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Axioms of probability

Axiom 1:

Axiom 2:

Axiom 3:  For mutually exclusive events

For an event A, 

For a sample space W,

= “or”, union =  “and”, intersection =  “given”, conditioned on



Conditional probability

The probability of event A given event B is equal to the 
intersection of A and B normalized by the probability of B

Example: The conditional probability that a star has solar mass and a Jovian 
planet with ellipticity 0.5-0.6 is equal to the product of the probability that a 
star is a G star (say P~1%) and the probability that any star has a e=0.5-0.6 
Jovian planet (say P~20%).  The conditional probability is thus P~0.2%. 



,

Another astronomical example: 



Bayes’ Theorem

the Law of Total Probability

For Bk possible outcomes, using the definition of conditional probability and the 
Law of Total Probability,  



Bayes’ Theorem is thus just a necessary result of probability theory, or logic,
based on the three Axioms.  In Bayesian inference the terms are given a 
specific meaning (MSMA, p.63-64)

P(Mi|X) = conditional probability of Mi given X = posterior probability density 
P(X|Mi)=  conditional probability of X given Mi = likelihood function
P(Mi) = prior or marginal probability of Mi = prior information 
P(X) [denominator] = marginal probability of X = normalizing constant

Let X represent the data, and M represent the space of models or hypotheses 
that depend on parameters theta

Bayes’ Theorem in English:
The posterior distribution of a chosen model given the data is equal to the 
normalized product of (the likelihood of the data for that model) and (the 
prior probability that the model is true without reference to the data)



Once the prior distribution and alternative hypotheses (range of q
parameters) are specified, and the data are obtained, the posterior 
distribution can be calculated.  This distribution can be plotted in the 
p-space of its parameters.  These plots give information on any non-
Gaussianity and multimodality of the posterior.  Typically, the scientist 
is interested in the `best’ Bayesian estimator for the parameters; i.e. 
the maximum (mode) of the posterior.  The credible region around this 
value is then estimated.    

Posterior distribution

Prior distributions
This is often the controversial aspect of Bayesian inference, because 
subjective judgment or simplistic uninformative priors are often used.  
For uniform priors, maximizing the posterior often gives the same 
result as maximum likelihood estimation, although interpretation of 
results differ.  Bayesian inference is most effective when the scientist 
wants to bias the likelihood based on the data using scientifically 
meaningful prior constraints on the the parameters.  



A simple astronomical example
Is this new active galactic nucleus radio-loud?

Let X be a random variable taking two values: X=1 indicates Yes and X=0 is No.
Let q be a parameter denoting AGN radio-loudness: q1 indicates Yes, q2 is No

From previous AGN surveys, the astronomer expects a probability of radio-
loudness:  P(q= q1) = 0.1.  

The new AGN under study was observed with a radio telescope sensitive 
enough to measure radio-loudness 80% of the time in radio-loud AGN:
P(X=1|q1) = 0.8.  However, 30% of the time the telescope detects irrelevant 
radio emission from star formation in the host galaxy: P(X=1|q2) = 0.3. 



Use Bayes’ Theorem to calculate the chances than an AGN with detected 
radio emission is truly a radio-loud AGN:

likelihood

sum of marginal probs

prior prob

Wow!  Only 23% of true radio-loud AGN are clearly identified in this 
survey:  77% are either false negatives or false positives.  Trying different 
assumptions shows that the result is moderately sensitive to the value of 
the prior (0.10) but is very sensitive to the false positive fraction (0.30).  If 
this is reduced to 0.05, then the discovery fraction of true radio-loud AGN 
rises to 95%.  Bayesian calculations can help the astronomer evaluate 
how the science goals can be better achieved in a future experiment.  



Many Bayesian studies (in astronomy and elsewhere) do not have an 
empirical or subjective basis for specifying the distribution of a model 
parameter in advance of the experiment/observation at hand.  In such 
cases, an uninformative prior is used to weight the likelihood in Bayes’ 
Theorem.  There are two classes commonly used. 

Conjugate priors  In the 20th century before MCMC methods, 
statisticians often chose posteriors and priors from conjugate families, 
as this greatly aided analytic calculations.  Example:

Gaussian model  à normal inverse Gamma distribution prior
model Yi ~ N(µ,s2), i=1, 2, … n  
likelihood L(µ,s2) = ks-n exp(- ∑(Yi-µ)2 / 2s2)

conjugate priors s2 ~ G(c,d-1)     µ ~ N(a, b-1, s2) 
Binomial model à beta distrbution prior
Poisson model à Gamma distribution prior
Pareto model à Gamma distribution prior
etc.  (see http://en.wikipedia.org/wiki/Conjugate_prior)

Prior distributions: Uninformative priors

http://en.wikipedia.org/wiki/Conjugate_prior


Uninformative priors:
These priors make few or no assumptions about the distribution of 

model parameters.  Two common choices:

• The uniform distribution over the full space of possible values.  
This often reproduces results from maximum likelihood estimation.

• Jeffreys prior p(q) = | I(q) |1/2, I is the Fisher Information Matrix

However, use of uninformative priors is controversial and many 
statisticians do not support their use: 
1. Many are improper priors that do not integrate to unity (often the 

integral is infinite).  Thus they are not p.d.f.’s.  
2. The results depend on arbitrary choices. In an astrophysical model, is 

the prior of X or log(X) assumed to be uniform?   For the normal 
model, is the prior of the variance or the standard deviation assumed 
to be uniform?  A uniform s.d. allows Bayesian calculations to 
reproduce many classical results.  These are based on mathematical 
convenience, and do not really represent any PRIOR knowledge. 
[`Arbitrary’ here might be phrased `garbage in -- garbage out’]



Proper use of priors 

Many astronomers proceed with a uniform or other uninformative improper prior 
without consideration of alternatives. We discourage this practice.  A reasonable 
alternative is to try different reasonable proper priors and, if the results are 
compatible, report them as scientifically reliable results.  

When flat or uninformative priors are used together with estimation using the 
mode of the posterior (MAP or HPD best fit), then we recommend that the 
Bayesian approach be dropped and the Maximum Likelihood Estimation 
formulation be used instead.  

When the prior can be reliably established from detailed scientific information 
available from earlier observations or from astrophysical theory, then we 
encourage use of these informative priors with a Bayesian approach.   However,   
it is wise to examine the relative influence of the prior and the data on the 
scientific result for the particular situation at hand.

A published Bayesian analysis should communicate the prior distribution in 
sufficient detail that other scientists can apply it to their data.    



A worried viewpoint about uninformative priors

“Because the prior is inescapably part of the model in the Bayesian approach, 
marginal likelihoods, Bayes factors and posterior model probabilities are 
inescapably sensitive to the choice of prior.  In consequence, it is only when 
those priors that differ between alternative models are really precise and 
meaningful representations of prior knowledge that we can justify using 
Bayes factors and posterior model probabilities for model selection.  Even 
then the computation of the marginal likelihood is often difficult.”

Simon Wood, Core Statistics (2015)



Bayesian posterior
The result of a calculation of Bayes’ Theorem for a dataset and a model space is 
the distribution of the posterior.  Astronomers often plot univariate and 
bivariate projections of a multivariate posterior estimated by MCMC sampling. 

Example: Model of Sunyaev-Zel’dovich distortion to the cosmic microwave background 
spectrum (taking the dust-induced cosmic infrared background (CIB) variations into 
account) applied to 26,111 galaxy clusters from the Sloan Digital Sky Survey       (Soergel
et al. 2017)

Best fit model
Marginal posterior distributions



Bayesian analysis of ionization and metallicity in HII regions.  The top panels 
show joint and marginal posteriors of ionization and O/H abundance using 2 
emission lines.  The bottom panels show the posterior using 8 emission lines.   

Some messier posteriors

(Blanc et al. 2015)



Cooke et al. 2017

Modeling a high-redshift metal-poor 
damped Lya absorption (DLA) system



A more complicated posterior

Bull 2017



Bayesian parameter estimation
(or Summarizing the posterior distribution)

Scientists often seek a single `best’ model giving ‘best-fit’ parameters for the 
dataset and the model space, rather than a multivariate distribution of model 
probabilities.  

Three approaches are commonly used in Bayesian inference.  The choice should 
be based on the a previously specified ‘loss function’ (or ‘risk function’) that 
quantifies the scientific value of alternative models.  The principles arise from 
Bayesian decision theory, a branch of information theory.  

• The mode of the posterior distribution.  This is sometimes called the
maximum a posteriori (MAP) or the highest posterior density (HPD) 
estimate.  For uniform priors or very large datasets, the posterior mode gives 
model parameter values approaching the classical maximum likelihood 
estimators. For an informative prior, the MAP solution is a weighted average 
of the MLE of the prior and the MLE of the data.  In decision theory, the mode 
is preferred when the cost of a wrong answer is high (posterior loss is binary).  

• The median of the posterior is preferred when the cost of a wrong answer is 
low (posterior loss scales as the linear ‘distance’ between models)



• 3. The mean of the posterior distribution.  This a weighted mean of 
the likelihood and the prior:

This is simply the expectation of the posterior distribution. The mean is 
perferred for intermediate cost functions (posterior loss scales as the 
squared distance between models).  

J. O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd ed 1985
C. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to 

Computational Implementation, 2nd ed 2007



Unfortunately, astronomical research does not 
usually have a clear loss function, so astronomers 

are subjectively choosing to report medians, means 
and modes.

Essentially, the research community must choose a 
consistent summary statistic, much as it chooses a 
consistent significance level (3-sigma) for reporting 

results of hypothesis tests. 

Some experts have suggest the posterior median   
for general use.   Other experts suggest avoiding 
summarizing the posterior and use/discuss the 

entire distribution.



Bayesian credible intervals

The Bayesian credible interval of parameter values (or credible region for p-

dimensional models) around the MAP value can be estimated from the 

analytical or computed posterior distribution.   This plays the role of the 

confidence interval in classical statistical inference.     The credible interval can 

be found by solving for lower and upper functions such that 

P(L(X) ≤ q ≤ U(X) | X) = 1-a

where a=0.05, 0.01, etc.  For simple cases (e.g. Gaussian mean with a 

conjugate prior), the credible interval can be computed analytically.  In 

realistic cases, it is computed numerically by computing values of the 

posterior distribution around the best fit value.  



An important class of hypothesis tests is model selection, the 
comparison of two alternative models for a given dataset.  When 
applied to nested models, this problem is important for deciding 
how many parameters is needed to adequately fit the data in a 
parsimonious fashion.  

Bayesian model selection is based on the  Bayes factor, or ratio of 
posteriors, given by 

The ratio of the probabilities of the two models, or odds ratio, is 
the product of the ratio of likelihoods and the Bayes factor:

Bayesian model selection



Note that the Bayesian odds ratio is equal to the classical likelihood 

ratio test (LRT) when the priors for the two models are equal.  This is 

often the case when the priors are uninformative (i.e. there is little 

prior knowledge about the model parameters).  

History: The LRT was established by theorem by  Neyman & Pearson (1933),  and Wilks

(1938) showed it asymptotically follows a chi-squared distribution.   

Model selection is an example of Bayesian hypothesis testing and has a 

number of advantages over classical hypothesis testing: 

• The Bayes factor automatically accounts for the number of parameters, favoring 

the more complicated model only if the ratio of the likelihoods is sufficiently 

high.   In classical MLE, the penalty for model complexity is debated, and does 

not arise naturally from the mathematics.  

• Both classical and Bayesian analysis often use the Bayesian Information 

Criterion (BIC), which is an approximation to the Bayes factor.

• Bayes factors allow comparison of nonnested models, and Bayesian model 

averaging can be used to account for model uncertainty.



To compute the Bayes factor, we need to calculate the marginal likelihood of 
each model for the available data 

Use of these marginal likelihoods in model selection accounts for differences 
in model complexity – models with larger ‘volumes’ of parameter space are 
not automatically favored, as they are when the LRT is used.  

However, two difficulties arise.  First, it may be hard to compute the marginal 
likelihoods for all parameters and (possibly) for a wide range of models.  
Second, the marginal likelihoods are sensitive to the prior and will change 
values for different uninformative priors unless the same improper priors are 
used in all models. 

In practice, it is often easier to compute the approximate than the full odds ratio.  



Many problems have variables or parameters of little scientific interest (e.g. 
detector background vs. astronomical signal).  Bayesian formulations allow 
direct marginalization (integration) over nuisance variables.

Consider a case of a vector of k parameters where we are interested in the ith
parameter and not the others: 

The distribution of the interesting parameter qi takes into account 
information about all of the other parameters.  This `averages out’ the 
influence of other parameters. 

Bayesian marginalization



Hierarchical Bayes’ modeling
When a Bayesian model is based on a prior distribution that itself has 
unknown parameters, the calculation must simultaneously solve for the 
model parameters and the prior hyperparameters. This is called a 
hierarchical Bayes’ model.  The acquisition of additional data simultaneously 
updates the prior distribution and constrains the model  parameters of 
interest. Examples: 

• the prior is a mixture of two distributions with the mixing fraction serving 
as a hyperparameter

• the model parameters q are generated from a process governed by a 
hyperparameter y.  Then (ignoring normalizations)

Hierarchical Bayesian models are increasingly common in the astronomical 
literature.  



Classical statistical procedures, e.g. as developed by R.A. Fisher, consider 
probabilities in the context of real or hypothetical random experiments 
where a measurement of some property or sample is made many times, 
each time with some error.  A Fisherian `frequentist’ accepts the model 
parameters which maximizes the likelihood that the data satisfy the 
model. 

Bayesians assign probabilities to many situations, e.g. subjective decisions as 
well as models based on physical measurements.  Here the randomness is 
associated not with the measurement, but with the prior beliefs regarding 
the question under study and with the models used to interpret the 
findings.

Philosophical considerations for model fitting:
Comparing classical and Bayesian approaches 



A Bayesian views probability as the plausibility of a situation or 
interpretation based on a combination of current and past information. 

A frequentist views probability as the chance of a situation or interpretation 
assuming many hypothetical experiments were made, without consideration 
of past information.   

Bayesian calculations average over model space, while frequentist
calculations averages over sample space (and optimize over model space): 

Bayesian:  Data are fixed, hypotheses vary
Frequentist:  Hypothesis is fixed, data vary

`Why isn’t every physicist a Bayesian?’  (particle physicist R. Cousins)



• For many simple situations, frequentist and Bayesian solutions are 
(nearly) identical

• Frequentist estimation is typically simpler mathematically and 
computationally.  Except for trivial problems, Bayesian estimation 
requires arduous computation for the calculation of posteriors in the 
full space of possible parameter values

• Bayesian estimation will be biased if the prior distributions are 
misspecified.  If priors are not known, MLEs may be preferred.  



• Bayesian estimation uses and are more informative when prior 
(i.e. not involving the data at hand) information about the 
model is available.  This prior information can arise from 
astrophysical theory and/or previous empirical study.  

• Bayesian model selection has advantages over frequentist
model selection.  The Bayes Factor and BIC can evaluate 
evidence in favor of (not just against) a model; be applied to 
non-nested model alternatives;  incorporates external (prior) 
information; and has a natural compensation for model 
compexity (Occam’s Razor).  However, Bayesian model 
selection does not give formal probabilities. 

• MCMC is not intrinsically related to Bayesian inference.  They 
can (and should) be used in MLE to map and characterize 
(unweighted) likelihood surfaces. 



Some disadvantages of Bayesian inference 

Bayesian inference depends on the specification of a large, and often             
ill-defined, space of possible models.  

For each possible model, Bayesian inference requires quantitative 
statement of the distribution of each models of interest prior to the 
acquisition of data.  This often gives a subjective element to the 
procedure. 

Bayesian model fitting requires specification of, and integration over, a 
universe of alternative theories.  This is often both conceptually and 
computationally difficult. Simulations may take millions of iterations and 
may not converge.  MLE is much less computationally demanding. 



Some advantages of Bayesian inference

When the scientist indeed have prior knowledge (from previous 
observations or from astrophysical theory) of the parameter 
distributions, this can readily be incorporated into the Bayesian prior. 
Bayesian inference takes full account of this information.  Such 
ancillary information and can only be included into frequentist
calculations with difficulty.  

Bayesian `marginalization' can treat the effects of nuisance variables 
(e.g systematic error, unobservable or uninteresting variables) with 
greater transparency than is often achieved with frequentist
calculations. 

Bayesian hypothesis tests treat hypotheses symmetrically, and 
Bayesian model selection can give probabilities that a model is correct.  
Classical hypothesis tests only give probabilities that a model is 
incorrect. 



Broad advice on choosing inferential approach

When little is known about a scientific problem and the questions 
addressed are straightforward, then nonparametric statistics and 
hypothesis tests may be most appropriate. (MSMA Chpts 3.5 & 5)  

When a parametric model, either heuristic or astrophysical, can be 
reasonably applied, and the experimental situation is relatively 
simple, then frequentist point estimation may be valuable (least 
squares & MLE). (MSMA Chpts 3.4 & 4)

Bayesian inference is best pursued when the situation is known to 
have external constraints (informative priors based on real knowledge 
from previous astronomical observations or from astrophysical 
theory), nuisance variables are present, hierarchical relationships 
exist between variables.  (MSMA Chpt 3.8)



Don’t hesitate to pursue multiple avenues of analysis

1. Nonparametrics – ‘Let the data speak for themselves’ (Fisher?)

1. Maximum likelihood estimation – Can the data, considered in 
isolation, be well-fit by a chosen mathematical model?  What are the 
best-fit parameter values? Is the best fit a good fit?

1. Bayesian with simple priors – What influence does prior knowledge 
about the parameters have on the best-fit solution?  

1. Hierarchical Bayes – What can we learn about more complicated 
models with latent variables, prior hyperparameters, several 
modeling stages, etc.  


