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Abstract:  

Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per 
year, of which 5 to 15 per cent is exported to the deep ocean1, 2. The rate at which the sinking carbon 
is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic 
carbon storage3. It remains uncertain, however, to what extent surface ocean carbon supply meets the 
demand of water-column biota; the discrepancy between known carbon sources and sinks is as much 
as two orders of magnitude4, 5, 6, 7, 8. Here we present field measurements, respiration rate estimates 
and a steady-state model that allow us to balance carbon sources and sinks to within observational 
uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that 
prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone 
(depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form 
of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because 
zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may 
be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The 
synergy between microbes and zooplankton in the twilight zone is important to our understanding of 
the processes controlling the oceanic carbon sink. 
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The global carbon cycle is affected by biological processes in the oceans, which export 
carbon from surface waters in form of organic matter and store it at depth; a process 
called the ‘biological carbon pump’. Most of the exported organic carbon is processed 
by the water column biota, which ultimately converts it into CO2 via respiration 
(remineralization). Variations in the resulting decrease in organic flux with depth9 can, 
according to models, lead to changes in atmospheric CO2 of up to 200 ppm3, indicating 
a strong coupling between biological activity in the ocean interior and oceanic storage 
of CO2. 

 
A key constraint in the analysis of carbon fluxes in the twilight zone is that, at steady 
state, the attenuation of particulate organic carbon (POC) flux with depth should be 
balanced by community metabolism. Published estimates of POC flux attenuation with 
depth are, however, up to 2 orders of magnitude lower than corresponding estimates of 
heterotrophic metabolism4–7. This discrepancy indicates that either estimates of POC 
flux and/or community metabolism are unreliable, or that additional, unaccounted for, 
sources of organic carbon to the twilight zone exist8.  

 
We compiled a comprehensive carbon budget of the twilight zone based on an 
extensive programme of field measurements at the Porcupine Abyssal Plain site (PAP; 
Extended Data Fig. 1a) in July/August 2009.  This site is located in the transition region 
between the subtropical and subpolar gyres of the North Atlantic10. Mixed layer depth 
remained constant at ~50 m throughout the study period. This depth was subsequently 
used as the upper boundary of the twilight zone, following the need to normalize export 
measurements to dynamic upper boundaries for the twilight zone11. 
 
Organic carbon sources to the twilight zone include (1) sinking particles, (2) downward 
mixing of dissolved organic carbon (DOC), (3) lateral advection of organic matter from 
the continental shelf, (4) active transport via the diel vertical migration of zooplankton 
that feed in the mixed layer during night time and rest at depth during the day, and (5) 
chemolithoautotrophy (prokaryotic growth using dissolved inorganic carbon and 
chemical energy sources). 
 
The downward flux of sinking particles was measured using simultaneous 48-h 
deployments of free-drifting, neutrally-buoyant sediment traps12 at 50, 150, 300, 450 
and 600 m (Extended Data Table 1). Satellite chlorophyll imagery and horizontal 
velocities (obtained using a 150-kHz Vessel-Mounted Acoustic Doppler Current 
Profiler) confirmed that all of the traps were advected along the edge of an anticyclonic 
eddy for 50 km before surfacing within 3.5 km of each other. Measured POC flux at 50 
m (84±8 mg C m-2 d-1) was close to independently derived estimates using 234Th 
budgets and studies of collected marine snow particles (99±41 and 146±26 mg C m-2 d-

1, respectively)13. Flux attenuation with depth followed the Martin curve (F = 
F100(z/100)b) 9 with b = -0.70 (p<0.01, R2=0.95, n=5) and was consistent with 
observations in the Pacific Ocean (b: -0.50 to -1.38; Fig. 1a)9,14. Downward POC flux 
was extrapolated to 1000 m using b = -0.70. The total loss of POC within the twilight 
zone was 74±9 mg C m-2 d-1. 
 
DOC input to the twilight zone was estimated to be 15 (0.4-30) mg DOC m-2 d-1 based 
on the ratio between DOC concentrations and apparent oxygen utilization15, and on 
DOC gradients coupled to turbulent diffusivity measured from previous work at the 
study site16 (Methods; Extended Data Fig. 2). DOC was estimated to supply 17% of 
total export in agreement with previous estimates of 9-20% across the North Atlantic 
basin17. Organic matter input via lateral advection was assumed to be negligible based 
on analyses of back-trajectories (derived from satellite-derived near-surface velocities 
over 3 months) of the water masses arriving at the PAP site during the study period, 
which suggested that the water had not passed over the continental slope (Extended 
Data Fig. 1b). The final source of DOC, excretion at depth by active flux, was estimated 



using net samples of zooplankton biomass and allometric equations6,18, giving a supply 
of 3 mg C m-2 d-1. Defecation and mortality at depth present further sources of organic 
carbon to the twilight zone, but these were excluded from the budget due to large 
uncertainties associated with their estimation. Finally, chemolithoautotrophy has been 
suggested to be a significant source of organic matter in the deep ocean19, but without 
strong evidence that this poorly understood process could provide a major contribution 
at our study site, we chose to exclude it from our carbon budget.  
 
The remineralization of organic carbon by zooplankton and prokaryotes was estimated 
from zooplankton biomass and prokaryotic activity. It is crucial to note that in a steady 
state system, such as we assume this to be, organic carbon is lost from the system 
only by export or by remineralization. We focus entirely on community respiration as a 
measure of remineralization, a fundamental advance over previous methods to derive 
budgets (Methods). 
 
Zooplankton respiration was estimated by applying allometric relationships6 to biomass 
measurements derived from net samples collected vertically every 80 m, twice during 
both day and night, using the ARIES net-system fitted with 200-µm cod-ends 
(Extended Data Table 1, Extended Data Fig. 3). These allometric relationships are 
well-constrained6, however they are based on epipelagic zooplankton and our 
calculated respiration rates for the lower mesopelagic are therefore likely overestimates 
of the true rates20. Zooplankton resident in the twilight zone, mostly detritivorous 
copepods (Oithona, Oncaea) and carnivorous chaetognaths, had combined respiration 
rates of 15.2 and 12.7 mg C m-2 d-1 (50-1,000 m) respectively during the two 
deployment periods (Fig. 1b). Migrating zooplankton (determined as the difference 
between day and night biomasses) were excluded from these estimates because we 
assume that they ingest sufficient carbon during grazing at the surface to satisfy their 
diagnosed respiration rates at depth (Methods). The organic carbon they respire within 
the twilight zone is thus imported by diel vertical migration. 
 
Prokaryotic heterotrophic production (PHP) was determined using bioassay-isotope-
dilution techniques using 3H-leucine tracer21. Leucine incorporation rates were 
41.7±21.2 nmol Leu m-3 d-1 at 150 m and 6.6±4.1 nmol Leu m-3 d-1 at 500-750 m (Fig. 
1c), similar to previous estimates in the Northeast Atlantic Ocean (37.7 and 7.5 nmol 
Leu m-3 d-1, respectively)19. Integrated leucine incorporation based on a power-law fit 
was 14.5 µmol Leu m-2 d-1 (interquartile range: 13.2-16.1 µmol Leu m-2 d-1, p<0.001, 
R2=0.86, n=37). This fit was chosen on the assumption that bacterial activity follows the 
supply of organic carbon22, although we lack data from between 50–150 m to confirm 
this fit. The uncertainty in this interpolation possibly leads to a misestimate of integrated 
leucine incorporation. Integrated leucine incorporation was converted into respiration 
using leucine-to-carbon conversion factors (0.44±0.27 kg C mol-1 Leu) and growth 
efficiencies (interquartile range: 0.04-0.12) specific to the twilight zone derived from 
thorough literature surveys (Methods; Extended Data Fig. 4). The uncertainty in this 
calculation was estimated using bootstrap analysis with 100,000 simulations. The final 
estimate for integrated (50-1,000 m) prokaryotic respiration was 71 mg C m-2 d-1 
(interquartile range: 35-152 mg C m-2 d-1).  
 
The sum of the inputs via POC and DOC matches community respiration (68-116 vs. 
48-167 mg C m-2 d-1; Fig. 1d), with prokaryotes dominating community respiration (70-
92%; Table 1). 
 
Our study is the first to successfully reconcile the various elements of the carbon 
budget in the twilight zone of the ocean. This was possible because we (1) considered 
a dynamic upper boundary for the twilight zone (the base of the mixed layer), (2) 
excluded vertical migrators from the estimate of zooplankton respiration in the twilight 
zone, and (3) compared respiration rather than carbon demand to net organic carbon 



supply. Depth resolved estimates of supply and consumption (Extended Data Fig. 5) 
show an excess of supply in the upper twilight zone (50–150 m) and a deficit in the 
lower twilight zone (150–1,000 m). We suggest that this may be caused by a subtle 
vertical change in ecosystem structure with depth23,24 or an unaccounted for vertical 
transfer of organic carbon between the upper and lower twilight zones.  
 
The suggestion that prokaryotes dominate community respiration seems 
counterintuitive given that organic carbon supply to the twilight zone is dominated by 
sinking particles that are accessible to larger (>200 µm) zooplankton. We therefore 
hypothesise that a major role of zooplankton in the twilight zone is to mechanically 
degrade particulate material25 into slow-sinking particulate matter and dissolved 
organic material that is subsequently remineralized by microbes (prokaryotes and their 
consumers). 
 
In order to explore whether this conceptual picture is consistent with our current 
understanding of twilight zone ecology, and to provide a full quantitative picture of the 
twilight zone carbon cycle, we used a simple steady-state model of the twilight zone 
carbon cycle26. The model traces the turnover and remineralization of sinking POC via 
three pathways: colonization and solubilisation of detritus by attached microbes, 
production of free-living microbes following loss of solubilisation products during 
particle degradation, and consumption by detritivorous zooplankton (Method; Extended 
Data Fig. 6a). The model was modified to include vertical mixing of DOC and active 
transport as carbon inputs to the twilight zone and to represent POC in both sinking 
and suspended forms, the latter produced via zooplankton ‘sloppy feeding’27. Inputs of 
carbon to the twilight zone were the measured values given in Table 1. 
 
Modelled respiration rates matched field data well, with 84% of the CO2 being produced 
by microbes (prokaryotes and prokaryote consumers) and only 16% by zooplankton 
(detritivores and carnivores) (Fig. 2). The model further suggests that microzooplankton 
respiration, which had not been measured during the study, plays a small role in the 
overall budget contributing only 5 mg C m-2 d-1. Attached prokaryotes processed half of 
the POC flux with the remaining half being processed by detritivorous zooplankton, 
which released 30% of it as suspended POC, thereby confirming our hypothesis. The 
relative roles of zooplankton and prokaryotes for processing and respiring sinking POC 
are robust to changing model parameter values (Methods; Extended Data Fig. 7). 
Moreover, it is consistent with the general perception that detritivores are sloppy 
feeders that ingest <40% of processed particles, causing the bulk part of fast-sinking 
POC to break up into slow- or non-sinking POC and DOC25. This pool of suspended 
organic matter stimulates the microbial loop28 in the twilight zone and ultimately fuels 
the respiration of prokaryotes6,26. 
 
Our results highlight a synergy between zooplankton and microbes in the twilight zone 
where both play significant roles in processing the organic carbon flux and, 
subsequently, in controlling the strength of the oceanic carbon sink. Large uncertainties 
remain, however, particularly with regard to estimating prokaryotic activity. A better 
understanding of prokaryotic metabolism throughout the twilight zone combined with 
process studies focusing on the upper twilight zone are necessary to fully understand 
the biological carbon pump. 

 

Methods summary 
 
We conducted an extensive programme of field measurements at the Porcupine 
Abyssal Plain site (49°0' N, 16°5' W) from 8 Jul – 13 Aug 2009 aboard RRS Discovery. 
Sinking material was collected for 48 hours using free-drifting, neutrally-buoyant 
PELAGRA sediment traps12. Samples were screened to remove swimmers, split into 



aliquots, filtered onto precombusted GF/F filters, fumed with sulphurous acid and 
analysed for POC. DOC input was estimated from data collected near the PAP site 
during Jun/Oct 2005 (http://www.bodc.ac.uk/). The slope of the correlation between 
measured DOC and apparent oxygen utilization was compared to the theoretical slope 
(Corg/-O2 = 117/170), giving the relative contribution of DOC to heterotrophic respiration. 
A lower estimate was calculated using turbulent diffusivity measurements at the PAP 
site16 coupled with the aforementioned DOC profiles. Samples for zooplankton biomass 
profiles (0-1,000 m at 80-m intervals) were preserved in formaldehyde, size-
fractionated, identified and enumerated. 1-50 individuals from each group at each 
depth and size fraction were analysed for dry weight. Zooplankton respiration (μg C 
individual-1 h-1) was estimated as a function of body mass (mg dry weight ind-1) and 
temperature (°C)6. DOC excretion at depth was assumed to be equivalent to 31% of 
respiration by migrating zooplankton18. Leucine incorporation rates were estimated on 
samples (n=37) recovered from depth using a Conductivity, Temperature, and Depth 
(CTD) rosette sampler. Both time-course experiments and concentration-series 
bioassays were carried out. Respectively, 3H-leucine was added at 10-20 nM and 
0.025-0.5 nM final concentration and incubated in the dark at in situ temperatures for 4-
8 hours and 0.5-2 hours. Samples were filtered onto 0.2-μm polycarbonate filters, 
washed with deionised water, and their radioactivity measured. 

 

Methods section 
 

Cruise details 

A multi-disciplinary cruise was undertaken at the Porcupine Abyssal Plain (PAP) site 
(49°0' N, 16°5' W) from 8 Jul – 13 Aug 2009 aboard RRS Discovery.   
 

Particulate flux measurements 

Sinking flux of particulate organic carbon was measured at five depths (51, 184, 312, 
446 and 589 m) concurrently, using free-drifting, neutrally-buoyant traps called 
PELAGRA (Particle Export measurement using a LAGRAngian trap)12. Sample cups for 
each trap were filled with filtered seawater of 5 ppt excess salinity and sufficient 
chloroform to give a saturated solution. Traps were deployed with sample cups closed; 
after a 24 hour period to reach and stabilise at the programmed depth, the cups 
opened and collected sinking material for 48 hours, before closing immediately prior to 
ascent to the surface. From each trap, two sample cups were combined, screened 
through a 350-µm mesh to remove swimmers, and split equally into eight aliquots for 
different analyses. POC-designated splits were filtered at sea through one or more pre-
combusted (450°C, 12 hours), 25-mm-diameter glass fibre filters, stored frozen (-20°C), 
then later fumed with 100 mL concentrated sulphurous acid for 48 hours, dried (60°C, 
24 hours) and pelleted in pre-combusted aluminium foil. Analysis was carried out using 
a Thermo Finnigan Flash EA1112 elemental analyser with acetanilide as the calibration 
standard. 
 

DOC input 

The contribution of DOC to sustaining interior heterotrophic respiration was calculated 
following Doval and Hansell15 by assuming that the utilization of primary elements in 
the twilight zone generally follows the Redfield ratio. We used previous data collected 
near the PAP site during Atlantic Meridional Transect (AMT) cruises 16 and 17 in June 
and October 2005 (http://www.bodc.ac.uk/). DOC shows the characteristic surface 
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enhancement (up to 70 µM) with a reduction to 55 µM at 300 m29. The profiles show 
little variability implying that the supply of DOC is rather constant with season 
(Extended Data Fig. 2a). Extended Data Fig. 2b shows the regression between 
apparent oxygen utilization (AOU) and DOC and the theoretical relationship which 
would occur if all AOU were due to DOC degradation (Corg:O2 ratio of 117:170). The 
ratio between the two gradients is 0.377 suggesting that DOC explains 38% of the 
respiration between 57-300 m. This is consistent with an estimated contribution of DOC 
respiration to total AOU of 18-47% in the upper 500 m across the South Pacific and 
Indian Ocean15. Assuming that sinking POC flux attenuation between 57 and 300 m (49 
mg C m-2 d-1) made up the remaining 62%, DOC contributed 30 mg C m-2 d-1 to the 
carbon flux. 
 
An alternative calculation uses turbulent diffusivity measurements at the PAP site16 
coupled with the aforementioned DOC profiles. The flux of DOC into the twilight zone 
(FDOC) can be calculated as 

FDOC = k ( ΔDOC / Δz ) 

where k is the diffusivity (10-5-10-4 m2 s-1)16, Δz is the depth interval (57-300 m), and 
ΔDOC is the concentration gradient across this depth interval (10 µM). The estimated 
export of DOC into the twilight zone via turbulent mixing was 0.4-4 mg C m-2 d-1. This 
process does not include DOC fluxes out of the mixed layer from mesoscale 
processes, and the true DOC export is likely to be closer to the first estimate of 30 mg 
C m-2 d-1. Based on the two estimates for DOC export, we applied a conservative value 
of 15 mg C m-2 d-1 for the construction of the twilight zone carbon budget at the PAP 
site. 
 

Lateral advection 

Surface ocean currents derived from satellite altimeter and scatterometer data were 
downloaded from the NOAA OSCAR website (http://www.oscar.noaa.gov/). The 
obtained currents encompass both the geostrophic and wind-driven (Ekman) motion 
and are available at 1/3-degree, 5-day resolution. Particles were tracked back in time 
for 3 months from the initial deployment date of the PELAGRA and ARIES instruments. 
 

Distinction between respiration and carbon demand 

The construction of an ecosystem carbon budget is dependent on the definition of input 
and output terms. If the input is defined as the net supply of organic carbon (the flux 
entering the twilight zone less that exiting at the base), then the analogous output is the 
removal of organic carbon via conversion to inorganic carbon during respiration. 
Respiration differs from the frequently used ‘carbon demand’ 4-7,30,31 as the latter is 
quantified as either ‘ingestion’ or ‘ingestion minus egestion’ and therefore an 
unconstrained quantity. Consider a zooplankton grazer: At steady state, its carbon 
demand (i.e. ingestion) is balanced by the sum of biomass production (growth and 
reproduction), excretion, respiration and faecal production32. Except for respiration, 
these processes all produce organic matter that becomes available as food for other 
heterotrophic organisms such as carnivores or detritivores. In other words, organic 
carbon is retained and recycled in the system and any one carbon atom may be 
recycled many times with carbon demand exceeding (being unconstrained by) carbon 
supply33,34. In contrast, each carbon atom within organic matter can only be respired 
once, ending its journey in the food web, such that, at steady state, respiration equals 
carbon supply.  A similar phenomenon exists when (incorrectly, as has often been the 
case) comparing bacterial carbon demand with primary production, the correct ratio 
being bacterial respiration to primary production34,35. 

http://www.oscar.noaa.gov/


To illustrate the impact that making the distinction between respiration and carbon 
demand has on the calculation of the twilight zone carbon budget, we calculated 
carbon demand from our data following Steinberg et al.6 over a similar depth range 
(150 – 1,000 m) to allow direct comparability. We then compared our estimates to their 
observations from the North Pacific. Prokaryotic carbon demand (PCD) was calculated 
as 

PCD = PHP × PGE-1 

where PHP is prokaryotic heterotrophic production measured using tritiated leucine, 
and PGE is a prokaryotic growth efficiency of 0.15 (as Steinberg et al.6). Zooplankton 
carbon demand (ZCD) was estimated as 
 

ZCD = ZR × (1-NGE)-1 × AE-1 

where ZR is the allometrically determined respiration rate36-38, NGE is the net growth 
efficiency  (0.5 as Steinberg et al.6), and AE is the absorption efficiency (0.6 as 
Steinberg et al.6). 
 
Our modified budget for the North Atlantic is qualitatively similar to the observations 
from the oligotrophic subtropical (station ‘ALOHA’) and mesotrophic subarctic (station 
‘K2’) Pacific6 (Extended Data Fig. 8). In all cases, the sum of prokaryotic and 
zooplankton carbon demands exceeds the supply of carbon to the system by a factor 
of 8-10. This contrasts with the balanced carbon budget we originally calculated at the 
PAP site. Three key aspects of our original data analyses (use of respiration rather 
than carbon demand, exclusion of vertical migrators from respiration estimates, and the 
use of a depth range of 50-1,000 m for the twilight zone) are critical for balancing the 
twilight zone carbon budget. 
 

Zooplankton collection and preparation 

Four vertical high-resolution profiles of zooplankton biomass and abundance were 
collected in association with the sediment trap deployments: one at daytime and one at 
night-time at both the beginning and end of the observational period (Table 1). 
Zooplankton were sampled at 80 m depth intervals from 0-1000 m using the 
Autosampling and Recording Instrumented Environmental Sampling System (ARIES) 
fitted with 200-μm filtering cod-ends. Samples were preserved in 4% saline 
formaldehyde solution. On shore, the preserved samples were size-fractionated (50-
200, 200-350, 350-500, 500-1,000, 1,000-2,000, >2,000 μm) using stacked mesh-
dishes (Spartel Ltd), rinsed with ammonium formate (35.31 g L-1), identified to class 
and enumerated. One to 50 individuals (dependent on size) of each group at each 
depth and size fraction were transferred into pre-weighed tin cups, dried (70°C, 24 h) 
and weighed. Biomass (mg dry weight m-3; Extended Data Fig. 3a,b) and abundance 
(ind m-3) were calculated for each depth interval. 
 

Zooplankton respiration and excretion 

Zooplankton respiration (ZR; μg C individual-1 h-1) was estimated from net samples as a 
function of body mass (DW; mg dry weight individual-1) and temperature (T; °C) using  
 

ZR = exp(a1 + a2 ln DW + a3 × T ) × RQ × 12/22.4  

where RQ is the respiratory quotient of 0.8, and 12/22.4 is the molar conversion 
factor36-38. For copepods, the parameters a1, a2 and a3 were -0.399, 0.801 and 0.069, 
respectively37. For other zooplankton, the respective parameters were -0.251, 0.789 



and 0.04936. Day and night respiration was calculated for 15 h and 9 h, respectively, 
according to the local photoperiod. 
 
Excretion at depth via the active flux was estimated by assuming that DOC excretion 
by migrating zooplankton is equivalent to 31% of their respiration18. 
 

Ingestion by vertically migrating zooplankton 

Typical vertical migration patterns were observed during both deployments (Extended 
Data Fig. 3c,d) with large copepods and euphausiids dominating the migrating 
zooplankton. We assume that at depth these organisms respire material which they 
have ingested at the surface, and test this assumption using the equation 
 

IML = Find × cPOC ×  nML × t 

where IML is the total ingested carbon in the mixed layer (mg POC m-2 d-1), Find is the 
average clearance rate (mL individual-1 d-1), cPOC is the concentration of POC in the 
mixed layer (97 mg POC m-3)13, nML represents the number of zooplankton in the mixed 
layer (7170 and 10370 individuals m-2 during the two deployment periods, respectively), 
and t is the time that migratory zooplankton spend in the mixed layer each night 
according to ADCP back scatter profiles (9 h/24 h). Using reported clearance rates of 
72-432 mL d-1 individual-1 for Calanus32,39,40 and 360 – 2,400 mL d-1 individual-1 for 
euphausiids41,42, total ingestion rates ranged from 18 to 905 mg C m-2 d-1. 
 
The daily respiration rates of migratory zooplankton (estimated as for resident 
zooplankton) were 8 mg C m-2 d-1, significantly lower than the calculated ingestion 
rates. This suggests that migrating zooplankton were able to ingest sufficient organic 
carbon in the mixed layer to satisfy their respiration, as well as other physiological 
processes such as growth, egestion and excretion. It is noteworthy that the strong 
coupling between diel vertical migration and environmental variables means that 
migration patterns and associated carbon cycling may change in response to climate 
change43. 
 

Prokaryotic leucine incorporation 

Incorporation rates of radiolabeled leucine21 were measured following two protocols: 
time-course experiments44 and concentration-series bioassays45,46. For the time-course 
experiments, samples were taken from four depths at four stations in association with 
the trap deployments (Extended Data Table 1). L-[3,4,5-3H(N)]leucine (specific activity 
115.4 Ci mmol-1, Perkin Elmer) was added to give a final concentration of 20 and 10 
nM in triplicate 20-mL and 40-mL samples from the mixed layer and upper twilight zone 
(0-150 m) and lower twilight zone (>150 m), respectively. Respective samples were 
incubated for 4 and 8 hours in sterile Falcon vials in the dark at in situ temperatures. 
The samples were fixed with formaldehyde (2% final concentration).  
 
For the concentration-series bioassays, 2-L water samples were collected from 
different depths throughout the cruise. L-[4,5-3H]leucine (specific activity 5.26 TBq 
mmol-1, Hartmann Analytic GmbH) was added in a range of six final leucine 
concentrations from 0.025 to 0.5 nM. Four samples (1.6 mL each) for each added 
concentration, i.e. 24 samples in total, were incubated in 2 mL capped screw top sterile 
polypropylene microcentrifuge tubes in the dark at in situ temperatures. One of the 
samples for each concentration was fixed at 0.5, 1, 1.5 and 2 hours, respectively, by 
adding paraformaldehyde (PFA) to 1% final concentration. 
 



All sample particulate material was harvested onto 25-mm-diameter 0.2-µm 
polycarbonate filters soaked in unlabelled leucine to reduce background sorption. 
Filters were washed twice with 4 mL of deionised water (Milli-Q system, Millipore). 
Radioactivity retained on filters was measured as disintegrations per minute (DPM) 
using a liquid scintillation counter (Tri-Carb 3100, Perkin Elmer). Turnover time and 
estimates of leucine incorporation rate at ambient concentrations from the 
concentration-series bioassays were calculated following Zubkov et al.46. Leucine 
incorporation rates by the two methods agreed well, and there appeared to be little 
spatial and temporal variability in the twilight zone. All data was therefore pooled for the 
calculation of prokaryotic respiration. 
 

Prokaryotic respiration 

The estimation of prokaryotic respiration (PR) based on leucine incorporation rates 
requires two factors: 
 

PR = Leucine incorporation × LeuCF × (1-PGE) × PGE-1, 

where LeuCF is the leucine-to-carbon conversion factor, and PGE is the prokaryotic 
growth efficiency. We reviewed all PGEs and LeuCFs determined for the twilight zone 
(Extended Data Fig. 4a,b) and estimated prokaryotic respiration (and error margins) 
using bootstrap analysis with 100,000 simulations (Extended Data Fig. 4c). 
 
The simulations were computed as follows: Integrated leucine incorporation rates were 
determined based on the measured leucine incorporation rates at our site. A power-law 
distribution was fitted to the bootstrap sample (p<0.001, R2=0.86, n=37), interpolated 
(50-1,000 m), and summed to get the integrated incorporation rate. The resulting 
leucine incorporation rates had a median of 14.5 µmol Leu m-2 d-1 (interquartile range: 
13.2 – 16.1 µmol Leu m-2 d-1). LeuCFs for the simulation were randomly sampled (with 
replacement) from all reported LeuCFs for the twilight zone (n=21)47-50. The mean 
LeuCF used in the simulation was 0.44 kg C mol Leu-1 (interquartile range: 0.26 – 0.59 
kg C mol Leu-1). Finally, PGEs were randomly sampled (with replacement) from all 
reported PGEs for the twilight zone of the North Atlantic (n=26)48,51-54. PGEs ranged 
from 0.001 – 0.24 with a median of 0.08 (interquartile range: 0.04 – 0.12). 
 
The final estimate of prokaryotic respiration is very sensitive to the interpolation method 
as well as the two conversion factors (LeuCF and PGE). Our study lacks 
measurements of leucine incorporation rates from the region between the mixed layer 
depth (50 m) and 150 m, which is the area where most of the POC is remineralized. To 
arrive at an integrated estimate for leucine incorporation, we chose to interpolate the 
available leucine incorporation rates using a power-law function as we assume that 
prokaryotic production in this region is driven by the supply of organic carbon22, which 
is best described by a power-law function9. The choice of interpolation method 
introduces additional, large uncertainties in our estimate potentially leading to a 
misestimate of integrated leucine incorporation. We recommend that future studies 
should avoid this uncertainty by increasing sampling effort in this critical region. 
 

Food web model 

The food web analysis (Extended Data Fig. 6a) is based on the steady-state model of 
Anderson and Tang26 (hereafter AT10). The starting point of AT10 is POC input to the 
twilight zone via sinking detritus. The biological utilisation and subsequent respiration of 
this carbon is then traced via three pathways: (1) colonisation, solubilisation and 
production by attached prokaryotes, (2) production of free-living prokaryotes fuelled by 



DOC generated as a product of solubilisation, and (3) consumption by detritivorous 
zooplankton. We use a new version of this model which maintains these pathways, but 
with two adjustments. 
 
First, carbon input to the twilight zone now includes both sinking detritus and DOC, the 
latter representing both vertical mixing and active transport via migratory zooplankton. 
Second, detritus is divided between sinking and suspended forms (AT10 included only 
the former). It was assumed by AT10 that zooplankton losses due to sloppy feeding are 
as DOC. It may however be the case that, particularly for copepods feeding on detritus, 
much of this loss is as fragmentation (so-called coprorhexy25) leading to the generation 
of small non-sinking particles.  
 
In the new version of the model detritus is therefore divided between sinking material 
(D1), with inputs as export from the surface ocean and as faecal pellet production from 
detritivores and carnivores, and suspended detritus (D2) which is derived from 
coprorhexy by detritivores and carnivores, and as faecal pellet production by 
microzooplankton (‘prokaryote consumers’). D1 is consumed by both detritivorous 
zooplankton and attached prokaryotes, as in AT10, whereas D2 is acted on only by the 
prokaryotes. 
 
The model was reparameterised as follows (see Extended Data Table 2 for list of 
parameters). Parameter ψB, the partitioning of detritus consumption by attached 
prokaryotes and detritivores, is poorly known and was estimated as 0.75 (75% 
prokaryotes, 25% zooplankton) by AT10 based on the data of Steinberg et al.6. Using 
the data from the PAP site, we were better able to constrain this parameter and use a 
value of ψB = 0.5 (see sensitivity analysis below). Of the POC (D1 and D2) acted on by 
attached prokaryotes, 50% is solubilised due to the action of hydrolytic enzymes and 
released as DOC26 (parameter α). PGEs for free-living and attached prokaryotes (ωfl, 
ωatt) were set to 0.08 and 0.24 respectively, the former based on the literature review 
presented above and the latter from AT10. Release of DOC as excretion by prokaryote 
consumers, detritivores and carnivores was set at 5% of processed prey items (ΦV, ΦH, 
ΦZ = 0.05)26. The corresponding fraction allocated to D2 via sloppy feeding was set as 
λH = 0.30 for detritivores (based on Fig. 2 of Lampitt et al.25), thereby assuming that a 
large fraction of processed food is released as non-pellet POC, with a value of λZ = 
0.15 for carnivores. Sloppy feeding losses by prokaryote consumers were assumed to 
be zero (λV = 0) because they ingest their prey whole. Absorption efficiencies (also 
commonly known as assimilation efficiencies) were assigned values of βH = 0.60, βZ = 
0.66 and βv = 0.72 [26,55]. The fraction of prey items that is absorbed across the gut is 
β(1-Φ)(1-λ), this material being utilised with net production efficiencies for detritivores, 
carnivores and bacterivores (κH and κZ and κV) of 0.39, 0.39 and 0.44 [26]. Finally, 
parameter ζ, the fraction of attached prokaryotes consumed by detritivores (rather than 
prokaryote consumers) was assigned a value of 0.24 [26]. 
 
Anderson and Tang26 derived steady state equations and constructed the model in a 
Microsoft Excel spreadsheet. The modifications to the model here (direct DOC input, 
detritus divided into D1 and D2) make a steady state solution difficult and so we 
instead constructed two versions of the model in R, the first a Monte Carlo version and 
the second a dynamic version that is run to steady-state (we show results for the latter, 
which is deterministic). The R codes are available on request from Thomas Anderson. 
 

Sensitivity analysis 

An analysis of the steady state solution of the model is presented in Extended Data 
Fig. 6b-d. Inputs of carbon to the twilight zone, namely POC (74 mg C m-2 d-1) and 
DOC (18 mg C m-2 d-1) are balanced by community respiration, which is the sum of 



attached and free-living prokaryotes (23.9 and 48.6 mg C m-2 d-1 respectively), 
detritivores, carnivores and prokaryote consumers (11.0, 3.3 and 5.1 mg C m-2 d-1 
respectively). The main detritus source is export of sinking particles from the surface 
ocean, supplemented by in situ faecal pellet production by detritivores and carnivores. 
Although detritivores and attached prokaryotes each utilise 50% of D1 (parameter ψB), 
it is the attached prokaryotes which undertake the majority of POC utilisation overall 
(57% versus 43%) because they are the sole consumers of D2. Finally, the largest 
DOC source in the model is solubilisation of detritus by attached prokaryotes (31.5 mg 
C m-2 d-1); greater than the input from the surface ocean (18 mg C m-2 d-1). Utilisation of 
DOC is exclusively by free-living prokaryotes. Overall, the results highlight the 
significant roles played by both zooplankton and prokaryotes in the carbon cycle of the 
twilight zone, the former primarily as recyclers and the latter as a carbon sink (Fig. 2).  
 
The robustness of the model results and conclusions with respect to chosen parameter 
values were investigated by undertaking sensitivity analyses. Parameter ψB (the 
fraction of D1 acted on by attached prokaryotes, the remainder by detritivorous 
zooplankton) was varied between 0.1 and 0.9 (standard value 0.5), λH (the loss to D2 
by sloppy feeding by detritivores) between 0.1 and 0.5 (standard value 0.3) and ωfl 
(PGE for free-living prokaryotes) was assigned values of 0.04, 0.08 (standard) and 
0.12. The resulting predictions for respiration by zooplankton and prokaryotes are 
shown in Extended Data Fig. 7; the point of interest is the parameter ranges which are 
consistent with measured estimates of respiration, i.e., ZR = 14 mg C m-2 d-1 and PR = 
71 mg C m-2 d-1. ZR predicted by the model, excluding respiration by microzooplankton 
(prokaryote consumers), is 14.3 mg C m-2 d-1 using parameter settings ψB = 0.5 and λH 
= 0.3. Extended Data Fig. 7c,d (PGE = 0.08) show that the best solution for ZR (14.3 
mg C m-2 d-1) is achieved with ψB = 0.5, i.e. with detritivores and attached bacteria 
processing half each of D1, and with detritivores releasing 30% of their half as 
suspended POC (D2). The required zooplankton contribution to processing sinking 
POC (D1) decreases if less processed D1 is allocated to D2 (in which case more is 
respired), but not to any great extent. For example, decreasing suspended losses 
(parameter λH) from 30% to 10% means that the required ZR (to match the data) is 
achieved with ψB = 0.63, i.e. detritivores processing 37% of D1.  We conclude that the 
model predictions are robust with respect to a mid-range value of ψB, e.g. 0.5. 
 
PGE is notoriously low in the twilight zone of the ocean48,51-54. Visual inspection of 
Extended Data Fig. 7 shows that predicted ZR and PR are remarkably insensitive to 
ωfl. For example, decreasing ωfl to 0.04 (half the standard value) meant that predicted 
ZR (for ψB = 0.5 and λH = 0.3) decreased from 14.3 to 14.0 mg C m-2 d-1 and PR 
increased from 72.5 to 73.7 mg C m-2 d-1. The relative insensitivity is easy to explain in 
that prokaryotes are the main sink for carbon and so decreasing PGE just strengthens 
this. Likewise, increasing ωfl to 0.12 has only a minor impact on model results 
(Extended Data Fig. 7e,f). Predicted ZR for ψB = 0.5 and λH = 0.3 increases to 14.6 
mg C m-2 d-1 as carbon transfer to higher trophic levels is increased, while PR 
decreases to 71.3 mg C m-2 d-1.  
 
Overall, the results are robust to changes in PGE, as well as changes in detritivore 
sloppy feeding losses (λH). Model solutions indicate that a mid-range value of 
parameter ψB, in the region of 0.5, is required in order to match the observational data 
and thus confirms the overall conclusion of the synergistic role of zooplankton and 
prokaryotes in carbon cycling in the twilight zone of the ocean.  
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Table 1| Carbon budget for the twilight zone (50-1000 m).  

Input Respiration 
% 

Community 
respiration 

Sinking POC 74 (65-83) Zooplankt
on 14 (13-15) 16% (8 - 30) Vertical 

mixing (DOC) 15 (0-30) 

Active 
transport 
(DOC) 

3 Prokaryot
es 71 (35-152) 84% (70 - 

92) Lateral 
advection 0 

Total 92 
(68 - 116) Total 85 

(48 – 167)  
 

Input fluxes and respiration rates (mg C m-2 d-1) are based on measurements at the 
PAP site, North Atlantic. Numbers in brackets refer to lower and upper estimates (see 
text). Community respiration (%) was estimated by combining highest and lowest 
estimates. 



 

Figure 1| Sinks and sources of organic carbon to the twilight zone. a, Particulate 
organic carbon flux (POC; black dots) below the mixed layer (shaded area) at the PAP 
site during 3-6th Aug 2009 fitted to the Martin equation (Fz = F100(z/100)b; solid line). The 
observed attenuation is consistent with rates observed in the Pacific (grey area, dotted 
lines)9,14. Error bars show analytical error (s.d.). b, c, Depth profiles of respiration by 
non-migratory zooplankton (ZR; b) and leucine incorporation (µmol Leu m-3 d-1) by 
prokaryotes (power-law fit and interquartile range; p<0.001, R2=0.86, n=37; c). d, The 
sum of net organic carbon supply (ΔOC; light grey) of particulate (POC) and dissolved 
organic matter (DOC) and active flux (marked with an asterisk) matches respiration by 
non-migratory zooplankton (ZR; dark grey) and prokaryotes (PR; mid grey). Error bars 
represent upper and lower estimates (see text and Table 1). 
 
Figure 2| Predicted carbon cycle in the twilight zone. Organic carbon is supplied to 
the twilight zone in particulate (POC) and dissolved form (DOC; vertical mixing + active 
transport) (green arrows). POC is processed by detritivores (50%) or attached 
prokaryotes (50%) and recycled in the twilight zone until eventually remineralized (red 
arrows) whereby prokaryotes dominate respiration (79%). Observed rates are in green 
and red boxes. Internal net flows (mg C m-2 d-1) derived from a numeric model are 
represented as arrows (line width in scale). Fluxes indicated with an asterisk (*) are for 
microzooplankton (prokaryote consumers), which are not included in the measured 
estimates. 
 
Extended Data Figure 1| Study site and deployments. a, Current vectors from a 
Vessel-Mounted Acoustic Doppler Current Profiler (thin black arrows) overlaid on 
surface Chlorophyll (mg m-3; averaged from 28 Jul-8 Aug). The five sediment traps 
(PELAGRA; squares) followed the edge of an eddy (thick black arrow). Collection sites 
for zooplankton (ARIES system, circles) and prokaryotes (CTD, crosses) are marked. 
b, Lateral advection to the PAP site. Surface particle back trajectories of the water 
masses sampled using PELAGRA (grey) and ARIES (black) derived from satellite-
derived near-surface velocities over 3 months. Particles started at the solid circles. 
 
Extended Data Figure 2| DOC supply to the twilight zone. a, Depth profiles of DOC 
at the PAP site at four stations during June (grey) and October (black) 2005. Shaded 
areas represent background concentrations of refractory (R), semi-refractory (SR) and 
semi-labile (SL) pools based on Hansell et al.29 b, The relationship between AOU and 
DOC at the four stations. Black and grey circles represent respectively samples 
collected above and below the mixed layer (here 57 m). DOC recorded below 57 m 
correlates to AOU (grey line; DOC = -0.26 AOU + 62.5; p=0.01, R2=0.53, n=9). The 
dotted line represents the theoretical relationship following the Redfield ratio (DOC = -
117/170 AOU + 62.5), which would occur if all AOU were caused by the respiration of 
DOC. 
 
Extended Data Figure 3| Zooplankton depth distribution. a,b  
Zooplankton biomass (>200 µm) during deployment periods 1 and 2 at the PAP site. 
Taxonomic groups are coloured according to colour code. c,d Biomass of migratory 
zooplankton during deployment periods 1 and 2. Biomasses of community and 
migratory zooplankton are represented for day and night time (right-hand and left-hand, 
respectively). Shaded area represents mixed layer. 
 
Extended Data Figure 4| Steps for calculating prokaryotic respiration. a, Depth 
profiles of leucine-to-carbon conversion factor (LeuCF) measured in the Northeast 
Atlantic47-49 (respective to publications: black circle, triangle and diamond) and North 
Pacific50 (grey square). Average LeuCF below 50 m was 0.44 kg C mol Leu-1 (± 0.27 
s.d., n=52). b, Depth profiles of prokaryotic growth efficiency (PGE) measured for the 



twilight zone across the North Atlantic48,51-54 (respective to publications: triangle, 
asterisk, cross, solid triangle and solid circle). Solid blue line shows median PGE 
(0.08), and blue shaded area shows interquartile range (0.04 – 0.12). Error bars are 
s.e.m. c, Flow diagram of calculation of prokaryotic respiration using bootstrapping. 
The output gives 100,000 estimates of prokaryotic respiration, which are used to 
compute the uncertainty in the final estimate. 
 
Extended Data Figure 5| Twilight zone carbon budget with different depth 
horizons. a, Organic matter supply via dissolved matter (black area), active transport 
(mid grey area) and total supply including particles (light grey area), is compared to 
zooplankton respiration (dashed red line) and community respiration (prokaryotes + 
zooplankton; solid red line). b-d, Comparison of net supply of organic carbon (sum of 
active flux, DOC and ΔPOC) vs. respiration by prokaryotes (PR) and non-migratory 
zooplankton (ZR) in the entire twilight zone (b, 50-1000 m), the upper twilight zone (c, 
50-150 m) and the lower twilight zone (d, 150-1000 m). Error bars represent upper and 
lower estimates (see text). 
 
Extended Data Figure 6| Twilight-zone carbon model. a, Flow diagram. Recycling 
pathways by attached prokaryotes, detritivores and the microbial loop (DOC and free-
living prokaryotes). Fluxes to small coloured circles/hexagons enter either sinking 
detritus (D1; orange circle), suspended detritus (D2; red circle), DOC (yellow circle) or 
CO2 (blue hexagon). b, Modelled sources and sinks of carbon. From left to right: Net 
inputs of POC and DOC from the mixed layer (ML) vs. respiration by the twilight zone 
food web (‘Overall’); sources (D1 and D2 represent sinking and suspended POC, 
respectively) and sinks of detritus; and sources and sinks of DOC. P: prokaryotes. 
 
Extended Data Figure 7| Sensitivity analysis for predicted respiration rates. a-f, 
Predicted zooplankton respiration (ZR ; mg C m-2 d-1; excluding microzooplankton) and 
prokaryotic respiration (PR; mg C m-2 d-1) for varying parameters. The fraction of 
sinking POC consumed by attached prokaryotes (ψB; remainder consumed by 
detritivorous zooplankton) was varied between 0.1-0.9 (standard model value of 0.5). 
The fraction of grazed POC that is lost to suspended POC due to sloppy feeding by 
detritivores (λH) was varied between 0.1-0.5 (standard value 0.3). PGE (ωfl) was 
assigned values of 0.04 (a,b), 0.08 (c,d), and 0.12 (e,f). Red areas show the estimated 
range based on field data. 
 
Extended Data Figure 8| Twilight zone carbon budgets based on 'carbon 
demand'. Budgets were compiled by comparing loss of particulate organic carbon 
(ΔPOC; black) to 'carbon demand' (ingestion) by zooplankton (dark grey) and 
prokaryotes (light grey) in the North Atlantic (‘PAP’; this study) and at two stations in 
the Pacific (‘ALOHA’ and ‘K2’)6. The imbalance of these budgets contrast with our final 
budget (Fig. 1d) based on respiration. Error bars show analytical errors for POC flux 
and upper and lower estimates for carbon demands based on a range of conversion 
factors (see methods by Steinberg et al.6 for details). 
 
Extended Data Table 1| Deployment details. Deployments of neutrally-buoyant 
sediment traps (PELAGRA) and the plankton sampler (ARIES) at the PAP site in 
August 2009. Sampling of sediment traps commenced 24 hours after deployment time 
and lasted for 48 hours. Presented times relate to deployment and recovery of the 
traps. Depths for PELAGRA deployments are mean depths. 
 
Extended Data Table 2| Model parameters and default values. Note, all parameters 
are dimensionless. 
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Parameter Description Value

ψB partitioning of D1 to attached prokaryotes 0.5

α solubilization losses: attached prokaryotes 0.5

ωatt PGE: attached prokaryotes 0.24

ωfl PGE: free-living prokaryotes 0.08

ΦV release of DOC as excretion by prokaryote consumers 0.05

ΦH release of DOC as excretion by detritivores 0.05

ΦZ release of DOC as excretion by carnivores 0.05

λV grazing losses to D2 via sloppy feeding: prokaryote consumers 0

λH grazing losses to D2 via sloppy feeding: detritivores 0.30

λZ grazing losses to D2 via sloppy feeding: carnivores 0.15

βV absorption efficiency: prokaryote consumers 0.72

βH absorption efficiency: detritivores 0.60

βZ absorption efficiency: carnivores 0.66

κV NGE: prokaryote consumers 0.44

κH NGE: detritivores 0.39

κZ NGE: higher zooplankton 0.39

ζ Particle microbial losses to detritivores 0.24
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