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Introduction

Reinforcement learning represents a fundamental cognitive process: learning by trial
and error to maximize rewards and minimize punishments. Current and most in-
fluential theoretical models of reinforcement learning assume a unique learning rate
parameter, independently of the outcome valence (Sutton and Barto [14], O’Doherty
et al. [10], Behrens et al. [1]). However human participants were shown to integrate
differently positive and negative outcomes (Frank, Seeberger, and O’Reilly [3], Frank
et al. [4], Sharot, Korn, and Dolan [13]). This motivated the reference article to im-
plement a modified version of the reinforcement learning model, with two distinct
learning rates for positive and negative outcomes (Cazé and Meer [2]).

They have shown that although differential learning rates shifted reward predictions
and could thus be seen as a maladaptive bias, this model can outperform the classical
reinforcement learning model on tasks with specific outcome probabilities. Following
Cazé and Meer [2]’s predictions, a subsequent empirical article have modeled human
behavior on these specific tasks (Gershman [7]). The question is still an active research
area, as various articles have further investigated the difference learning rates bias
(Garrett and Sharot [5], Moutsiana et al. [9], Shah et al. [12], Garrett and Sharot [6],
Lefebvre et al. [8], Palminteri et al. [11]).

A link to the pdf version of the reference article was posted on the last author’s
laboratory website (http://www.vandermeerlab.org/publications.html), but the cor-
responding code was not available (https://github.com/vandermeerlab/papers/tree/
master/Caze_ vanderMeer_2013). We believe that an openly available code reposi-
tory replicating the results of Cazé and Meer [2]’s paper can be helpful to the scientific
community. We therefore implemented the model and analysis scripts using Python,
with numpy, random and matplotlib libraries.

Methods

We first implemented our scripts on Matlab, as we were more familiar with this lan-
guage, and then adapted them on Python.
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We used the modeling description of the reference article to implement our repli-
cation. They used standard Q-learners with a softmax action selection rule (Sutton
and Barto [14]), and their precise description enabled us to implement them with low
difficulty. But we found four ambiguities in the simulation procedure.

First, the authors described their analytical results to be valid for “Qq # {—1,1}”
in section 2, but did not specify what value of Qg they used in all the following
simulations. We chose to use Qg = 0, as this initial value is the middle point between
the two possible outcomes (i.e., -1 and 1). As we replicated all the original figures,
even the dynamics in the beginning of the learning curves (see Figures 2 A, 3 and 4
B), we believe the reference article must have used similar initial Q-values.

Second, regarding the parameter setting for Figure 1’s simulations, the ratio of a™
over o~ was said to be either 0.25, 1 or 4, but they did not specify what were the exact
values of o™ and o~ used. We thus set them according to the following description of
the pessimistic, rational and optimistic agents in section 3, i.e.,:

e at =0.1 and o= = 0.4 for the ratio of 0.25
e at =0.1 and o= = 0.1 for the ratio of 1
e at =04 and o= = 0.1 for the ratio of 4

Third, the number of iterations made to generate Figures 3 and 4 were not
indicated, and we assumed the authors used the same number as in Figures 1 and 2
(i.e., 5,000 runs).

Finally, in the reinforcement learning framework, the probabilities to choose each
action are computed, then used to select an action through a pseudo-random generator.
In the reference article, it was sometimes unclear whether the analyses were performed
on the probabilities of choice, or rather the proportions of implemented choices. For
example Figure 2’s legend indicated: “Mean probability of choosing the best arm”,
suggesting that the probabilities themselves were used. However, when commenting
the figure in section 3, the authors appeared to say that the actual choices were rather
used: “the optimistic agent learns to take the best action significantly more than the
rational agent”. For our analyses, we started by using the probabilities of choice, as
this would lead to more clear, less noise-corrupted results. However we then obtained
very smooth learning curves, and were unable to reproduce the spikiness of the original
Figures 2, 3 and 4. We thus computed the proportions of implemented choices for all
our figures.

Results

We numbered our figures in the same way as the reference article.

All our figures reproduced the patterns of the original results. We were even able
to replicate the fine-grained details of the learning curves, like the early bumps in
performance in the high-reward task (Figures 2 A, 3 and 4 B, right panels, around
50-100 trials). In Figure 1, the mean and the variance of the Q-values were also very
similar as the ones in the original figure.

The only discrepancy we found was in Figure 4 A. Although the general pattern
was replicated, our learning curves appeared smoother than in the reference article.
As the number of simulations were not explicitly specified for this figure, we cannot
know if this is due to us running a higher number of simulations than the reference
article, or from another difference in model implementation.

Conclusion

All the figures in Cazé and Meer [2] have been successfully reproduced with high
fidelity, and we confirm the validity of their simulations. Overall the whole replication
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Figure 1: Average estimated Q-values after 800 trials averaged for different ratios of a™ and

a” . The dotted lines represent the underlying average reward: 0.8, 0.6, -0.6, -0.8. The error bars
represent the variance of the estimated Q-values.
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Figure 2: A. Performance, i.e. proportion of choices for the best action, for the three agents:
Rational (R, at = a7, blue line), Optimistic (O, a™ > a~, green line) and Pessimistic (P,
a® < a7, red line). In this figure and the following ones, the left (resp. right) panel corresponds
to the low-reward (resp. high-reward) task. B. Proportion of action switch after 800 trials for

each agent, in the two different tasks.
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Figure 3: The performances of the Meta-learner (N) are shown in purple and those of the Rational
agents (R) in different colors of blue (in teal for c = 0.01, in royal blue for o = 0.1 and in navy

blue for o = 0.4).
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Figure 4: The performances of the Meta-learner, Optimistic, Rational and Pessimistic agents
A. in a task where the probabilities of reward are 0.75 and 0.25 for the two choices. B. in a
“three-armed bandit” task.
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procedure was smooth: the models were implemented with low difficulty, and the
simulations were quite straightforward apart from a few obscure details. We hope this
replication can foster future research in the domain.
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