Neutrino 2018, Heidelberg, 4-9 June 2018

Future neutrino telescopes in water and ice

Uli Katz Erlangen Centre for Astroparticle Physics Friedrich-Alexander University of Erlangen-Nürnberg 6 June 2018

- Introduction setting the scene
- Neutrino astronomy
- Neutrino physics
- Conclusion

Presentation by Ignacio Taboada

Presentation by Tyce DeYoung

Note: P[k/nnn] points to poster #nnn in session #k

Introduction – setting the scene

Detecting GeV to PeV neutrinos using Cherenkov detectors in deep water or ice ...

The neutrino telescope world map 2018

Neutrino 2018, Heidelberg

The neutrino telescope timeline

Operation

The Global Neutrino Network (GNN)

- Umbrella organisation of current & future neutrino telescope collaborations (ANTARES, Baikal/GVD, IceCube, KM3NeT)
- Objectives:
 - Forum for strategy development
 - Enhanced cooperation
 - Common analyses
 - Yearly common meetings (MANTS) & biannual conference (VLVnT)
- Can/will(?) be instrumental in providing global plan for the development of neutrino astronomy
- <u>www.globalneutrinonetwork.org</u>
- Similar future role as GWIC is playing for gravitational waves?

Neutrino astronomy

- High-energy cosmic neutrinos discovered by IceCube
- Recent neutrino/X-ray/gamma-ray coincidence (IceCube): First hint of a neutrino source?
- Neutrinos from Galactic accelerators
- "Real neutrino astronomy"
- → We need more statistics, increasingly precise data, and full sky coverage

Rich science program:

- \rightarrow Neutrino astronomy
- \rightarrow Particle physics
- \rightarrow Dark matter searches
- \rightarrow Exotics
- → Earth and Sea sciences, glaciology, …

Neutrino astronomy: where are we?

The Baikal GVD

- Project to construct a Gigaton (=km³) detector in Lake Baikal
- Phase 1 (GVD-1): 8 clusters (see figure), 0.4 km³
- 3 clusters operational, 1-2 more clusters to be deployed per season
- Commissioning, calibration, sensitivity studies in progress
- Final goal: 27 clusters, 1.5 km³

GVD construction

P[1/106] L. Fajt

ERLANGEN CENTRE

FOR ASTROPARTICLE

- Deployment in winter from frozen surface of Lake Baikal
- Maintenance & repair operations possible
- 10-inch Hamamatsu PMTs, in situ digitisation, data transfer via Ethernet

GVD: first data analysed, first v's ...

• 2016 data: select atmospheric muons (≥6 OMs at ≥3 strings)

U. Katz: Future neutrino telescopes

Neutrino 2018, Heidelberg

GVD: first data analysed, first v's ...

- 2016 data: select atmospheric muons (≥6 OMs at ≥3 strings)
- Apply quality cuts and boosted decision tree for v/µ separation

GVD: first data analysed, first v's ...

- 2016 data: select atmospheric muons (≥6 OMs at ≥3 strings)
- Apply quality cuts and boosted decision tree for v/μ separation
- ... and observe first neutrinos!

... and first results from 2016+2017 data

 10^{3}

 10^{-3}

 10^{2}

 10^{3}

One high-energy cascade • event (157 TeV [reconstr.])

Search for events coincident with GW170817 in time windows of ± 500 s and 14 days after NS-NS merger

- \rightarrow no signal found
- \rightarrow upper v flux limits for each decade of energy

ANTARES

 10^{7}

 10^{8}

 10^{9}

 10^{6}

E/GeV

 10^{5}

GW170817 Neutrino limits (fluence per flavor: $\nu_x + \overline{\nu}_x$)

 10^{4}

1010 1011

ERLANGEN CENTRE

PHYSICS

 ± 500 sec time-window

FOR ASTROPARTICLE

Auger

KM3NeT: the concept

U. Katz: Future neutrino telescopes

The KM3NeT Digital Optical Module

- 31 3-inch PMTs in 17-inch glass sphere (cathode area ~3x10-inch PMTs)
- Front-end electronics, digitisation, optical signal → glass fibre
- Single penetrator
- Advantages:
 - Increased photocathode area
 - 1-vs-2 photo-electron separation
 → better detection of coincidences
 - Directionality
 - Cost / photocathode area
 - Minimal number of penetrations
 → reduced risk

KM3NeT Deployment

← Deploy
 to sea bed

Release by ROV

Unfurl \rightarrow

Collect frame

U. Katz: Future neutrino telescopes

KM3NeT 2.0 = ARCA and ORCA

U. Katz: Future neutrino telescopes

Neutrino 2018, Heidelberg

KM3NeT 2.0 = ARCA and ORCA

U. Katz: Future neutrino telescopes

Neutrino 2018, Heidelberg

KM3NeT status

ARCA

- 3 strings deployed Dec 2015 & May 2016
- 2 out of 3 operated, string #3 with short ٠ in power system, recovered
- Attempt to power the 2 deployed strings later this year
- Full restoration of sea-bed network by ٠ mid-2019

ORCA

- Successful deployment & operation of first string (Sept 2017)
- Cable problem, replacement in summer 2018, resume operations thereafter

Construction

- DOM and DU assembly proceeding
- Deployment after repairs, consistent with • schedule on previous slide

Track-like events:

Cascades:

- Muon energy: d(log10 E)=0.25-0.3 at E > 10 TeV
- Cascade energy: 5-10% at E > some 10 TeV
- Good angular resolution helps enormously in source associations

Diffuse flux sensitivity

 Event numbers (cut&count):

> 16/9 cascades 6.5/4.4 track-like (signal/background) per ARCA year

• Note:

KM3NeT and IceCube are complementary in their fields of view, and in energy range and flavour coverage for a given source direction

Other flux assumptions yield 10-30% improvement in discovery time.

Point-source results →see also talk by Ignacio Taboada (We 14:00)

- Significant discovery potential for extragalactic sources, complementing IceCube field of view
- Note: We compare detector sensitivities, not discovery potential at a given time – IceCube will have ~10 years of data when KM3NeT will start operation

- Refined analysis and starting-event study in the pipeline
 P[2/182] K. Pikounis
- Galactic sources in reach

ERLANGEN CENTRE

PHYSICS

FOR ASTROPARTICLE

IceCube: next step = Upgrade

IceCube-Upgrade

- 7 additional strings in Deep Core domain, densely instrumented
- Objectives:
 - GeV neutrinos: т appearance, Dark Matter, ...
 - Improved understanding of ice properties → better precision, reduced systematic uncertainties
 - Opportunity to test new hardware developments
- Funding commitment expected very soon

Array	String Spacing	Module Spacing	Modules / String
IceCube	125 m	17 m	60
DeepCore	75 m	7 m	60
Upgrade	20 m	2 m	125

P[2/163] J. Evans

Neutrino 2018, Heidelberg

IceCube Upgrade: improve data quality

- Limiting factor for reconstruction precision and flavour id: Ice properties
- Precision calibration with Upgrade (dense instrumentation, additional devices)
- Better angular resolution. W/o ice systematics: Cascades 3-5°; tracks 0.1-0.2°
- Yields improved multi-messenger capabilities, improved tau identification

IceCube: Sensor developments

Further light sensor technologies under study

Multi-PMT optical module (mDOM)

- 24 × 3" PMTs (e.g. Hamamatsu 12199-02)
- 14" borosilicate glass vessel rated @ 700 bar
- Based on proven KM3NeT design
- Baseline design for Upgrade

P[1/154] M. Unland

"D-Egg"

- 2 x 8" PMTs
- UV-transparent glass and gel
- R&D and production by Japanese groups

IceCube Gen2

- Next-generation neutrino observatory at South Pole, with
 - High-energy deep-ice detector (High-energy array, HEA)
 - Cosmic-ray and veto surface array (CRA)
 - Radio array (RA)
 - High-density core for low-energy neutrinos (PINGU)
- Funding application expected in NSF MREFC scheme (~2020)

The IceCube Gen2 Facility

time

IceCube Gen2: high-energy array

Following up IceCube's PeV v's: Detection of neutrinos with 100+ TeV

- Events are huge and produce a vast amount of Cherenkov light
- Sparse instrumentation suffices: String distance 240-300 m, 80 DOMs/string, 1.3 km string length
- Test with real IceCube PeV shower event, masking strings: Resolution 30° in direction, 10% in energy, 12m in vertex position

Detection of neutrinos with 100+ PeV

- Radio technique by far more cost-effective at these energies
- Important input/experience from ARA and ARIANNA projects P[2/172] C. Glaser
- Many open questions on technology and design
- Target: Cosmogenic neutrinos from GZK effect

See presentation by Amy Connolly (We 14:40)

Neutrino physics with neutrino telescopes

v physics with v telescopes: where are we?

- IceCube and ANTARES have proven sensitivity to neutrino oscillations
- IceCube/Deep Core has demonstrated precision competitive to leading experiments
- New opportunities studied in much detail: Neutrino mass ordering, tau appearance
- Need suitable instrument(s) for these measurements
- CP violation not yet in reach, but might be in future

see talk by Tyce DeYoung (Tu 11:55)

Rich science program:

- \rightarrow Neutrino physics
- \rightarrow Dark matter searches
- → Non-standard v interactions

U. Katz: Future neutrino telescopes

Example 1: Neutrino mass ordering (NMO)

Fundamental parameter of particle physics.

- \rightarrow Knowledge required to investigate neutrino CP violation
- \rightarrow Important also for cosmology

NMO from v oscillations in Earth

NMO from v oscillations in Earth

U. Katz: Future neutrino telescopes

NMO measurement

ERLANGEN CENTRE FOR ASTROPARTICLE

- Primary signature: Energy-zenith distribution
- Inverse signatures for v and \overline{v} , but signal measurable since $\sigma(v) \approx 2 \sigma(\overline{v})$ and $\Phi(v) > \Phi(\overline{v})$
- Measurement requires
 - best possible resolution in energy and zenith
 - separation v_e/v_μ
 - detailed understanding of systematics
- In-depth studies by KM3NeT and IceCube, extensive cooperation
- Results very similar

P[2/161] S. Bourret

U. Katz: Future neutrino telescopes

Example 2: Neutrino mixing

- Target $v_{\mu} \rightarrow v_{\tau}$ oscillations
- Detect v_τ events on a statistical basis (up-going, shower-like) 3
- Case study for IceCube Upgrade:
 - ~2500 v_{τ} events / year
 - Drastically improve measurement of atmospheric mixing parameters
 - Chance to determine octant of θ_{23}
- Also possible with ORCA
 P[2/159] T. Eberl

Future visions

- Neutrino beam Protvino-ORCA (P2O)
 - Target: measure CP-violating phase
 - Requires substantial effort in Russia
 - Currently under investigation
 - See D. Zaborov et al., <u>arXiv:1803.08017</u>

 Extended ORCA and/or PINGU (Super-ORCA, Super-PINGU)

P[2/158] J. Hofestädt

- Target: measure CP-violating phase with atmospheric neutrinos
- See S. Razzaque, <u>arXiv:1406.1407</u>
- Requires ~5-10 Mton eff. volume with energy threshold 0.5-1 GeV
- Being investigated for ORCA

Conclusions

- Neutrino astronomy is on its way to increased sensitivity and full sky coverage
- Neutrinos are an indispensable ingredient of multi-messenger astronomy
- Neutrino telescopes also offer opportunities for precision measurements in neutrino physics
- Timelines for next decade(s) synchronised with funding scenarios
- Personal remark: global coordination to be strengthened