Day 2 Clust class R 6/13/18, 5:37 PM

Clustering, classification and data mining
Eric Feigelson (Penn State) edf@astro.psu.edu

2nd East Asian Workshops in Astrostatistics Summer 2018

Adapted from R scripts in Appendix B, Modern Statistical Methods for Astronomy With R
Applications, Eric D. Feigelson & G. Jogesh Babu 2012 http://astrostatistics.psu.edu/MSMA
(http://astrostatistics.psu.edu/MSMA) Improved by Gabriel Caceres 2017.

Data mining and machine learning are ill-defined terms referring to a wide range of computationally intensive
methods for finding patterns in large multivariate datasets. This encompasses (unsupervised) clustering,
(supervised) classification, and regression. In some cases, the algorithms have a foundation in mathematical
theorems, but often they are practical heuristic approaches to difficult problems. Some methods have
optimize through iterative steps that learn the characteristics of the dataset. We start here with some simple
clustering, and they proceed to a classification problem.

Comment: If you get an odd run-time error like "internal error -3 in R_decompress1", then click Restart
under then Kernel tab of Jupyter.

In []: # Setup
setwd('/Users/ericfeigelson/Desktop/Rdir"')

install.packages('fpc', repos='https://cloud.r-project.org')

Flexible Procedures for Clustering

install.packages('class', repos='https://cloud.r-project.org')

Functions for Classification

install.packages('randomForest', repos='https://cloud.r-project.org')
Random Forests

install.packages('el071', repos='https://cloud.r-project.org')

SVM

| Color-magnitude diagram for low-redshift COMBO-17 galaxies

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 1 of 13

http://astrostatistics.psu.edu/MSMA

Day 2 Clust class R 6/13/18, 5:37 PM

Contemporaneous with the early Sloan Digital Sky Survey, a major galaxy survey was called COMBO-17 that
obtained photometry of thousands of galaxies in 17 spectral bands as faint as ~23 mag. One of the major
results was investigation of a bifurcation in the color magnitude diagram of normal galaxies showing a red
sequence and a blue cloud separated by a green valley. We study this here in a bivariate color-
magnitude diagram using unsupervised methods.

In []: COMBO_loz=read.table('COMBOl7_lowz.dat', header=T, £ill=T)
str (COMBO_loz)
dim(COMBO_loz)
names (COMBO_loz)
names (COMBO_loz) <- c('MB', 'M280-MB') ; names(COMBO_ loz)

In []: plot(COMBO loz, pch=20, cex=0.5, xlim=c(-22,-7), ylim=c(-2,2.5),
xlab=expression(M[B]~~(mag)), ylab=expression(M[280] - M[B]~~(mag))

main="'")

In []: # Two-dimensional kernel-density estimator

library (MASS)
COMBO_loz sm <- kde2d(COMBO loz[,1], COMBO loz[,2], h=c(l1.6,0.4),
lims = c¢(-22,-7,-2,2.5), n=500)
image (COMBO loz sm, col=grey(13:0/15), xlab=expression(M[B]~~(mag)),
ylab=expression(M[280] - M[B]~~(mag)), xlim=c(-22,-7), ylim=c(-2,2.
5)!
xaxp=c(-20,-10,2))
text(-16.5, -1, "Blue cloud", col='darkblue', pos=4, cex=0.8)
text(-17,-0.7, 'Green valley', col='darkgreen', pos=4, cex=0.8)
text(-13, -0.2, 'Red sequence', col='red', pos=4, cex=0.8)
text(-18.5, 1.7, 'Bright cluster galaxies', col='deeppink3', pos=4,
cex=0.8)
dev.copy2pdf (file='COMBO17 CMD.pdf')

Il Two nonparametric unsupervised clustering procedure

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 2 of 13

Day 2 Clust class R

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false

In []: # Standardize variables

Mag std <- scale(COMBO loz[,1])
Color std <- scale(COMBO loz[,2])
COMBO_std <- cbind(Mag std,Color std)

Hierarchical clustering

COMBO_dist <- dist(COMBO_std)
COMBO _hc <- hclust(COMBO dist, method='complete')

Cutting the tree at k=5 clusters

plot (COMBO hc, label=F)

COMBO_hc5a <- rect.hclust(COMBO hc, k=5, border='red')

COMBO_hc5b <- cutree(COMBO_hc, k=5)

plot (COMBO loz, pch=(COMBO hc5b+18), cex=0.7, xlab=expression(M[B]~~(m

ag)).
ylab=expression(M[280] - M[B]~~(mag)), main="'")

Here we have run hierarchical clustering with complete linkage that produces compact groupings. Cutting
the tree at k=2, 3, or 4 did not separate the red sequence and blue cloud; this occurred only at k=5. The plot
here uses the vector of classifications from the clustering algorithm to determine the shape of the plotting
symbol. Exercise: Read the help files associated with hierarchical clustering and try different parameters.

In []: # Density-based clustering algorithm

install.packages('fpc') ; library(fpc)
COMBO dbs <- dbscan(COMBO std, eps=0.1, MinPts=5, method='raw')
print.dbscan(COMBO dbs) ; COMBO dbs$cluster
plot (COMBO loz[COMBO dbs$cluster==0,], pch=20, cex=0.7, xlab='M B (mag
)'I

ylab='M 280 - M B (mag)')
points (COMBO_ loz[COMBO dbs$cluster==2,], pch=2, cex=1.0, col='bluel2')
points(COMBO loz[COMBO dbs$cluster==1 | COMBO dbs$cluster==3,], pch=1,
cex=1.0, col='orangered3')

Here we run the well-known density-based clustering algorithm DBSCAN. It starts with a peaks found from
kernel density estimation, then extends outward with a reach distance (eps), adding a constraint that
clusters must have more members than a specified minimum (MinPts). Unlike many other clustering
procedures, DBSCAN allows clusters to reside in a background of unclustered objects. Here we set both the
color and symbol shapes by the resulting cluster vector. But attempts to include more galaxies in the red
sequence or blue cloud resulted in unifying them, as the algorithm reached over the green valley. Exercise:
Read the help file of DBSCAN and try different parameters.

6/13/18, 5:37 PM

Page 3 of 13

Day 2 Clust class R 6/13/18, 5:37 PM

In conclusion, it was difficult to get standard nonparametric clustering algorithms to find members of the
known galaxy groupings. Clustering parameters had to be carefully tuned, and even then the results were
not very satisfactory. Simple kernel smoothing did a better job in showing the structure, although it does not
define cluster membership.

Il Classification of Sloan point sources

We next apply a number of important supervised classifiers to the problem of classifying point sources in the
Sloan Digital Sky Survey into three groups: normal stars, white dwarf stars, and quasars that appear star-like
but are actually distant extragalactic objects. We treat the problem in four dimensions of color indices
between the five Sloan photometric bands. Note that we could add other variables, such as magnitude in a
fiducial band and location in the sky.

In the lengthy scripts below, we first ingest a test set of 17,000 point sources from the Sloan Digital Sky
Survey, and then three training sets: 2000 quasars, 2000 white dwarfs, and 5000 main sequence and
giant stars. The training samples are based on tedious spectroscopic confirmation with other telescopes. We
combine the three training sets into a single R data.frame with a new column giving the known cluster
identifiers (1=quasar, 2=star, 3=white dwarf). We then divide the traing set into 80% for designing the
classifiers and 20% for validation. Our science goal is to classify the test dataset based on the best
classifiers.

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 4 of 13

Day 2 Clust class R

In []

In []

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false

6/13/18, 5:37 PM

*xk*kk* k¥ k%% CLASSIFICATION OF SLOAN POINT SOURCES *#**#*%*%#%%

AAA AR

#
#
R script for constructing SDSS test and training datasets is given
in Appendix C of MSMA (Feigelson & Babu 2012).

SDSS point sources test dataset, N=17,000 (mag<2l, point sources, hi
-qual)

SDSS <- read.csv('SDSS test.csv', h=T)
dim(SDSS) ; summary(SDSS)

SDSS_test <- data.frame(
u_g = SDSSS$u mag-SDSS$g mag,
g_r = SDSS$g_mag-SDSSSr_mag,
r i = SDSS$r_mag-SDSS$i_mag,
i z = SDSS$i mag-SDSS$z mag

1 1 1 s 1 LI

names (SDSS_test) <- ¢('ug', 'gr', 'r i',
str(SDSS_test)

par (mfrow=c(1,3))
plot(SDSS test[,1], SDSS test[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8),pc
h=20,

cex=0.6, cex.lab=1.5, xlab=
'u-g (mag)', ylab='g-r (mag)')
plot (SDSS test[,2], SDSS test[,3], xlim=c(-0.7,1.8), ylim=c(-0.7,1.8),
pch=20,

cex.axis=1.5, main='Test dataset',

cex=0.6,
ylab='r-i (mag)')
plot (SDSS test[,3], SDSS test[,4], xlim=c(-0.7,1.8), ylim=c(-1.1,1.3),
pch=20,

cex.lab=1.5, cex.axis=1.5, main='"', xlab='g-r (mag)',

cex=0.6,
ylab='i-z (mag)')
par (mfrow=c(1,1))

cex.lab=1.5, cex.axis=1.5, main='"', xlab='r-i (mag)',

Quasar training set, N=2000 (Class 1)

gsol <- read.table('SDSS 0SO.dat', h=T)

dim(gsol) ; summary(gsol)

bad phot gso <- which(gsol[,c(3,5,7,9,11)] > 21.0 | gsol[,3]==0)
gso2 <- gsol[1:2000,-bad phot gso,]
gso3 <- cbind((gso2[,3]-gso2[,51]),
[,91), (gso2[,9]1-gso2[,117]))
gso_train <- data.frame(cbind(gso3,
names (gso_train) <- c¢('u g', 'g r',
dim(gso_train) ; summary(gso_train)

(gso2[,5]-gso2[,7]), (gso2[,7]-gso2

rep(1,
lr_il,

length(gso3[,11))))
'i z', 'Class')

Star training set, N=5000 (Class 2)

Page 5 of 13

Day 2 Clust class R

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false

6/13/18, 5:37 PM

temp2 <- read.csv('SDSS_stars.csv', h=T)
dim(temp2) ; summary(temp2)
star <- cbind((temp2[,l]-temp2[,2]), (temp2[,2]-temp2[,3]), (temp2[,3]
-temp2[,4]),
(temp2[,4]1-temp2[,5]))
star train <- data.frame(cbind(star, rep(2, length(star([,1]))))
names (star_train) <- ¢('u g','gr','r i','i z','Class’')
dim(star train) ; summary(star train)

White dwarf training set, N=2000 (Class 3)

temp3 <- read.csv('SDSS wd.csv', h=T)
dim(temp3) ; summary(temp3)
temp3 <- na.omit(temp3)
wd <- cbind((temp3[1:2000,2]-temp3[1:2000,3]1), (temp3[1:2000,3]-temp3[
1:2000,41),

(temp3[1:2000,4]-temp3[1:2000,5]), (temp3[1:2000,5]-temp3[1:20
00,61))
wd_train <- data.frame(cbind(wd, rep(3, length(wd[,1]))))
names (wd_train) <- c¢('v g', 'gr', 'ri', 'i z', 'Class')
dim(wd_train) ; summary(wd _train)

Combine and plot the training set (9000 objects)

SDSS_train <- data.frame(rbind(gso_train, star_ train, wd_train))
names (SDSS_train) <- ¢('u g', 'gr', 'ri', 'i z', 'Class')
str(SDSS_train)

par (mfrow=c(1,3))
plot(SDSS train[,1], SDSS train[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8),
pch=20,
col=SDSS train[,5], cex=0.6, cex.lab=1.6, cex.axis=1.6, main='
Training dataset', xlab='u-g (mag)',
ylab="g-r (mag)"')
legend(-0.5, 1.7, c('QSO','MS + RG','WD'), pch=20, col=c('black', 'red'
,'green'),
cex=0.8)
plot(SDSS train[,2], SDSS train[,3], xlim=c(-0.7,1.8), ylim=c(-0.7,1.8
) » pch=20,
col=SDSS_train[,5], cex=0.6, cex.lab=1.6, cex.axis=1.6, main='
, Xlab='g-r (mag)',
ylab='r-i (mag)')
plot(SDSS_train[,3], SDSS_train[,4], xlim=c(-0.7,1.8), ylim=c(-1.1,1.3
), pch=20,
col=SDSS train[,5], cex=0.6, cex.lab=1.6, cex.axis=1.6, main='
, Xlab='r-i (mag)',
ylab='i-z (mag)')
par (mfrow=c(1l,1))

]

Save 20% of training set for cross-validation

Page 6 of 13

Day 2 Clust class R 6/13/18, 5:37 PM

ran9000 <- runif(9000)
SDSS_train80 <- SDSS_train[(ran9000 < 0.80),]
SDSS_train20 <- SDSS_train[(ran9000 > 0.80),]

To assist with evaluation of different classifiers, let's make a function that prints and plots the confusion
matrix showing the number of objects correctly and incorrectly classified. The accuracy value
summarizes the classifier's performance ... we want it to be as close to 1.00 as possible.

In []: ## Function to evaluate classification performance
class_eval <- function(pred, act, plot=TRUE, ...){
jact <- as.integer(act)
ipred <- as.integer(pred)
acc <- sum(ipred==iact)/length(iact) # accuracy
if (isTRUE(plot)){
plot(jitter(ipred), jitter(iact), pch=20, cex=0.5, xlab='Predicted
Class', ylab='True class',lab=c(3,3,1), ...)

mtext (paste("Accuracy =", round(acc, 3)))

}

return(list("Confusion Table"=table("True Class"=iact, "Predicted Cl
ass"=ipred), Accuracy=acc))

}

Also, let us use 80% of the training set for classification, and save 20% of the training set for classifier
validation (evaluation)

In []: ## Copy original full dataset before splitting
SDSS _train full <- SDSS train

set.seed(456)

Save 20% of training set for validation

val set <- sample(nrow(SDSS train), round(nrow(SDSS train)*0.2))
SDSS_val <- SDSS_train_ full[val_set,]

SDSS_train <- SDSS_train_ full[-val_ set,]

Before supervised classification, we make two tests. First, we show that random classification assignments
will give an accuracy of 0.33 for three classes. This is obvious. Second, we try an unsupervised clustering
algorithm, k-means partitioning. Since clustering algorithms performed poorly for the simpler red
sequence VS. blue cloud galaxy groups above, we do not expect them to do well discriminating these
overlapping, multivariate distributions with very non-Gaussian morphologies. The k-means procedure did
not begin to separate the groups until k>5, but then it created false groupings amoung the normal stasr.
Altogether, k-means partitioning does a terrible job separating the three classes.

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 7 of 13

Day 2 Clust class R 6/13/18, 5:37 PM

In []: ## Test of classification evaluation: random class assignment
set.seed(123)

SDSS_rand train pred <- sample(l:3, nrow(SDSS_train), replace=T)

par (mfcol=c(1l, 1))

class_eval(SDSS_rand train pred, SDSS_train$Class, main="Random Assign
ment")

In []: # Unsupervised k-means partitioning
A terrible solution

SDSS.kmean <- kmeans(SDSS_ test,6)
print (SDSS.kmeanS$centers)
plot (SDSS test[,1], SDSS test[,2], pch=20, cex=0.3, col=gray(SDSS.kmea
n$Scluster/7),

xlab="'u-g (mag)', ylab='g-r (mag)', xlim=c(-0.5,3), ylim=c(-0.6,1.5
))

We now proceed with six multivariate classifiers commonly used in data mining: linear discriminant analysis;
k-nearest neighbor classification; a simple neural network; Classification And Regression Trees; CART with
Random Forests; and Support Vector Machine.

The R script is similar for each of the classification methods. We first bring the classifier into our R session,
run it on the 80% training dataset, and save the results in an R object. We then produce two plots: one of
the Sloan color-color diagrams with colors based on the new classifications; and a confusion matrix plot
showing the predicted classes vs. the known classes for the 20% validation dataset. In some cases, we use
R's predict function to apply the classifier to new datasets. Exercise: Read the help files and run str on
these objects to understand the outputs.

In []: # Linear discriminant analysis

library (MASS)

SDSS_lda <- lda(SDSS train[,1:4], as.factor(SDSS_train[,5]))
SDSS_lda_train pred <- predict(SDSS_lda)S$class

SDSS lda val pred <- predict(SDSS lda, SDSS val[,1l:4])Sclass
SDSS_lda test pred <- predict(SDSS_lda, SDSS test[,l:4])$class

plot(SDSS val[,1],SDSS val[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8), pch=
20,

col=SDSS lda val pred, cex=0.5, main='
g-r (mag)')

, xlab="'u-g (mag)', ylab='

class_eval(SDSS lda val pred, SDSS val$Class, main="LDA Classification
")

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 8 of 13

Day 2 Clust class R

6/13/18, 5:37 PM

Surprisingly, linear discriminant analysis did not do poorly, even though it is limited to single 4-dimensional a
hyperplane that optimally separates the classes assuming multivariate normal distributions. Even though the
shapes are far from normal, and the separators are not linear, the classification accuracy is 93%.

In

[

]:

k-nn classification

library(class)

SDSS_knn_test pred <- knn(SDSS_train[,1:4], SDSS_test, as.factor(SDSS_
train[,5]), k=5, prob=T)

SDSS_knn val pred <- knn(SDSS _train[,1:4], SDSS val[,1:4], as.factor(S
DSS train[,5]), k=5, prob=T)

plot(SDSS val[,1], SDSS val[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8), pch
=20,

col=SDSS knn val pred, cex=0.5, main='', xlab='u-g (mag)', ylab='
g-r (mag)')

class_eval(SDSS _knn val pred, SDSS val$Class, main="kNN Classification

")

Here we see that the k-NN algorithm -- a simple voting procedure among neighbors in 4-dimensional color
space -- performed very well for this classification problem with only 2% misclassifications. Note however,
that k-NN (like LDA and some other classifiers) depend on a distance matrix. This makes sense when (as in
this case) all variables have the same units and similar range, but can be problematic when variables of very
different units and ranges are combined. Also, there is a worry that the k-NN voting will depend on the
artificial choice made of the sizes of the training sets (2000 for quasars, 2000 for white dwarfs, and 5000 for

stars).

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false

Page 9 of 13

Day 2 Clust class R 6/13/18, 5:37 PM

In []: # Neural network

library(nnet)
SDSS nnet <- nnet(as.factor(Class) ~u g + gr + r i + i z, SDSS train
,Size=5)

SDSS _nnet train pred <- predict(SDSS_nnet, type="class")
SDSS_nnet val pred <- predict(SDSS nnet, SDSS val, type="class")
SDSS_nnet test pred <- predict(SDSS nnet, SDSS test, type="class")

plot(SDSS val[,1], SDSS val[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8), pch
=20,

col=SDSS nnet val pred, cex=0.5, main='
'g-r (mag) ')

, xlab='u-g (mag)', ylab=

class_eval(SDSS nnet val pred, SDSS val$Class, main="Neural Net Classi
fication")

Here we find a classification accuracy of 96%. Some quasars are incorrectly classified as horizontal branch
giant stars. Some investigation shows that the performance is improved with a larger and deeper network,
and more computing time.

In []: # Classification And Regression Tree

library(rpart)

SDSS rpart <- rpart(SDSS train[,5] ~., data=SDSS train[,1:4], method="
class")

summary (SDSS_rpart)

str(SDSS_rpart)

SDSS_rpart train pred <- predict(SDSS rpart, type="class")
SDSS rpart val pred <- predict(SDSS rpart, SDSS val, type="class")
SDSS_rpart test pred <- predict(SDSS_rpart, SDSS test, type="class")

plot(SDSS val[,1l], SDSS val[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8), pch
=20,
col=SDSS_rpart_val pred, cex=0.5,
main="'"', xlab='u-g (mag)', ylab='g-r (mag)')

class_eval(SDSS_rpart_val pred, SDSS _val$Class, main="Tree Classificat
ion")

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 10 of 13

Day 2 Clust class R 6/13/18, 5:37 PM

This CART classification gave 95% accuracy. There are many options to CART, and performance may
improve with tuning operating parameters. Below are two diagnostic diagrams, one showing the tree splits
and the other the criterion for pruning the tree to ~12 nodes.

In []: # Additional plots for decision tree
plot(SDSS rpart, branch=0.5, margin=0.05)
text (SDSS_rpart, digits=3, use.n=T, cex=0.8)
plotcp(SDSS_rpart, lwd=2, cex.axis=1.3, cex.lab=1.3)

In []: # CART with Random Forests

Random Forests

library(randomForest)

SDSS rf <- randomForest(as.factor(Class) ~u g + g r + r i + i z, data
=SDSS_train, mtry=2, importance=TRUE, do.trace=TRUE, ntree=100)

print (SDSS rf)

SDSS_rf train pred <- predict(SDSS_rf, SDSS_train)
SDSS rf oob pred <- predict(SDSS rf)
SDSS rf val pred <- predict(SDSS rf, SDSS wval)
SDSS_rf test pred <- predict(SDSS_rf, SDSS_ test)

plot(SDSS val[,1], SDSS val[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8), pch
=20,
col=SDSS rf val pred, cex=0.5,
main='"', xlab='u-g (mag)', ylab='g-r (mag)')

class_eval(SDSS_rf train pred, SDSS_train$Class, main="Random Forest C
lassification")

class_eval(SDSS_rf oob pred, SDSS train$Class, main="Random Forest Cla
ssification")

class_eval(SDSS_rf val pred, SDSS_vals$Class, main="Random Forest Class
ification")

Here have run Random Forest, where many decision trees are constructed and averaged using strategies of
boosting and bagging. We run the classification evaluation on three subsets of the training data: the 80%
training data (the 100% accuracy is not interesting here), the out of bag (0ob) subset representing a
validation set internal to the Random Forest, and our 20% validation subset. These give 98% accuracy.
Random Forest has many options, and the performance may be improvable.

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 11 of 13

Day 2 Clust class R

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false

In []: # Support Vector Machine model, prediction and validation

library(el071)
SDSS_svm <- svm((SDSS_train[,5]) ~.,data=SDSS train[,1:4],cost=100,
gamma=1)

SDSS_svm <- svm(as.factor(SDSS train[,5]) ~.,data=SDSS train[,1:4],cos
t=100, gamma=1)

summary (SDSS_svm)

SDSS_svm _train pred <- predict(SDSS_svm)
SDSS_svm val pred <- predict(SDSS_svm, SDSS_val)
SDSS _svm test pred <- predict(SDSS svm, SDSS test)

plot(SDSS_test[,1], SDSS test[,2], xlim=c(-0.7,3), ylim=c(-0.7,1.8),
pch=20,
col=round(as.numeric(SDSS_svm test pred)), cex=0.5, main='",
xlab='u-g (mag)', ylab='g-r (mag)')

class_eval(SDSS_svm_val pred, SDSS_val$Class, main="Random Forest Clas
sification")

The Support Vector Machine calculation is computer intensive, as it performs many operations, some in
higher dimensions. But the performance is, like k-NN, exceppent with 98% recovery of true classes in the
20% validation training set.

Exercise: Take one or more of the sophisticated classifiers -- neural nets, Random Forests, SVM -- and
study its performance carefully for the problem here. Read the help files, and appropriate chapter in a book
on machine learning. Examine the output R objects with str and plot various quantities. Tweak various
parameters of the method, and study the effect on the classifier performance.

We are now ready to stand back from our statistical analysis and examine the situation from a scientific
(astronomical) viewpoint. The k-NN and SVM classifiers both showed excellent performance on the 20%
validation dataset, with scientifically reasonable results on the test dataset. But there were some
methodology questions about the k-NN procedure (e.g. effect of training set size on voting, value of k). So, it
is reasonable to decide that the SVM classifier is the best.

Exercise: Produce the 2x2 contingency matrix -- True Positive, False Positive, True Negative, False Negative
-- for the SVM classifier. Calculate (and try to interpret) various scalar measures of its performance such as
precision, recall and F1 score. See https://en.wikipedia.org/wiki/Precision_and_recall
(https://en.wikipedia.org/wiki/Precision_and_recall) and related Wikipedia pages.

6/13/18, 5:37 PM

Page 12 of 13

https://en.wikipedia.org/wiki/Precision_and_recall

Day 2 Clust class R 6/13/18, 5:37 PM

We are now ready to bring the results out of R for use in other languages, by colleagues, and for publication
in a journal. We need both publication-quality graphics and a table of the Sloan test set (17,000 lines) with a
new column showing the derived classification of each object. Note that we could, using
library(xtable) produce the table in LaTeX format.

In []: SDSS test svm out <- cbind(SDSS[,6], SDSS[,7], SDSS test, round(as.num

eric(SDSS_svm test pred)))

names (SDSS_test svm out)[c(l1,2,7)] <- c¢('R.A.', 'Dec', 'SVM Class')
write.table(format (SDSS test svm out), file='SDSS test svm.out',6sep='\
t',quote=F)

http://localhost:8888/nbconvert/html/Desktop/CASt/Consulting/China_2018/Day%202%20Clust%20class%20R.ipynb?download=false Page 13 of 13

