

KATRIN Toward a High-Precision Neutrino-Mass Determination with Tritium

Diana Parno for the KATRIN Collaboration Carnegie Mellon University Neutrino 2018 – Heidelberg – 7 June

- Neutrino mass through β decay
- The KATRIN experiment
- The story through April
- First tritium runs
- Outlook

Probes of Neutrino Mass

(TA)	
Ros /	
146	

	v oscillation
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$
Present knowledge	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \mathrm{eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \mathrm{eV}^2$
Next gen. / near future	
Model dependence of mass extraction	No mass-scale information

rnegie Mellon Universit

 Extract effective neutrino mass from spectral shape near endpoint
 3

$$m_{
u,eff}^2 = \sum_i |U_{ei}|^2 m_i^2$$
 $pprox m_u^2$ (quasi-degenerate regime)

$m_{v,eff}^{2}$: A Brief History in Tritium

Adapted from J. Wilkerson, Neutrino 2012

Diana Parno -- The KATRIN Experiment

Recipe for a New Measurement

- The observable is $m_{\nu,eff}^2$
 - ♦ 100x better uncertainty \rightarrow 10x better m_{v,eff} sensitivity
- Improve statistics
 - Luminous β source (10¹¹ decays/s)
 - Excellent energy resolution (0.93 eV)
 - Low backgrounds (even at sea level)
- Improve systematics
 - Extensive commissioning
 - Molecular physics
 - Column density (activity, scattering)
 - Point-to-point energy scale

• Neutrino mass through β decay

The KATRIN experiment

- The story through April
- First tritium runs

Outlook

• Neutrino mass through β decay

- The KATRIN experiment
- The story through April
- First tritium runs
- Outlook

2017: ^{83m}Kr Spectroscopy

 July 2017: Monoenergetic electrons from two beamline ^{83m}Kr sources

G. Drexlin et al., Adv. High Energy Phys. 2013 (2013) 293986

• Neutrino mass through β decay

- The KATRIN experiment
- The story through April
- First tritium runs

Outlook

KATRIN'S Very First Tritium

- Normal operation: Continuous gas flow through closed tritium cycle with purification
- First commissioning: Inject known gas mix from prepared sample cylinders (4 doses)
 - ◆ 0.5% T atoms circulating in D₂ gas (90% nominal density)

First tritium injection: Friday 18 May 7:48 am UTC

Diana Parno -- The KATRIN Experiment

11:00

10:50

10:40

specificatio

Scanning the Tritium Spectrum

KATRIN tritium scan #1 (Day 2 of tritium commissioning)
Immediate comparison of data to model

Model initialized with system 80 Model (no fit) Count rate [cps] parameters from Measurement slow controls Very good reliminary agreement "out of the box" ()18450 18600 18400 18500 18550 Retarding energy [eV]

rie Mellon Univer

Fitting the Tritium Spectrum

Later that day, we fit the last 200 eV of the spectrum

First Look at Fit Systematics

• Examined 400-eV analysis window for a single scan

- Covariance-matrix approach to systematics
- Propagated correlations with multisim method
 - Many systematics will improve after this commissioning cycle (e.g., column density)

KATRIN is a working experiment

- First full-beamline data, Oct. 2016
- First spectral measurement of radioactive source, July 2017
- First tritium, 3 weeks ago!
- Tritium commissioning still underway
- Still some more commissioning work to do
 - Measurements this fall with D₂ gas
- We expect $m_{v,eff}$ data in early 2019
- Additional, bonus sensitivities as well
 - Sterile neutrinos at eV and keV scales
 - Right-handed weak currents

Funding and support from: Helmholtz Association (HGF), Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, and 05A17WO3), Helmholtz Alliance for Astroparticle Physics (HAP), and Helmholtz Young Investigator Group (VH-NG-1055) in Germany; Ministry of Education, Youth and Sport (CANAM-LM2011019), cooperation with the JINR Dubna (3+3 grants) 2017–2019 in the Czech Republic; and the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-AC02-05CH11231, and DE-SC0011091 in the United States.

Diana Parno -- The KATRIN Experiment

Backup Slides

- List of KATRIN posters at Neutrino 2018
 - (Check online proceedings for poster files!)
- Accounting for backgrounds in the KATRIN sensitivity
- List of recent technical papers
- Brief introduction to the TRIMS experiment

KATRIN Posters (all in Monday session)

KATRIN components

- The Condensed Krypton Source (CKrS) as **Calibration Tool for KATRIN** (Fulst, #2) - First stability measurements of the WGTS cryostat performance (Seitz-Moskaliuk, #5) - Commissioning + Characterization of **Tritium Gas Circulation** (Krasch, Marsteller, #11) - High Voltage Monitoring + Characterization (Thorne, Rodenbeck, Thümmler, #12) - Sources of monoenergetic electrons from decay of ^{83m}Kr (Suchopar et al., #19) - Retention measurements of the KATRIN **Cryogenic Pumping Section** (Röttele, #25) - Electron Gun (Ranitzsch, Sack, #26) - Calibration strategy + status of tritium purity monitoring (Niemes, Zeller, Schlösser, #27) Analysis and simulation methods - Analysis Strategies (Karl, Edzards, #3) - Modeling of the response function (Behrens, Schimpf, #15) - Methods for an unbiased neutrino mass analysis (Sibille, Heizmann, Wolf, #29)

- Samak: Matlab Simulation and Analysis (Lasserre, Schlüter, Morales, #158)

System commissioning analysis

- Investigations of the interspectrometer Penning trap (Fedkevych, #4)

- Forward Beam Monitor data from KATRIN first tritium measurements (Hickford et al, #7)
- Alignment studies (Deffert, Choi, #8)
- First spectroscopic measurements of conversion electrons from the gaseous Kr-83m at the KATRIN experiment (Slezák, #13)
- Background Characterization (Pollithy, #16)
- Results from the First Tritium campaign (Heizmann, Marsteller, #17)

- Tritium ion monitoring during KATRIN First Tritium (Klein et al., #28)

Sterile-neutrino searches

Silicon drift detector prototypes ... for keV-scale sterile neutrino search with TRISTAN and ... first tritium data (Altenmüller et al., #116)
A model for a keV-scale sterile neutrino search with KATRIN: SSC-sterile (Slezák, Lokhov, et al., #133)
Search for keV-scale sterile neutrinos with

the first light of KATRIN (Huber, #135)

Background and Sensitivity

Recent Technical Papers

- Mobile, external magnetic-field sensing
 - Letnev et al., arXiv:1805.10819 [physics.ins-det]
- Large-volume air-coil system
 - Erhard et al., JINST 13 (2018) P02003
- Electron gun for commissioning
 - Behrens et al., Eur. Phys. J. C 77 (2017) 410
- Kassiopeia particle-tracking software
 - Furse et al., New J. Phys. 19 (2017) 053012

Tritium Recoil-Ion Mass Spectrometer Molecular theory¹ predicts ³HeT⁺ should dissociate in 43-61% of β decays near endpoint Two 1950s experiments^{2,3} found 5-10% dissociation over β spectrum TRIMS is a time-of-flight mass spectrometer, now taking data at University of Washington to resolve the discrepancy! **TRIMS collaboration:** Baek, 30 minutes with HT – T₂ gas mix 60 30 Kallander, Lin, Machado, Parno, eliminar. Robertson, Vizcaya Hernández 50 25 Ion Energy (keV) **TRIMS Posters (Mon. session)** 20 - TRIMS: Validating Tritium **Molecular Effects for Neutrino Mass** 15 30 **Experiments** (Lin, #6) - Detecting light ions and electrons 10 20 with TRIMS silicon detectors (Baek, Vizcaya Hernández, #88) 5 10 ¹Jonsell et al., PRC **60** 034601 (1999) 0 50 400 200 250300 350 100150 ²Snell et al., J. Inorg. Nucl. Chem. **5** 112 (1957) ³Wexler, J. Inorg. Nucl. Chem. **10** 8 (1958) Ion Timing – Beta Timing (ns)