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Abstract— The softwarization of vehicles and the evolution 

towards autonomous driving is imposing increasing flexibility 
and reliability demands to future in-vehicle networks (IVN). 
Research on 6G advocates for a seamless integration of vehicles 
with cellular networks for a deep edge-edge-cloud continuum 
that facilitates the opportunistic offloading of in-vehicle 
processing to the edge/cloud. Realizing this vision requires a 
seamless connection of IVNs with the cellular networks, which 
can be facilitated through the gradual adoption of in-vehicle 
wireless subnetworks. These subnetworks can support 
increasing dependable and deterministic service levels using 
predictive schedulers that can anticipate in-vehicle traffic flows 
and patterns to schedule communication resources and 
computing workloads. This requires an accurate 
characterization of IVN traffic, and this study progresses the 
state-of-the-art with a first characterization of IVN traffic in 
autonomous vehicles. The study characterizes the data captured 
by a full suite of sensors as well as the processed data for 
supporting automated driving. We also derive spatial and time 
correlations between the IVN data that can serve to anticipate 
network demands and predict traffic flows for the support of 
deterministic IVN services. 

Keywords—In-vehicle network, IVN, traffic characterization, 
subnetworks, 6G, CARLA, Autoware, Zenoh, connected and 
automated mobility, autonomous driving.  

I. INTRODUCTION 
The European Smart Networks and Services (SNS) vision 

delves into the idea that future 6G networks should go beyond 
pure communication systems and sustainably integrate 
computing and data services within a network of networks 
ecosystem. This ecosystem includes subnetworks located at 
the edge of the 6G ‘network of networks’. Subnetworks are 
short-range and low power radio cells providing localized and 
cost-effective solutions to services with (potentially) extreme 
requirements and distributed processing capabilities for 
autonomous local data management. Subnetworks benefit 
from a seamless integration with a broader cellular network 
for a deep edge-edge-cloud continuum that facilitates 
seamless connection and the opportunistic offloading of in-
vehicle processing to the edge/cloud. The edge/cloud can then 
act as a virtual Electronic Control Unit (ECU) that elastically 
extends the computing and processing capabilities of the 
vehicle using the 6G-based edge and cloud resources. 

The Horizon Europe 6G-SHINE (6G SHort range extreme 
communication IN Entities) [1] and 6G flagship Hexa-X-II [2] 
projects envision the deployment of subnetworks in vehicles. 
This requires 6G-native in-vehicle wireless subnetworks to 
provide dependable service levels similar to those reached 
with cables. This must be done considering the evolution 

towards zone-based Electrical/Electronic (E/E) architectures 
[3] and software-defined vehicles that increase the flexibility 
to dynamically schedule computing workloads and 
communication resources. In-Vehicle Networks (IVN) also 
need to efficiently support multiple traffic flows with varying 
(and increasingly demanding) requirements as we progress 
towards Automated Driving (AD), and this is still a significant 
challenge for time-safety critical systems that require 
deterministic service levels. Sustaining such levels can be 
facilitated with solutions capable of predicting traffic flows 
and patterns, and anticipate scheduling IVN decisions [4]. 
This possibility strongly depends on an accurate 
characterization of IVN traffic, and the open availability of in-
vehicle datasets that could be used to characterize the IVN 
traffic is very rare for confidentiality reasons, in particular for 
autonomous vehicles.  

An in-vehicle traffic dataset is released in [5], but the 
dataset was logged in traditional Controller Area Network 
(CAN) buses, while IVNs are transitioning towards 
alternatives technologies like Automotive Ethernet that can 
support higher bandwidth and reliability levels as demanded 
by AD sensors and functionalities. Recent datasets like 
Google-Landmarks datasets, A2D2 (Audi) or BDD100k 
(Berkeley) openly release data captured by sensors mounted 
in a vehicle, but the number of sensors is generally limited, 
and the dataset does not capture IVN traffic. The IEEE 
802.1DG standard (version D2.4) [6] defines a Time-Sensitive 
Networking (TSN) profile for automotive in-vehicle ethernet 
communications. The standard includes an informative annex 
that provides a qualitative (and not quantitative) description of 
the types of automotive IVN traffic (cyclic, time-triggered, 
best effort), the dominant flows in terms of number of 
messages (monitor or control) or bandwidth consumption 
(high resolution sensors like cameras, lidars, and radars), and 
the flows with the highest latency constraints (acoustic sensors 
@ 50KHz). The study in [7] evaluates mixed traffic flows over 
Automotive Ethernet using the software (SW) tool RTaW-
Pegase and Renault’s Ethernet prototype network. However, 
the evaluation focuses on 4 traffic classes (audio streams, 
video streams, command and control, and best-effort) 
characteristic of current IVN (i.e., not supporting AD) and 
different average bandwidth and deadline requirements. For 
example, the study considers audio streams with 128- and 
256-byte frames and a 10ms deadline, 43 Kbytes video 
streams at 60fps and 30fps with 10ms and 30ms deadlines, 
respectively, and command and control streams with 256- to 
1024- byte frames and 10 ms deadline. In [8], the authors 
analyze the possibility for TSN to support IVN traffic in 
autonomous vehicles. To this aim, the authors implement a 
TSN simulator and model an IVN with sensor data generated 
by 5 radars, 4 around view monitoring cameras, 3 mirrorless 
cameras, 1 forward camera, and 1 lidar. However, the focus is 
on testing the possibility to satisfy TSN transmission 
requirements, and the sensors are configured to continuously 
generate data with the same characteristics, which limits the 
capacity to capture the dynamics and patterns that IVN traffic 
might exhibit in different driving environments.  
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for his support in the development of the CAM platform. 

979-8-3503-6270-1/24/$31.00 ©2024 IEEE 211



This paper progresses the state-of-the-art by presenting a 
first analysis of IVN traffic generated by a full suite of AD 
sensors. To this aim, we introduce a Connected and 
Automated Mobility (CAM) platform that seamlessly 
combines CARLA’s realistic 3D modelling of the driving 
environment and vehicle sensing capabilities, with the 
Autoware AD software stack to control the vehicles’ driving
based on the perceived data. CARLA and Autoware are 
integrated with a Zenoh-based bridge that has been extended 
by the authors to log, process, and characterize the data 
generated by the full suite of Level 3 (L3) AD sensors in 
CARLA as well as the processed data generated by 
Autoware’s AD stack inside the vehicle1. The logged data is 
first characterized, and we then identify spatial and temporal 
correlations between sensors logged and processed data. The 
obtained results pave the way for predicting IVN traffic flows 
that can be exploited to design future IVN, including
predictive IVN wireless subnetworks for deterministic service 
provisioning.

II. CAM PLATFORM

Realistic IVN traffic traces are collected using an 
advanced Connected and Automated Mobility (CAM) 
platform (Fig. 1) that combines high-fidelity 3D 
representations of the driving environment with realistic 
sensing and autonomous driving capabilities. The platform 
integrates the open-source CARLA simulation platform [9]
and Autoware’s [10] AD software stack using a Robot 
Operating System (ROS) bridge based on Zenoh [11]. 

Fig. 1. CAM platform.

CARLA is a 3D simulator built on Unreal Engine 4 (UE4) 
for AD research that offers a realistic representation and 
simulation of the driving environment including different 
types of vehicles (cars, trucks, and motorcycles), pedestrians, 
buildings, light and weather conditions. CARLA also 
implements a complete suite of AD sensors (e.g., cameras, 
radars, lidars, Inertial Measurement Units – IMUs – and 
Global Navigation Satellite System – GNSS – receivers) that 
can be flexibly configured and positioned by the user on each 
simulated vehicle. Autoware is an open-source fully 
functional AD software stack that implements all the 
perception, localization, planning, and control functionalities 
required for AD. Autoware is built on ROS and can be 
deployed on a broad range of real-world vehicles and 
applications. 

The platform integrates CARLA and Autoware with an 
extended version of the Zenoh bridge. Zenoh is a scalable low-
latency high-throughput routing protocol that allows a 

1 In this paper, we focus on Autoware’s raw and processed AD sensor data. 
However, the implemented CAM platform is capable to log all ROS 

bidirectional connection of multiple Autoware instances (one 
per Connected and Automated Vehicle - CAV) with CARLA. 
The bridge retrieves from CARLA the raw data captured by 
the ego-vehicle sensors (e.g., uncompressed camera images, 
lidar point-clouds, raw GNSS or IMU data) and forwards it
to the sensing module of the Autoware instance running on 
the ego-vehicle. Autoware uses this information to run the 
AD modules (e.g., perception and planning) and control the 
vehicle. The control commands generated by Autoware (e.g., 
steering angle, braking, and acceleration) are sent back 
through the Zenoh bridge to CARLA where the ego-vehicle’s 
position and dynamics are updated.

The authors have expanded the integrated CARLA-
Zenoh-Autoware platform to enhance its sensing capabilities, 
including the type of supported sensors and the number of 
sensors that can be deployed per vehicle. This is important to 
realistically model the data traffic generated within a CAV and 
be able to accurately characterize the IVN traffic. Our current 
implementation reproduces the sensor deployment of a 
Mercedes-Benz S-class car implementing the L3 AD
Mercedes Drive Pilot software [12]. The sensor deployment 
(Fig. 2) includes 1 Lidar, 5 Radars, 5 high-resolution 
(2560x1440) RGB cameras, 1 IMU, and 1 GNSS receiver. In
Fig. 2, R1-R3 and C1-C4 are front-facing sensors, while R4, 
R5 and C5 face backwards. Table I reports the main sensor 
specifications in our current implementation. The deployment 
of this sensor setup has demanding processing and hardware
requirements, in particular regarding the AI-based object 
detection algorithms running in Autoware’s perception 
module. Our CAM simulation platform currently runs on a 
high-end desktop computer (i9-9980X 18 cores 4,4Ghz, 64 Gb 
RAM, SSD 960 Gb) with 2 NVIDIA Quadro P4000 GPUs, 
but it was necessary to implement new SW functionalities in 
Autoware to distribute and balance the GPUs workload.

Fig. 2. L3 CAV sensor deployment.

TABLE I
MAIN SENSOR SPECIFICATIONS.

Sensor Type Sampling 
Rate [Hz] Field of View (FoV) Range 

[m]

Lidar 10 Horizontal: 360°
Vertical: [-30°, 10°] 100

Radar 20 Horizontal: 30°
Vertical: ±30° 100

Camera 20 90° -
GNSS 20 - -
IMU 20 - -

messages in Autoware, including messages related to the perception, 
planning, control, and driving modules.
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III. IVN TRAFFIC CHARACTERIZATION

IVN traffic generated by AD sensors has been 
characterized in an urban driving environment with two lanes 
(one per driving direction) and different vehicular densities. 
IVN AD traffic traces are collected from a single ego-vehicle 
that runs Autoware while the other vehicles are controlled by 
simplified car-following models implemented in the CARLA 
traffic manager. 

Fig. 3 plots the average data rate of raw and processed 
sensors data considering different sensor types mounted on the 
ego-vehicle and a medium density scenario. The figure shows 
the demanding data rate requirements that characterize the 
transmission of raw lidar (200 kB/s), radar (800 kB/s), and 
camera (20 MB/s) data. Fig. 3 also shows that there is a 
significant (larger than 97.7%) data rate reduction for the lidar, 
camera, and radar sensors when moving from raw to 
processed sensors data. This is the case because the raw data 
consists of large point clouds (lidar and radar) and high-
resolution images (cameras) that are transmitted without any 
prior compression, whereas the processed data consists of a 
list of detected objects for the lidar and radar, and Regions of 
Interest (RoI) for the cameras. Detected objects and RoIs 
exhibit a significantly smaller payload and, thus, average data 
rate as they are compactly represented by 2D points or 
bounding boxes with specific distance, dimension, and 
classification attributes. Whether the processing of the raw 
data is performed within the individual sensors in a distributed 
fashion or in a centralized high-performance CPU in the E/E 
in-vehicle architectures has strong implications on the 
dimensioning and planning of IVNs, since the use of 
compression techniques to reduce bandwidth requirements 
might be challenging for time-sensitive safety-critical 
functions.

Fig. 3 shows a small data rate reduction (-40%) from raw 
to processed data for the IMU and an increase (+53.5%) for 
GNSS sensors. IMU raw data undergoes a correction and 
denoising process that does not alter the raw data input format 
(like in the lidar, radar, and camera case), but only removes 
spurious information. In Autoware, raw GNSS data is 
processed to extract multiple GNSS-based information, e.g., 
the vehicle position and orientation, and to determine the 
measurement uncertainty. This additional information 
augments the processed data and the corresponding average 
data rate. 

Fig. 3. Average data rate of raw and processed sensor data.

The vehicular density can have a significant impact on the 
number of detected objects and, hence, the data exchanged on 
the IVN, that should be considered when dimensioning and 

designing IVN scheduling techniques. This is visible in Fig. 4, 
where the message size measured at the output of the 
Autoware’s perception module is reported for low and 
medium densities. The message generated by the perception 
module contains the final list of detected objects, and this 
information is generated following the object detection, the
sensor fusion, and the trajectory estimation algorithms. The 
characteristics of the traffic generated by the perception 
module is particularly relevant as it feeds the planning module
(hence, it is extremely time-sensitive) and influences the ego-
vehicle’s planned trajectory.

Fig. 4. Size of the messages generated by Autoware’s perception 
module. 

        (a) Cameras           (b) Radars            (c) Cameras – Radars

Fig. 5. Cross-correlation between the sensors processed data size.

Next, Fig. 5 depicts the Spearman cross-correlation 
coefficient measured between the processed data size of 
different AD sensors. The processed data size is a particularly 
relevant indicator, as it reflects the number of objects detected 
by each sensor. The Spearman correlation coefficient is a 
nonparametric rank correlation indicator that measures the 
monotonicity degree in the relationship between two 
variables. A value of the Spearman correlation equal to +1 (-
1) means that each variable is a perfectly positive (negative) 
monotone function of the other. On the other hand, a 
Spearman correlation coefficient equal to zero means that 
there is no correlation between the examined variables. Fig. 
5(a) reports the cross-correlation between the ego-vehicle 
cameras C1-C5 (deployment in Fig. 2). The front-facing 
cameras (C1-C4) exhibit high Spearman cross-correlation 
coefficient values (or cross-correlation coefficient) because 
they have overlapping Field of Views (FoV). A cross-
correlation coefficient close to 1 means that when one front-
facing camera (e.g., C1) detects an increasing number of 
objects, and its processed data size augments, the size of the 
processed data of the other front-facing cameras (e.g., C2-C4) 
also increases since they detect a similar number of objects.
This trend can be exploited to anticipate the characteristics of 
the sensors’ raw and/or processed data, and schedule 
transmissions within the IVN accordingly. Predictive 
scheduling strategies are more challenging when sensors 
exhibit low cross-correlation coefficients. This is, for 
example, the case of the rear-facing camera (C5) and the front-
facing cameras (C1-C4) in Fig. 5(a), due to their opposite
FoVs. Similarly, Fig. 5(b) shows that high cross-correlation 
values are observed only between radar sensors facing the 
same direction (R1-R3), i.e., with overlapping FoVs. Fig. 5(c)
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analyzes the cross-correlation measured between the 
processed data size of different sensor types, in particular
cameras and radars. The figure shows that high cross-
correlation values also characterize different sensor types
facing the same direction, e.g., front-facing cameras (C1-C4) 
and radars (R1-R3). On the other hand, sensors facing 
opposite directions (e.g., front-facing radars and rear-facing 
camera C5), exhibit considerably lower cross-correlation 
values. These observations reinforce the potential for an IVN 
scheduler design that exploits IVN traffic characteristics, 
trends, and correlations among in-vehicle nodes (in this case, 
AD sensors).

Fig. 6 provides another interesting perspective on the 
potential information that IVN traffic characterization can 
provide to design future IVNs. The figure analyses the 
temporal evolution of the cross-correlation coefficient 
measured between the processed data size of the front-center 
radar (R1) and the other radar sensors (R2-R5). The Spearman 
cross-correlation coefficient reported in Fig. 6 is computed 
over a sliding window of 5 seconds and a selected time period 
(from = 20 s to = 40 s) that captures the moment when a 
vehicle driving in the opposite direction approaches and then 
passes by the ego-vehicle. From = 20 s to = 30 s, Fig. 6 
shows an increasing cross-correlation between the front
bumper radars (i.e., between R1 and R2, and between R1 and 
R3), as the vehicle driving in the opposite direction 
approaches the ego-vehicle and is detected by its front-facing 
radars. This leads to a simultaneous increase in the processed 
data size of R1, R2, and R3. The opposite trend is observed 
between the front-center radar (R1) and the rear-facing radars 
(R4-R5), as the latter sensors are not able to detect the 
approaching vehicle. The cross-correlation between sensors 
strongly depends on their FoV and the dynamics of the driving 
environment. At = 30 s, the vehicle driving in the opposite 
direction is no longer detected by the front-right radar (R3) as 
its FoV is concentrated on the sidewalk and only partially 
covers the opposite lane, whereas it remains in the FoV of the 
front-center (R1) and front-left (R2) radars. The impact of the 
front-facing radars FoV position and orientation is visible
from = 30 s to = 35  s, when the approaching vehicle 
passes by the ego-vehicle. In this simulation segment, the 
cross-correlation coefficient measured between radars R1 and 
R3 decreases, while it remains high for R1 and R2. The results 
depicted in Fig. 6 clearly highlight existing correlation 
patterns between data generated by different AD sensors 
mounted on vehicles. Their characterization (including their 

temporal evolution) can be exploited to anticipate IVN traffic 
flows and predictively schedule IVN transmissions for 
deterministic service provisioning.

IV. CONCLUSIONS

This study has presented a first IVN traffic 
characterization for autonomous vehicles using a novel 
advanced CAM platform that allows the realistic simulation 
of L3+ sensor deployments and autonomous driving 
functionalities. The presented results offer relevant insights on
the data rate requirements that raw and processed sensor data 
exhibit, as well as on existing spatial and temporal correlation 
patterns among traffic flows (e.g., of collocated sensors). Such 
correlations can be exploited to design future predictive IVN 
(wireless) schedulers capable of supporting deterministic 
service levels. Future work will enhance the current IVN 
traffic characterization study with more diverse driving and 
context conditions, and will further explore patterns and 
correlations between messages (i.e., spatial, temporal and 
delay tolerance) related to the sensors, perception, planning,
and control AD driving modules.
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Fig. 6. Temporal evolution of the cross-correlation coefficient measured between the processed data size of different radars. 
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