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Introduction to Bayesian computing 

While the concepts of inverse probability and Bayesian inference were 
introduced Simon Pierre Laplace two centuries ago, prior to ~1990, Bayesian 
inferential applications were largely restricted to simple problems.  

Bayesian estimation requires considerable more computation than least 
squares estimation (system of linear equations) or maximum likelihood 
estimation (optimization of a single likelihood function) because it often 
requires examination of, and sometimes integration over, the full space of 
possible models.   Modern astrophysical models can have dozens (or more) 
parameters, requiring mapping of the prior-weighted likelihood function in 
high dimensions.  

Markov chain Monte Carlo (MCMC) methods can, with varying degrees of 
efficiency, map the posterior draw sequential samples from the parameter 
space where the likelihood and prior are evaluated.  For simpler problems, 
the Laplacian approximation can be much more efficient.  Integrated Nested 
Laplacian Approximation (INLA) can be effective for many situations in 
astronomy (arxiv:1802.06280).  



Stochastic processes I

Consider measurements of the Doppler motion of a star orbited by a 
companion star or exoplanet.  A collection of Doppler velocities is a 
function of t is an example of a stochastic process: for each observed 
time t, X(t) is a random variable.  t can represent any fixed variable: e.g. 
time, space (1D, 3D, …), space-time, or a lattice parameter space. 
Astronomers encounter them as functions of fixed time-like variables 
such as:

Brightness B(RA,Dec) defines an image

Brightness B(wavelength) defines a spectrum

Brightness B(time) defines a light curve 

Spectral index or radial velocity (RA,Dec) defines other images

Density r(x,y,z,vx,vy,vz) defines a fluid flow



Stochastic processes II

Random variables can be functions of discrete or continuous time-like variables 

(e.g. pixelated images or lightcurve with accurate timestamps) 

The r.v.’s themselves can assume discrete or continuous values (e.g. photon 

arrivals or real-valued brightness). 

The observations can be sequences of i.i.d. r.v.’s, or they can exhibit dependencies.  

These dependencies can arise either from the instrument  (e.g. point spread 

function in an image) or from the underlying physical process (e.g. timescale for 

brightness variations in an accretion disk).  

A stochastic process is stationary if (X(t1), X(t2), … X(tk)) and (X(t1+d), X(t2+d), … 

X(tk+d)) have the same joint distribution for all d, t1, …, tk and k≥1.  

Note that trends in the mean cause nonstationarity.  The spatial structure of an 

image with stars and galaxies is nonstationary.  The brightness variations of a 

variable star may or may not be stationary.  



Markov chains

A stochastic process {Xn} is called a discrete time Markov chain if the 
distribution of Xn+1 given the past Xn, …, X0 depends only on the immediate 
past.  Further suppose that the probability for transitions from states i to j are 
fixed, Pij.  Formally, this process is written:

P{Xn+1 = j | Xn=i, Xn-1=in-1, … X0=i0} = P(Xn+1=j|Xn=i) = Pij
For all states i=i0 to in-1 and all times n≥0

This process is called a Markov chain. The values of Xn are called states. They 
need not be integers. 

A simple Markov chain is the random walk, Pi,i+1 = p = 1-Pi,i-1.



Markov Chains II
Pij can be written as a matrix of one-step transition conditional probabilities 
from i to j.  An initial state at time 0 needs to be specified to give 
unconditional probability distributions at time n. Note that state i may 
communicate with some states j but not with some other states k.   States 
that communicate are in the same class

Constructing Markov Chains with random numbers to generate i.i.d. 
sequences of values with a specified p.d.f. provide a suite of algorithms for 
simulating complicated probability distributions.  These are called Markov 
Chain Monte Carlo techniques.   

Sometimes a Markov process is not directly visible, but some outcome from 
the chain (e.g. a signal when it visits state i) is available.   These hidden 
Markov models are valuable for a variety of inference problems. 



Markov chain Monte Carlo techniques
• Gibbs sampler Here the multivariate problem is simplified to a sequence of 

univariate function evaluations.  Consider a 3-dimensional parameter space 
(q1, q2,q3).  Starting at an initial location q0, make a random step, simulate q11 
| (q02, q03,X), q12 | (q11, q03,X) and q13 | (q11, q12,X), and calculate the 
posterior (prior-weighted likelihood) at the new location.   Continue similar 
iterations to form a chain, and create multiple chains with different starting 
points and random steps.  For high-dimensional problems, the sequence of 
variable updates can be varied, and the space can be blocked into subspaces 
that are updated sequentially.  

• Metropolis-Hastings algorithm  This procedure increases the efficiency of the 
chain’s mapping of the posterior distribution by accepting the next step 
forward if it increases the posterior or satisfies some probability rule.  
Strategies for jumping around the parameter space avoid being trapped in 
small regions of the distribution.  An early and common procedure is to 
combine the Gibbs and Metropolis strategies 

Metropolis, Rosenbluth, Teller 1953, "Equation of State Calculations by Fast 
Computing Machines." J. Chem. Phys. MANIAC I computer



Convergence measures and stopping rules for MCMC simulations are 
very important.  Unlike the EM Algorithm for MLE, there are no 
theorems guaranteeing convergence on a maximum in the posterior 
distribution.  Millions of iterations may be needed for a single MCMC 
chain, and many chains may to needed to obtain reliable results.

Common stopping criteria include: 
• chain standard deviation becomes small
• autocorrelation within the chains becomes small 
• within-chain and between-chain variances approach equality 

(Gelman-Rubin diagnostic)

Dozens of MCMC-type methods have been developed in the past  
~20 years, and many are implemented in ~100 R/CRAN packages.  



Algorithms
MCMC algorithms in the LaplacesDemon CRAN package:

Adaptive Directional Metropolis-within-Gibbs (ADMG)
Adaptive Griddy-Gibbs (AGG)
Adaptive Hamiltonian Monte Carlo (AHMC)
Adaptive Metropolis (AM)
Adaptive Metropolis-within-Gibbs (AMWG)
Adaptive-Mixture Metropolis (AMM)
Affine-Invariant Ensemble Sampler (AIES)
Automated Factor Slice Sampler (AFSS)
Componentwise Hit-And-Run Metropolis (CHARM)
Delayed Rejection Adaptive Metropolis (DRAM)
Delayed Rejection Metropolis (DRM)
Differential Evolution Markov Chain (DEMC)
Elliptical Slice Sampler (ESS)
Gibbs Sampler (Gibbs)
Griddy-Gibbs (GG)
Hamiltonian Monte Carlo (HMC)
Hamiltonian Monte Carlo with Dual-Averaging (HMCDA)
Hit-And-Run Metropolis (HARM)
Independence Metropolis (IM)
Interchain Adaptation (INCA)
…  …  …

https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/software
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcadmg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcagg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcahmc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcam
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcamwg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcamm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcaies
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcafss
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmccharm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdram
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdrm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdemc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcess
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcgibbs
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcgg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmchmc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmchmcda
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcharm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcim


Two variants with code developed by astrostatisticians have acquired sudden 

popularity in astronomy:

• MultiNest This method was designed for complex posterior 

distributions with many modes (peaks) or degeneracies in high 

dimensions by Feroz & Hobson (Mon Not R Astro Soc 2008-09).  A 

clustered nested sampling procedure reduces the computations for 

calculating the Bayesian evidence and posteriors.  Written in Fortran 

90, it has wrappers for C, C++, R, Python and Matlab. 

• Affine-Invariant Ensemble Sampler This method was designed for 

badly scaled parameter spaces and skewed posterior distributions by 

Goodman & Weare (Comm Appl Math Comp Sci 2010).  Here >2K
chains are simultaneous run, each with k starting points. For each 

iteration, the walkers are assigned new positions based on a scaled 

distance to another randomly-selected chain.   Foreman-Mackey, Hogg, 

Lang, Goodman (Pub Astro Soc Pacific 2013) introduced a public-

domain parallelized Python implementation called emcee with 

enthusiastic usage by astronomers.  



https://chi-feng.github.io/mcmc-demo/app.html

Interactive visualization of several
MCMC algorithms

Descriptions of dozens of
MCMC algorithms

https://web.archive.org/web/20150531112558/http://www.baye
sian-inference.com:80/mcmc

https://chi-feng.github.io/mcmc-demo/app.html
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmc


Characteristics of MCMC algorithms

Chain properties:  Non-Markovian (e.g. adaptive, new values not just based 
on last value), recurrent (retuens to a chosen state), periodic (cyclical);y 
recurrent, irreducible (all states accessible). A Markov chain with a stationary, 
aperiodic, irreducible distribution is called ergodic with advantageous 
properties (central limit theorem, convergence). 

Proposal generation: multivariate proposal with all parameters, or proposal 
for individual parameters (slower)

Acceptance rate: ratio of accepted proposals to total iterations

Blockwise sampling: Model parameters are divided into groups of correlated 
variables that are sampled separately.   Allows higher acceptance rates, and 
tuning algorithms for different blocks.  However convergence may be 
inhibited by inter-block correlation.  
Highest posterior density intervals



Metropolis-Hastings algorithm

Consider a function y of a time-like series x(t).  We want to construct a 
sequence of y values that sample a target distribution.  We start with a 
‘proposal’ distribution q that is simpler, and wider,  than the (often 
unknown) target distribution.  At each iteration t of the chain, perform two 
operations:

Sample                              with probability 

If accepted, assign y to be x(t+1).  If reject, do nothing and try again. 

If q(y|x)=p(y), then the samples are independent
If q(y|x_ = q(y), we have the independence sampler
If q(y|x) = q(|y-x|), the we have a Metropolis random-walk 



Convergence measures and stopping rules for MCMC simulations are 
very important.  Unlike the EM Algorithm, there are no theorems 
guaranteeing convergence on a maximum in the posterior 
distribution.  Millions of iterations may be needed for a single MCMC 
chain, and many chains may to needed to obtain reliable results.

Common stopping criteria include: 
• chain standard deviation becomes small
• autocorrelation within the chains becomes small 
• within-chain and between-chain variances approach equality 

(Gelman-Rubin diagnostic)

Dozens of MCMC-type methods have been developed in the past  
~20 years, and many are implemented in ~100 R/CRAN packages.  
Two variants developed by astrostatisticians have acquired sudden 
popularity in astronomy:



Stopping rules and convergence diagnostics

There is no theorem to establish
when a Markov chain has converged.  

All convergence diagnostics and stopping rules
are suggestive only.  

A simple measure of convergence is when the MCMC reaches a user-
specified scatter level.  However, due to the autocorrelation, the 
number of iterations N overestimates the effective sample size.  There 
are various suggested corrections to the standard deviation involving 
the correlation coefficient or ACF: 

Geyer 1992



Gelman-Rubin diagnostic
Names:  Potential scale reduction factor, G-R diagnostic, G-R shrink factor, R-hat
Concept: Convergence is reasonably achieved when chains have ‘forgotten’ 
starting values and recent outputs of different chains are indistinguishable.   The 
variance of the chain ensemble is the sum of within-chain and between-chain 
variances for n iterations/chain. If the chains have not converged, W (mean of the 
variances within each chain) will be too small and B too large.  The initial values 
for the chains must be overdispersed compared to the final posterior distribution 
(including possible multiple modes).  

R diagnostic: Convergence is reasonable achieved when  1.0 < R ≤ 1.1 where

Gelman, A. & Rubin, D.B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7, p. 457–511

Brooks, S.P. & Gelman, A. (1998) General methods for monitoring convergence of interactive  
simulations, J. Computational & Graphical Statistics, 7 434-455

chain ensemble variance:



Convergence diagnostics graphics
PDF estimate plot:   Univariate or bivariate kernel density estimator plots of 

posterior from MCMC chains.  Note assumptions underlying bandwidth 

selection.  Histograms for discrete valued posteriors.

Trace plots: Time series-like plot of values for each variable in a chain

Autocorrelation function plot: Plot of ACF for each variable in each chain; 

high autocorrelation shows slow mixing and slow convergence. 

Cross-correlatkon plot:  Tile plot of correlations between parameters

ROC curve and separation plot: For problems with binary response variable

Caterpillar plot: For high-dimensional problems, stacked boxplot showing 

HPD & quantiles for each variable

Cumulative quantile plot: Shows evolution of 50%, 99%, …  quantiles for n 

iterations

Gelman-Rubin-Brooks plot: G-R diagnostic vs. n iterations.  Important to see 

recent fluctuations, rather than just test for R~1.0.  

Geweke-Brooks plot: Shows Z-score (measuring similarity of beginning & end 

of a Markov chain) as increasing fractions of the early chain are omitted.



MCMC convergence in R
Diagnostics:

Gelman and Rubin
Geweke
Heidelberger and Welch
Raftery and Lewis 
Brooks and Gelman multivariate shrink factors

CRAN packages:
coda
LaplacesDemon
ggmcmc
boa

Many astronomers are not conducting sufficient tests 
to insure MCMC convergence



Astronomical example of Bayesian computation:
Supernova Type Ia cosmology 

See R script running Stan code with Hamiltonian MCMC in files:
H-dS-I_SNIa.pdf
H-dS-I_SNIa.R

excerpted from 
Bayesian Models for Astrophysical Data using R, Python, JAGS and Stan
by Joseph Hilbe, Rafael de Souza & Emille Ishida (2017)

https://www.cambridge.org/core/books/bayesian-models-for-astrophysical-data/A521B3BB3A2E1621EE1B907E87207218

