Bayesian Models for Astrophysical
Data

Using R, JAGS, Python, and Stan

JOSEPH M. HILBE

Arizona State University and Jet Propulsion Laboratory, California Institute of Technology

RAFAEL S. DE SOUZA

E6tvos Lorand University, Budapest

EMILLE E. 0. ISHIDA

Université Clermont-Auvergne (Université Blaise Pascal), France

5% CAMBRIDGE

=5 UNIVERSITY PRESS




10.11 Gaussian Model, ODEs, and Type la Supernova Cosmology

Type la supernovae (SNe Ia) are extremely bright transient events which can be used as
standardizable candles for distance measurements in cosmological scales. In the late 1990s
they provided the first evidence for the current accelerated expansion of the Universe (Perl-
mutter et al., 1999; Riess et al., 1998) and consequently the existence of dark energy. Since
then they have been central to every large-scale astronomical survey aiming to shed light
on the dark-energy mystery.

In the last few years, a considerable effort has been applied by the astronomical commu-
nity in an attempt to popularize Bayesian methods for cosmological parameter inference,
especially when dealing with type Ia supernovae data (e.g. Andreon, 2011; Ma et al., 2016;
Mandel et al., 2011; Rubin et al., 2015; Shariff et al., 2015). Thus, we will not refrain from

20 https://groups.google.com/forum/#!topic/stan-users/hn4W_p8j3fs
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tackling this problem and showing how Stan can be a powerful tool to deal with such
complex model.

At maximum brightness the observed magnitude of an SN Ia can be connected to its
distance modulus (. through the expression

Mobs = 1 + M — ax1 + B, (10.21)

where mps is the observed magnitude, M is the magnitude, and x; and c are the stretch and
color corrections derived from the SALT?2 standardization (Guy et al., 2007), respectively.
To take into account the effect of the host stellar mass M, on M and B, we use the correction
proposed by Conley et al. (2011):

M if M, < 10"M¢
M= (10.22)
M + AM  otherwise
Considering a flat Universe, € = 0, containing dark energy and dark matter, the
cosmological connection can be expressed as
dr
=51 — ), 10.23
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Hy Jo E(2)
E@) = V(1 + 25 + (1 — Qu)(1 + 230+, (10.25)

where dy is the luminosity distance, c the speed of light, Hy the Hubble constant, €2,, the
dark-energy density, and w the dark-energy equation of state parameter.

In what follows we will begin with a simplified version of this problem and, subse-
quently, guide the reader through implementations of further complexity.

10.11.1 Data

We used data provided by Betoule et al. (2014), known as the joint light-curve analysis
(JLA) sample.?’ This is a compilation of data from different surveys which contains 740
high quality spectroscopically confirmed SNe Ia up to redshift z ~ 1.0.

10.11.2 The Statistical Model Formulation

Our statistical model will thus have one response variable (the observer magnitude, mops)
and four explanatory variables (the redshift z, the stretch x1, the color ¢, and the host galaxy
mass Mhpgst).

27 The complete data set is available at http://supernovae.in2p3.fr/sdss_snlsz_jla/ReadMe.html
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The complete statistical model can be expressed as
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where dy is given by Equation 10.24 and M by Equation 10.22. We use conservative priors
over the model parameters. These are not completely non-informative but they do allow
a large range of values to be searched without putting a significant probability on non-
physical values.

10.11.3 Running the Model in R using Stan

After carefully designing the model we must face the extra challenge posed by the integral
in the luminosity—distance definition. Fortunately, Stan has a built-in ordinary differen-
tial equation (ODE) solver which provides a user-friendly solution to this problem (the
book Andreon and Weaver, 2015, Section 8.12, shows how this can be accomplished using
JAGS). However, it is currently not possible to access this feature using pystan,”® so we
take this opportunity to show how Stan can also be handled from R using the package
rstan.

Stan’s ODE solver is explained in detail in the manual Team Stan (2016, Section 44).
We advise the reader to go through that section before using it in your research. Here we
would merely like to call attention for a couple of important points.

e The ODE takes as input a function which returns the derivatives at a given time, or,
as in our case, a given redshift. This function must have, as input, time (or redshift),
system state (the solution at t = 0), parameters (input a list if you have more than one
parameter), real data, and integer data, in that order. In cases where your problem does
not require integer or real data, you must still input an empty list (see Code 10.26 below).

e You must define a zero point for time (redshift, zo = 0) and the state of the system at
that point (in our case, E0 = 0). These must be given as input data in the dictionary to be
passed to Stan. We strongly advise the reader to play a little with a set of simulated toy
data before jumping into a real scientific scenario, so that you can develop an intuition
about the behavior of the function and about the initial parameters of your model.

28 This might not be a problem if you are using a pystan version higher than 2.9.0.
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Our goal with this example is to provide a clean environment where the ODE solver role
is highlighted. A more complex model is presented subsequently.

Code 10.26 Bayesian normal model for cosmological parameter inference from type Ia
supernova data in R using Stan.

library (rstan)

# Preparation

# Set initial conditions

20 = @ # initial redshift

E0O = 0 # integral (1/E) at z0

# physical constants

c = 3eb # speed of light
HO = 70 # Hubble constant
# Data

# Read data
data <- read.csv("~“/data/Section_10pll/jla_lcparams.txt",6 header=T)

# Remove repeated redshift
data2 <- data[!duplicated(dataSzcmb), ]

# Prepare data for Stan

nobs <- nrow(data?2) # number of SNe
index <- order (data2$zcmb) # sort according to redshift
ObsMag <- data2s$mb[index] # apparent magnitude
redshift <- datal2$zcmb[index] # redshift
color <- data2$color[index] # color
x1 <- data2$xl[index] # stretch

#

hmass <- data2$m3rdvar[index] host mass

stan_data <- list (nobs = nobs,
EQ0 = array(E0,dim=1),

z0 = z0,
& = 8y
HO = HO,

obs_mag = ObsMag,
redshift = redshift,
xl. = xl,
color = color,
hmass = hmass)
# Fit
stan_model="
functions ({
VERS
*+ ODE for the inverse Hubble parameter.
* System State E is 1 dimensional.
* The system has 2 parameters theta = (om, w)

* where

*

om: dark matter energy density
dark energy equation of state parameter

* ok %
=
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anniin

x The system redshift derivative is

* d.E[1] / d.z =
x 1.0/sgrt(om % pow(l+z,3) + (l-om) * (1+z)"(3 » (1l+w)))

x» @param z redshift at which derivatives are evaluated.

» @param E system state at which derivatives are evaluated.
* @param params parameters for system.

* @param x_r real constants for system (empty).

% @param x_1i integer constants for system (empty).

*/
real[] Ez(real z,
reall[] H,
real[] params,
real[] x_r,
int[] x_1i) {
real dEdz[1l];
dedz[1] = 1.0/sgrt(params[1l]* (1+z)"3
+(l-params[1])*(1+z) " (3* (l+params[2])));
return dEdz;
}
}
data {
int<lower=1> nobs; // number of data points
real EO[1]; // integral(l/H) at z=0
real z0; // initial redshift, O
real c; // speed of light
real HO; // Hubble parameter
vector [nobs] obs_mag; // observed magnitude at B max
real x1[nobs]; // stretch
real color[nobs]; /1 colox
real redshift[nobs]; // redshift
real hmass[nobs]; // host mass

}

transformed data {
real x_r[0]; // required by ODE (empty)
dnb = 410];

}
parameters{
real<lower=0, upper=1> om; // dark matter energy density
real alpha; // stretch coefficient
real beta; // color coefficient
real Mint; // intrinsic magnitude
real deltaM; // shift due to host galaxy mass
real<lower=0> sigint; // magnitude dispersion
real<lower=-2, upper=0> w; // dark matter equation of state
parameter
}
transformed parameters(
real DC[nobs,1]; // co-moving distance
real pars[2]; // ODE input = (om, w)
vector [nobs] mag; // apparent magnitude
real dl[nobs]; // luminosity distance

real DH; // Hubble distance = c/HO
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pars[l] = om;
pars[2] = w;
DH = {e/HUO});

# Integral of 1/E(z)
DC = integrate_ode_rk45(Ez, E0, z0, redshift, pars, x_r, x_i);

for (i in 1l:nobs)
dl[i] = DH

{
* (1 + redshift[i]) = DC[i, 11;
if (hmass([i] <

10) mag[i] = 25 + 5 % logl0(dl[i])
+ Mint - alpha * x1[i] + beta
* color[il;
else
mag[i] = 25 + 5 * loglO(dl([i])
+ Mint + deltaM - alpha *» x1[i] + beta % color[i];

}
}
model {
# Priors and likelihood
sigint ~ gamma(0.001, 0.001);
Mint ~ normal(-20, 5.);
beta ~ normal (0, 10);
alpha ~ normal (0, 1);
deltaM ~ normal(0, 1);
obs_mag ~ normal (mag, sigint);
}
# Run MCMC

fit <- stan(model_code = stan_model,
data = stan_data,

seed = 42,
chains = 3,
iter = 15000,
cores = 3,

warmup = 7500

# Output

# Summary on screen
print (fit,pars=c("om", "Mint","alpha", "beta","deltaM", "sigint"),
intervals=c(0.025, 0.975), digits=3)

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
om 0.232 0.001 0.091 0.036 0.172 0.243 0.300 0.380 7423 1
Mint -19.059 0.000 0.017 -19.094 -19.071 -19.059 -19.048 19.027 8483 1
w -0.845 0.002 0.180 -1.237 -0.960 -0.829 -0.708 -0.556 7457 1
alpha 0119 0.000 0.006 0.106 0.114 0.119 0 ..123 0.131 16443 1
beta 2.432 0.001 0.071 24292 2.384 2.432 2.480 2.572 16062 1
deltaM -0.031 0.000 0.013 -0.055 -0.039 -0.031 -0.022 -0.006 11938 &
sigint 0.159 0.000 0.004 0.151 0.156 0.159 0.162 0.168 16456 1

The results are consistent with those reported by Ma et al. (2016, Section 4), who applied
Bayesian graphs to the same data. A visual representation of posteriors over ,, and w is
shown in Figure 10.23, left-hand panel.
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TOIEEE Joint posterior distributions over the dark-matter energy density €2,, and equation of state parameter w obtained
from a Bayesian Gaussian model applied to the JLA sample. Left: the results without taking into account errors in
measurements. Right: the results taking into account measurement errors in color, stretch, and observed
magnitude.
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