

GEOTHERMAL ENERGY SLOVAKIA

ENergy Efficiency and Renewables – SUPporting Policies in Local level for EnergY

1. INTRODUTION

1.1. Geography

Slovakia is a landlocked Central European country with mountainous regions in the north and flat terrain in the south. Slovakia lies between 49°36′48″ and 47°44′21″ northern latitude and 16°50′56″ and 22°33′53″ eastern longitude. Slovakia borders Poland in the north - 547 km, Ukraine in the east - 98 km, Hungary in the south - 669 km, Austria in the south-west - 106 km, and the Czech Republic in the north-west - 252 km for a total border length of 1672 km.

Two main geographic regions define the Slovakian landscape: the Carpathian Mountains and the Pannonian Basin. Two-thirds of the country is in the Carpathians, most of it in the Western Carpathians and the rest of country extends into the Pannonian Basin.

Figure 1: Position of Slovakia

1.2. Position of Slovakia in the Carpathian Mountains' Arc

The Carpathians are an extensive range of mountains that form an arc of approximately 1500 km across Central and Eastern Europe. The chain of mountain ranges stretches in an arc from the Czech Republic in the northwest to Slovakia, Poland, Ukraine and Romania in the east, to Iron Gates on the Danube River between Romania and Serbia in the south.

Figure 2: Structural sketch of Carpathian arc and position of Slovakia

The Carpathians extend in a geologic system of parallel structural ranges. The Outer Carpathians – whose rocks are composed of flysch – run from near Vienna, through Moravia, along the Polish-Czech-Slovak frontier, and through western Ukraine into Romania, ending in an abrupt bend of the Carpathian arc north of Bucharest. In this segment of the mountains, a number of large structural units of nappe character (vast masses of rock thrust and folded over each other) may be distinguished. The Inner Carpathians consist of a number of separate blocks. In the west lies the Central Slovakian Block; in the southeast lie the East Carpathian Block and the South Carpathian Block, including the Banat and the East Serbian Block. The isolated Bihor Massif, in the Apuseni Mountains of Romania, occupies the centre of the Carpathian arc. Among the formations building these blocks are ancient crystalline and metamorphic cores onto which younger sedimentary rocks - for the most part limestones and dolomites of the Mesozoic era (245 to 66.4 million years ago) - have been overthrust. The third and innermost range is built of young Tertiary volcanic rocks formed less than 50 million years ago, differing in extent in the western and eastern sections of the

Carpathians. In the former they extend in the shape of an arc enclosing, to the south and east, the Central Slovakian Block; in the latter they run in a practically straight line from northwest to southeast, following the line of a tectonic dislocation, or zone of shattering in the Earth's crust, parallel with this part of the mountains. Between this volcanic range and the South Carpathian Block, the Transylvanian Plateau spreads out, filled with loose rock formations of young Tertiary age. The Central Slovakian Block is dismembered by a number of minor basins into separate mountain groups built of older rocks, whereas the basins have been filled with younger Tertiary rocks.

The relief forms of the Carpathians have, in the main, developed during young Tertiary times. In the Inner Carpathians, where the folding movements ended in the Late Cretaceous epoch (97,5 to 66,4 million years ago), local traces of older Tertiary landforms have survived. Later orogenic movements repeatedly heaved up this folded mountain chain, leaving a legacy of fragmentary flat-topped relief forms situated at different altitudes and deeply incised gap valleys, which often dissect the mountain ranges.

1.3. Geothermal Sources

Slovakia is a country rich in low enthalpy geothermal sources. The potential of geothermal energy is about 21, 456 TJ/year. On the basis of distribution of the collectors of geothermal energy resources and geothermal field activity, 26 prospective areas (Fig. 3-2) or structures suitable for exploitation and energetic use were identified in Slovakia. They include above all the Tertiary basins or intermountain depressions spread in the zone of the Inner Western Carpathians. Their total area represents 34% of Slovakia's territory. The sources of geothermal energy are represented in Slovakia above all by geothermal waters, which are linked to the Triassic dolomite and limestone rocks of the Inner Carpathian tectonic units, and, to a lesser extent, the Neogene sands, sandstone rocks, conglomerates or to the Neogene andesite rocks and their pyroclastics. These rocks, which are collectors of geothermal waters, are situated in the depth of 200 - 5,000 m and contain geothermal waters of Slovakia represents 5538 MWt, of which 4985 MWt is attributable to the reserves and 553 MWt to the sources. Probes carried out so far confirmed about 1200 I/s of geothermal waters, the thermal performance of which represents around 270 MWt.

1.4. Geothermal exploration

Possibilities to obtain geothermal waters, except those already used for natural springs, were discovered by drilling wells in Ganovce in 1879, in Kovacova (1899), in Dolna Strehova (1951), and in Kos and Komarno (1967). Marked progress in geothermal energy research in Slovakia started in the beginning of the seventies as a result of the oil crisis – during which the search for new, untraditional, economically profitable sources of energy was necessary. Geological exploration and research started in the Danube Basin and continued in further prospective areas of Slovakia. The first geothermal well, DS-1, was realized in 1971 in Dunajska Streda. The well was 2500 m deep and

had a yield of 15 l/s with a well collar temperature of 92 °C. The distribution of aquifers with geothermal waters and the thermal manifestation of geothermal fields in Slovakia have enabled the definition of 26 prospective areas and structures with potentially exploitable geothermal energy sources. These areas and structures cover 27% of Slovakia's territorial extent. Research, prospecting and exploration of geothermal waters have so far been carried out in 13 prospective areas in Slovakia and in one non-prospective area (southern part of the Eastern Slovakian basin - an unsuccessful well). Between 1971 and 1994 a total of 61 geothermal wells were drilled (only 4 of them were unsuccessful) which verified 900 l/s of waters whose temperatures vary from 20 °C to 92 °C. The thermal capacity of these geothermal waters is around 184 MWt. Geothermal waters were captured by wells 210 to 2605 m deep, and their free outflow mostly ranged from 5 to 40 l/s (Remsik, 1993). Chemically, the waters are represented by Na-HCO3-Cl, Ca-Mg-HCO3-SO4 and Na-Cl types with mineralization of 0.7 20.0 g/l. The basic information about spatial distribution of geothermal energy sources provides an Atlas of geothermal energy of Slovakia (Franko, O., Remsik, A.,Fendek, M., eds., 1995).

2. Methodology

2.1. Phase 1. Realization of the topographic map, Digital elevation model (DEM).

Import DEM from the site <u>http://www.gdem.aster.ersdac.or.jp/</u>; log into the site; select the "Search" on the left column to search for the tile corresponding the area to be processed; choose the tile you need and to download. Obtained the DEM is imported into the GIS and can be process, by an interpolation of the shares of DEM, is realized topographic map.

Figure 3 : DEM (Digital Elevation Model) SLOVAKIA

2.2. Phase 2. Production of geo-referenced database (Geodatabase) through ArcCatalog (ESRI Corporation)

110	Shape *	ID_VRTU	HAME OF WE	WELL_LOCAT	LATITUDE	LONGITUDE	1500	T1000	T1580	12800	12600	13000	T 9908	15089	16860	TØ.	DISCHARGE	HEAT_HEOW_	POWER_MW	T_D_S
	D Point	1	A-1	Albínov	48.745	21.678	39	52	84	0	0	0	0	C	D	D	0	116	0	C
	1 Point	2	A4	Albihov	46.746	21.644	39	53	64	105	126	149	185	223	254	9	0	116	0	0
	2 Point	.3	A-7	Abinov	48.748	21.661	\$9	84	88	107	128	148	185	225	268	0	Ŭ.	119	0	0
	3 Point	11	EN-14	Bánovce	46.695	21.83	36	52	86	105	1.27	143	189	233	273	45	0	112	0	0
	Point	24	DU-1	Bunkovce	48.578	22.136	35	55	78	85	115	131	167	200	227	41	1	85	1.546	10
	5 Point	28	B-2	É bárovos -	48,559	21 949	98	BT	82	102	116	129	181	231	271	50	6	121	8,793	17
	5 Point	45	10-1	lunkav	46.729	21,441	45	56	89	115	133	148	180	212	240	113	9	110	37.013	23
	7 Point	64	GR-2	Tepleta Grétika	48,949	20,559	21	35	-41	51	54	76	105	136	159	IJ	0	67	U	U
	B Point	123	H0M-1	Komárovea	48.578	21.119	50	48	59	78	34	111	145	178	211	0	0	88	0	0
	9 Point	149	L-1	Lastomir	46.578	21.515	39.	54	86	109	128	144	189	227	265	D	0	112	0	0
1	D Point	100	L-2	Lastonir	40.685	21,932	39	1915	01	103	125	341	107	225	258	- 31	õ	192	5.763	
1	t Point	177	ML-1	Malbica	48.593	21.881	36	83	90	113	.139	150	191	236	262	0	0	122	0	0
1	2 Point	195	PT-1	Ptrukše	48,491	22.058	3B	54	89	114	136	161	201	236	265	Ð	0	114	0	0
. 1	9 Point	195	PT-2	Ptrukcšo	40.476	22,005	39	57	-91	115	140	162	203	237	204	U.	0	1 114	0	u
-1	 Point 	197	PT-7	Phruksia	48,491	221.02	38	85	- 91	115	140	164	202	236	262	0	0	114	0	0
1	5 Point	200	PZ-1	Pozdžovce	48.763	21.864	40	57	93	119	140	155	189	221	265	D	0	120	0	0
1	5 Point	201	PZ-2	Pozdišovce	40.745	21,847	40	58	- 95	119	140	162	195	227	207	0	0	116	0	U
1	7 Point	225	RE-1	Reach	48.878	21.983	38	82	85	108	135	152	192	225	256	0	0	119	0	0
1	B Point	228	RH-1	Rendské Hárne	48.858	22.169	28	44	62	78	93	108	133	170	198	D	0	73	0	a
1	9 Point	250	134-1	Rozanovce	46.763	21,373	33	55	79	95	113	332	165	195	Z24	D	0	94	0	6
2	3 Point	265	S-1	Stretana	48.827	22.017	41	66	86	211	131	152	195	230	261	28	0	153	0.109	54
2	i Point	258	S-5	Stretava	48,827	22.034	41	66	89	113	134	156	195	230	260	D	0	115	0	0
2	2 Point	267	5.7	Stretava	40.61	22.051	42	56	09	113	136	158	195	228	261	D	0	113	0	. 6
2	3 Point	258	S-21	Stretava	48.578	22.051	-41	65	89	112	135	160	197	236	270	. 80	1	114	2.722	14
2	4 Point	263	SE-2	Sebovce	48.712	21:746	97	64	88	108	128	146	185	230	266	Ð	0	114	0	0
2	5 Point	264	SE-3	Sebovce	48,661	21.644	33	50	76	97	110	130	175	221	265	0	0	100	0	Ű
2	3 Point	281	1-1	Trebasov	48.61	21.783	35	83	86	114	132	150	190	226	267	0	0	112	0	0
2	7 Point	292	T-6	Trebisov	48,61	21.712	94	84	85	108	122	145	185	224	259	n	0	109	0	n
- 2	9 Point	293	105-1	Streda n/Boolrogom	46.373	21.729	44	95	63	104	110	133	167	202	233	D	0	94	0	0
2	9 Point	285	TMS-1	Sobrance	48.763	22.136	33	.48	68	487	103	118	150	182	215	. 0	0	82	0	0
3	D Point	298	TS-1	Trhovidte	48.729	21.796	38	84	87	118	136	153	193	231	260	D	0	114	0	0
3	Point	297	TR-12	Trhovište	46.745	21.93	38	56	91	0	0	U	0	C	D	D	0	114	0	0
3	2 Point	286	18-26	Inhoviste .	48.746	21.813	38	87	89	120	141	161	200	228	259	0	0	114	0	. 0
3	3 Point	345	Z-1	Zatin	48.401	21 532	44	70	98	115	135	154	195	230	264	D	0	114	0	. 0
3	\$ Point	363	ZH-2	Iánura	46.098	20.915	17	29	44	59	72	ES.	115	135	165	D	0	91	0	0

2.3. Phase 3. Interpolation of Geo-database data (eg. Temperature, heat flow, etc...)

The type of interpolation is a function of data distribution in terms of geography and the physical process of study. The name of the interpolation used for create geothermal maps of Slovakia is: SPLINE INTERPOLATION.

Figure 4: Spline interpolation

Spline estimates values using a mathematical function that minimizes overall surface curvature. There are two variations of spline – regularized and tension.

Tension spline uses only first and second derivates, it includes more points in the spline calculations, which usually creates smoother surface but increase computation time.

2.4. Phase 4. Overlapping levels

With use of Geographic Information System (GIS Technology), is possible to bring together different levels of information related to area in question and to geo- referenced data.

Available data:

- Wells (location and depth)

- Geomorphological units
- Basic geochemical rock types
- Heat flow

Figure 5: geo-referenced wells and Basic geochemical rock types

Figure 6: Basic geochemical rock types and faults

Figure 7: Geomorphological units and faults

Figure 8: Heat flow density, faults and wells

2.5. Phase 5. Results and interpretation of geological and geothermal data

Geothermal maps were made using a particular type of interpolation (Spline interpolation) that can analyze the data having the slightest margin of error, so you have an excellent graphic representation of data available.

Geothermal maps shown below, represent the temperature distribution in depth throughout the area examined, starting from the exact data available within the wells, we interpolate the other data in the surrounding areas.

Figure 9: isotherms at a depth of 500 m - superposition of isotherms based on basic geochemical rock types -

Figure 10: Map of isotherms at a depth of 500 m

Figura 11: isotherms at a depth of 1000 m - superposition of isotherms based on basic geochemical rock types -

Figure 12: Map of isotherms at a depth of 1000 m

Figure 13: isotherms at a depth of 1500 m - superposition of isotherms based on basic geochemical rock types -

Figure 14: Map of isotherms at a depth of 1500 m

Figure 15: isotherms at a depth of 2000 m - superposition of isotherms based on basic geochemical rock types -

Figure 16: Map of isotherms at a depth of 2000 m

Figure 17: isotherms at a depth of 2500 m - superposition of isotherms based on basic geochemical rock types -

Figure 18: Map of isotherms at a depth of 2500 m

Figure 19: isotherms at a depth of 3000 m - superposition of isotherms based on basic geochemical rock types -

Figure 20: Map of isotherms at a depth of 3000 m

Figure 21: isotherms at a depth of 4000 m - superposition of isotherms based on basic geochemical rock types -

Figure 22: Map of isotherms at a depth of 4000 m

Figure 23: isotherms at a depth of 5000 m - superposition of isotherms based on basic geochemical rock types -

Figura 24: Map of isotherms at a depth of 5000 m

Figure 25: isotherms at a depth of 6000 m - superposition of isotherms based on basic geochemical rock types -

Figure 26. Map of isotherms at a depth of 6000 m

The area indicated by the arrow represents an area with high enough temperatures (280 °C), this situation was highlighted at all depths. In this area are already located more than twenty wells, from

the qualitative evaluation of the graphical representation of the map is possible to move to a quantitative estimate of the geothermal resource by performing in situ analysis of existing wells.

Figure 27: gradient

The chart above shows the comparison between the average gradient of the earth and the gradient of one of the wells in the area indicated in the previous map.

Within the oval can be seen that the straight line assumes a different trend, with increasing depth, the temperature remains constant and assuming that the flow of heat is high. This situation represents the ideal condition for the exploitation of geothermal resources, means that this area has a high geothermal potential, with a constant charge.

The map of the heat flow shows that the area indicated by the arrow is characterized by a high flow, confirming that it has been assumed by the graph of the gradient

Figure 28: heat flow density

Edit Wew Insert Selection Tools Window Help •••••••••••••••••••••••••••••						
Q: Q: ::: :: (?) (Power Q: Q: ::: ::: ::: ::: ::: (Power Q: Q: ::: ::: ::: (Power Q: Q: ::: ::: ::: ::: ::: :: (Power Q: Q: ::: ::: ::: ::: ::: ::: ::: ::: :						
Editor						
20 Analyst ▼ Layer: power ?						
Image: Second condition Image: Second conditin Image: Second conditin						
x 1 12 13 14 15 16 17 18 19 20 21 22 23 124 125 126 127 128 199 100 111 112 113 114 115 116 117 118 119 200 121 122 123 124 125 126 127 128 129 2 Image: method option Image: method option<						
Image: state state state state state						
Weiscopysuu						
POTENTIAL MAPS OF THE GEOTHERMAL ENERGY IN KOSICE REGIONAL GOVERNMENT						
Maps of the isotherms at a depth of 2500 meters s						
Spline temp 2500m						
- 33 C Finite Line Line Line Line Line Line Line Lin						
- 45 - 48 Low : 14 Low : 14						
-51 4 4000 NAME_OF_WE_ML-1						
-63 N -66						
Display Source Selection B C II 4						
💟 (21°52'45.41'): 48°33'16.9"N 20.82 10.00 Certimeters						

Figure 29: well ML1

Figure 30: power

Nuovo ESRI ArcMan Document - ArcMan - Ar							
File Edit View Insert Selection Tools Window Help							
④ ⊝ ∷ ∷ ♡ @ ♠ ⇒ № □ ▶ 0	▲ \$ ▲ \$ 冈河书书才终带尽口○ 昆斑 哈哈马马 國際多星示率回应多田中国 \$ \$ \$ 4 \$						
Fditor Task: Create New Feature	▼ Tarcel: ▼ X ⊙ E ⊠ Snahlal Analyst ▼ Layer: Dower ▼ 100 №						
3D Apalyst - Laver: power							
Layers	———————————————————————————————————————						
e U wellsCopyTDS	ביוויב ביניג אוויניג						
	POTENTIAL MAPS OF THE GEOTHERMAL ENERGY IN KOSICE REGIONAL GOVERNMENT						
awells5000							
∃ 🔲 wells4000 🕞	Power MW						
∃wells3000							
e wells2500 ₽	ann- Antes						
●							
	a non the second						
weils heat now							
• wells1000	Stetua Stetua						
wells							
0 □ ctour_6000 m T°C							
- 165	1 95 1.546 10 Ingrandisci						
<u> </u>	6 121 8.783 17 9 110 37.013 23 Na_Cl						
	12 0 7.905 0 Na 5 112 6.783 9						
190	0 113 0.109 14 Na_CI						
- 200 - 200	am						
- 205 - 210							
	100 150 200						
- 225	Record: H 4 5 + H Show: Al Selected ds V						
- 235							
Display Source Selection 3 D 2 II 4	• •						
Drawing 🕶 📐 🕢 🚭 🗆 👻 🗛 🕶 🖾 🙋	Book Antiqua 🔽 23.4 🔽 B I U A · 🕅 · 🛃 · · ·						
Start 📄 file salvati da Gis	Nuovo ESRI ArcMap						

Figure 31:

3. Conclusion

Graphical representation of the geothermal maps set out above allows a direct evaluation of areas most important from the point of view of the geothermal resource.

In the case of maps of isotherms at various depths, the temperature is the most important data, these maps show what is the temperature gradient in the study area.

Using the GIS program, is possible to press a button on a selected area (eg a well) and consult all the data available from the table attributes, such as temperature data at various depths.

Another peculiarity of the GIS is that allowing to continually add new information to the maps already made in order to make more precise the qualitative estimation of data.

