56 PMDay 3 Hi Perf Comput R

Page 1 of 5http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%203%20Hi%20Perf%20Comput%20R.ipynb?download=false

High Performance Computing with R

Eric Feigelson (Penn State) edf@astro.psu.edu

2nd East Asian Workshops in Astrostatistics Summer 2018
Adapted from R scripts in Appendix B, Modern Statistical Methods for Astronomy With R

Applications, Eric D. Feigelson & G. Jogesh Babu 2012 http://astrostatistics.psu.edu/MSMA
(http://astrostatistics.psu.edu/MSMA)

R is written in C and some R functions (particularly vector operations) proceed at machine code speed. But
R is an interpreted language, and some functions (e.g. for, if/else and while loops) proceed at much
slower speeds.

R functions were changed to a byte-code compiler c2012, so on-the-fly compilation is reduced. Python
has the same compiler type.

R code can often be improved for performance through improved structure & vectorization, by converting
computationally-intensive portions to C or Fortran, by using parallel processing within R, and by using
advanced CRAN packages for use on large CPU/GPU clusters or cloud computing.

We now proceed with some tests of operational speed for different coding practices. Advice on speeding up
R code can be found in the following references:

The Art of R Programming, N. Matloff (2011, book, Chpt 11)
At www.r-bloggers.com: FasteR! HigheR! StrongeR!, N. Ross (2013)
At www.r-statistics.com: Speed up using JIT compiler, T. Galil (2012)
Getting Started with doParallel and foreach, S. Weston & R. Calaway (2014)
Simple Parallel Statistical Computing in R, L. Tierney (slides, 2003)
State of the Art in Parallel Computing with R, M. Schmidberger et al. (J Stat Software, 2009)
Tutorial: Parallel Computing with R on Lion and Hammer (RCC/PSU, 2013)
HPC-R Exercises: Parallelism, D. Schmidt (2015)

http://astrostatistics.psu.edu/MSMA

6/13/18, 10)56 PMDay 3 Hi Perf Comput R

Page 2 of 5http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%203%20Hi%20Perf%20Comput%20R.ipynb?download=false

I Benchmarking R codes
We find that many R functions, such as the normal and beta distribution random number generators, are
vector operations that operate at full speed of the CPU with O(N) scaling. However, a for loop is can be 10-
100 times slower, and nested for loops can be prohibitively time consuming. Note that even simple
operators like : and <- require function calls that can slow a program.

In []: N <- 1000000 # a million operations

test1 <- function(n) {
 foo1 <- rnorm(n) ; foo2 <- rbeta(n,5,5)
 foo3 <- foo1 + foo2
 return(foo3) }
system.time(test1(N)) # vector operations, fast, R ~ 10*syst
em
system.time(test1(N*10)) # O(N) behavior

test2 <- function(n) {
 foo3 <- vector(length=n)
 foo1 <- rnorm(n) ; foo2 <- rbeta(n,5,5)
 for (i in 1:n) foo3[i] <- foo1[i] + foo2[i]
 return(foo3) }
system.time(test2(N)) # for loop, 10x slower, R ~ 100*system

test3 <- function(n) {
 foo3 <- vector(length=n)
 for (i in 1:n/10)
 for (j in 1:10)
 foo1 <- rnorm(n) ; foo2 <- rbeta(n,5,5)
 for (i in 1:n) {foo3[i] <- foo1[i] + foo2[i]}
 return(foo3) }
system.time(test3(10000)) # Double loop, very slow, R ~ 40*syste
m
system.time(test3(3000)) # O(N^2) behavior

II Profiling & debugging R programs
Next, we turn to profiling procedures that help identify which steps are slowing the processing of a
complicated code. Rprof is a utility in base-R while microbenchmark is one of several CRAN packages to
help with improving the efficiency of R coding. In the case of our test2 function, we find that most of the
time is spent generating random numbers.

6/13/18, 10)56 PMDay 3 Hi Perf Comput R

Page 3 of 5http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%203%20Hi%20Perf%20Comput%20R.ipynb?download=false

In []: Rprof("profile.result")
invisible(test2(N))
Rprof(NULL)
summaryRprof("profile.result")

install.packages('microbenchmark', repos='https://cloud.r-project.org'
)
library(microbenchmark) ; library(ggplot2)
compare <- microbenchmark(test1(N/10), test2(N/10), times = 50)
autoplot(compare)

R has built-in functions including debug, browser, traceback, options(error=recover), and
tryCatch to help the programmer understand complex codes. CRAN packages include debug. Run R
within gdb to debug C code called by R scripts.

III Speeding up R
Clever use of the following can often speed up your program: sort, table, inner, outer, crossword,
expand.grid, which, where, any, all, sum, cumsum, sumRows, cumprod, %% (modulo), etc.

Following is a slow code with many calls to a random number generator, and a fast code with only one call.
This illustrates tradeoff between speed and memory usage. This and other examples of R speedup efforts
are given by N. Matloff. A particular problem with R processing is that vectors are often unnecessarily copied
and recalculated.

In []: sum_ran2 <- 0
system.time(for (i in 1:N) { ran.2 = rnorm(2) ; sum_ran2 = sum_ran2 +
max(ran.2) })

system.time (ran.many <- matrix(rnorm(2*N), ncol=2))
system.time (sum(pmax(ran.many[,1], ran.many[,2])))

Many operations can be sped up with R's apply functions: apply, sapply, lapply, etc. lapply loops in
compiled C code and can be fastest, although using numerics can be faster than using lists. lapply
procedures can be parallelized using mclapply in package parallel. In the example below, the "+"
function can be replaced by a more complex user-defined function.

6/13/18, 10)56 PMDay 3 Hi Perf Comput R

Page 4 of 5http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%203%20Hi%20Perf%20Comput%20R.ipynb?download=false

In []: test4 <- function(n) {
 foo1 <- rnorm(n) ; foo2 <- rbeta(n,5,5)
 foo4 <- apply(cbind(foo1, foo2), 1, "+")
 return(foo4) }
system.time(test4(N)) # apply is not effective here

IV Pre-compiling R code
Since c2012, all R/CRAN functions are pre-compiled, but user-defined functions are not. You can do this
yourself and speed up your code.

In []: system.time(test2(N))
library(compiler)
comp_test2 <- cmpfun(test2)
system.time(comp_test2(N)) # no improvement here

A related option is to use just-in-time (JIT) compiling in R that automatically compiles all functions their first
time. Add the following at the beginning of the code.

In []: library(compiler)
enableJIT(1)

Conclusion on speeding up R by N. Matloff: "The moral of the story is that performance issues can be
unpredictable."

6/13/18, 10)56 PMDay 3 Hi Perf Comput R

Page 5 of 5http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%203%20Hi%20Perf%20Comput%20R.ipynb?download=false

V Parallel processing
Important CRAN packages: multicore, snow,snowfall, doParallel,foreach, and plyr. Most parallelizations are
related to apply, so if you can run your task in apply, you can parallelize.

Easy start to parallel processing: R package doParallel as an interface between the parallel package,
a merger of CRAN's multicore and snow (Simple Network of Workstations packages, and the foreach
package/function provided by the company MS Revolution Analytics. This runs both on a single computer
with multicores and on a cluster of processors. With doParallel, 'an average R programmer can start
executing parallel programs, without any previous experience in parallel computing'.

Useful documentation:

vignette("gettingstartedParallel")
'Introduction to parallel computing in R' (Clint Leach, 2014)
CRAN Task View on High Performance Computing

In []: # Setup multicore cluster
install.packages('doParallel', repos='https://cloud.r-project.org')
library(doParallel)
getDoParWorkers() # Find number of cores available
clus <- makeCluster(4)
registerDoParallel(clus)
ncores <- getDoParWorkers() ; ncores
stopCluster(clus)

