Coherent Neutrino-Nucleus Elastic Scattering with Reactor and Solar Neutrinos

Complementarities in vA_{el} among v-sources

 physics
 Experimental Requirements

 Projects with Reactor and Solar v's

 Solar: LXe Experiments
 Reactor: Variety of Techniques & Locations

 Prospects & Outlook

Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 June 2018

Sources: Input from Various Experiments and/or Slides/Papers in Public Domains

W Observation of vA Elastic Scattering by COHERENT@π-DAR-V [Science-2017, 1st talk this Session] set the stage for asking finer questions & with diverse techniques [the shapes and shades of "fireworks"...]

- Potentials on BSM/NSI [next talk], nuclear physics form factors, astrophysics, applications
- Characterize Dependence on q², E_v & Target (Z,N), manifested as
 - **✓** FF(q²) < 1
 - **Cross-sections "do not scale as** $[N-Z(1-4sin^2\theta_w)]^2$ "
 - ✓ QM coherency transition Quantify with "decoherence angle < ϕ > " [PRD16] (α ≡ cos < ϕ > ∈ [0,1])

Different v-Sources (E_v) Probe Complementary Kinematical Regions

v-Spectra

 $\sigma(vA_{el})$ weighted v-Spectra

TABLE II: The half-maxima in the distributions of $[\Phi_{\nu} \cdot \sigma_{\nu A_{el}}]$ at $T_{min}=0$ for the different neutrino sources, and the values of $\langle \alpha \rangle$ probed by the selected target nuclei. The ν_{μ} from DAR- π is mono-energetic.

ν	Half-Maxima of $[\Phi_{\nu} \cdot \sigma_{\nu A_{el}}]$	$\langle \alpha \rangle$ with		
Source	in E_{ν} (MeV)	Ar	Ge	Xe
Reactor $\bar{\nu}_e$	0.96 - 4.82	1.00	1.00	1.00
Solar- ⁸ B ν_e	5.6 - 11.9	0.99	0.99	0.98
DAR- $\pi \nu_{\mu}$	29.8	0.91	0.86	0.80
DAR- $\pi \nu_e$	27.3 - 49.8	0.89	0.83	0.76
DAR- $\pi \bar{\nu}_{\mu}$	37.5 - 52.6	0.85	0.79	0.71

Measureable (Recoil Energy, Event Rate, α) Scales for vA_{el} from v-Sources

 ¬VA_{el} from Solar & Atmospheric v's constitute the "neutrino floor" (irreducible background) to WIMP searches
 ¬VA & χA projects share common techniques and challenges
 ¬Next(+) Generation (of LiqXe) Projects close to the required sensitivities for ⁸B solar-v
 ¬Surmounting this "background" – directional sensitivities

Next(+) Generation Large Liq-Xe Experiments ...

Poster

v-18

Next: PandaX-4T (4-ton target)

- 🗹 🛛 @ CJPL
- ✓ Fiducial mass 2.8 ton, threshold 5 keVnr,
- Background NR~1 /ton-year
- Meutrino CNNS: 0.3/ton-year
- ✓ On-site assembly and commissioning: 2019-2020

Total mass – 10 T WIMP Active Mass – 7 T WIMP Fiducial Mass – 5.6 T

- 🗹 🛛 @ SURF
- threshold 6 keVnr,
- **Background NR~0.6/1000days**
- ☑ Neutrino CNNS: ~0.7/1000days
- Commissioning: 2019

144 cm drift TPC Total: 8 000 kg Target: **6 000** kg Fiducial: 4 500 kg

- 🧭 🛛 @ Gran Sasso
- threshold 4 keVnr,
- Background NR~2.5/20 ton-yr
- ✓ Neutrino CNNS: ~4.7/20 ton-yr
- **Operation: 2019-2025**

DARWIN Project (2025+)

- ✓ Detector filled with 50 t LXe, 40 t in the TPC (2.6 m electron drift, 2.6 m diameter)
- ☑ Light sensors: PMTs, SiPM arrays, ...
- ✓ Shields: large water Cherenkov, and neutron veto
- ☑ Background goal: dominated by neutrinos
- threshold 4 keVnr
- ~10 years data taking

Prospects of Observing solar vA_{el} in Xe ...

✓ Typical threshold for Liq-Xe experiments with "(S1,S2)" for ER/NR differentiation is light yield corresponding to "averaged" <~4 keVnr>, nominally too high for solar vA_{el}

- ➤ Large spread in event-wise keVnr ⇔light yield conversion (Poisson, energy resolution, fiducial non-uniformity) ⇒ thorough understanding necessary
- Observable 0.2-0.3 events / ton-year (~5 events in 20 t-y XE-nT; ~100 events in 400 t-y DARWIN)

✓ "S2-Only" has lower "<~1 keVnr>" threshold, rates much larger (~90 events / tonyear); but no ER/NR discrimination ⇒ suppression & understanding of ER background crucial

- ✓ 3.8 GW MW Research Reactor ; 30 m distance
 ✓ Advanced CCD (Si) detector ; ~40 eVee threshold ; Event ID capabilities
 Expected number of events (event/kg/day) $E_{th} = 5.5 \text{ eV} (1\sigma_{RMS})$ ~ 28.3 $E_{th} = 28 \text{ eV} (5\sigma_{RMS})$
- Engineering Run, 1-g detector, completed and successful
- **Data taking with O(100 g) detector.**
- Challenges: Background, Long integration time, small mass

MIVER @ TAMU ~MW Research Reactor

- ✓ 1 MW Research Reactor; 2-3m distance! ~15 mwe
- CDMSlite-type cryogenic detector (bolometric amplification); Ge/Si; O(100 eVee) threshold demonstrated
- Rate: 1000 /kg-day at 10 eVnr threshold
- Moveable Core tests short baseline oscillation
- 10 kg payload with sensitivity to CNS in a month
- ✓ Challenges: Background, Long thermalization time

Status: Dilution fridge commissioned Dilution fridge commissioned Have <1000/kg-keV-day in ROI. Goal ~ 100 Engineering data taking late summer

Candidate Detectors: "to repurpose DM & 0v \beta\beta bolometers"

RED-100 @ Kalinin 3 GW Power Reactor

- **Dual Phase Xenon Detector**
- ✓ ~100 kg Fid. Vol.
- ✓ Threshold < 1 keVnr Xe-recoil</p>
- 19 m from core KNPP
- ✓ O(100 events)/100-kg-day !
- ✓ Challenges: Background, Long drift time ...
- **☑** Installation: late 2018

Poster

vGeN @ Kalinin 3 GW Power Reactor

vGEN (under the construction) ~ 4×0.4 kg HPGe, threshold ~ 350 eV 10 m from reactor!! bkg ~ 1 cts/(keV kg day) at LSM

Challenges: Threshold & Background ...

CONUS: Coherent Neutrino nUcleus Scattering

location: nuclear power plant in Brokdorf (GER) detector core distance: 17 m core strength: 3.9 GW(max.) total Ge detector mass: 4 kg goal noise threshold: <=300 eV goal bg rates in ROI: O(bg) = 10 cts/(d*kg*keV) commissioning/data collection: in progress

Werner Manes previous tal

TEXONO at Kuo-Sheng Reactor

R&D on Pushing Threshold on Ge-Ionization Detectors

R&D on Ge-Ionization with Charge Amplification

GEMADARC

Germanium Materials and Detectors Advancement Research Consortium

- ✓ Ge-IA, following concept paper of [Starostin & Beda 2000] on Ge planar strip detectors, extend to point-contact design.
- Expect Charge multiplication @ 10⁵ V/m Efield
- ✓ Potentials: O(10 eVee) threshold, with Ge-Ionization, LN2 operation, fast ~µs signals
- ✓ Applications: vA_{el} & other v-physics at reactor, dark matter searches
- Groups: USD (US), AS (Taiwan), BHU (India)
- **✓** Start: early 2018.

Avalanche with V=4000 V ; E~105 V/m at O(10 mm)

Prospects & Outlook

 \triangleright Probe finer questions on vA_{el} after 1st observation, both theory & experiments [Recommend: Decouple C from ENNS in writing, not to suppress the richness in C] A natural Portal for Synergy between Neutrino and Dark Matter programs Reactor vA_{el} -✓ Diverse techniques to reduce detector threshold, potentials applications in other areas ✓ Small(er) scale projects complementing large experimental facilities Solar vA, -✓ From Irreducible background to a potentially important physics output for future DM direct searches projects

Back Up + Web Archive Technical Materials

Coherency in Neutrino-Nucleus Elastic Scattering [PRD16]

Quantify transitions between Coherency & Decoherency
 Complementarity between different Sources & Target

$$\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi}\right] \left[1 - \frac{q^2}{4E_{\nu}^2}\right] \\ \left[\varepsilon ZF_Z(q^2) - NF_N(q^2)\right]^2$$

$$\alpha \equiv \cos \langle \phi \rangle \in [0, 1]$$

 $\langle \phi \rangle$: averaged decoherence angle

Cross-section Ratio relative to neutron

Cross-section Ratio relative to Full Coherency

$$\frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} = \{ Z\varepsilon^2[1+\alpha(Z-1)] + N[1+\alpha(N-1)] - 2\alpha\varepsilon ZN \}$$

$$\xi \equiv \frac{\sigma_{\nu A_{el}}(\alpha)}{\sigma_{\nu A_{el}}(\alpha = 1)} = \alpha + (1 - \alpha) \left[\frac{(\varepsilon^2 Z + N)}{(\varepsilon Z - N)^2} \right]$$

Standard Model Cross-Sections at KSNL

[with Quenching Function for Ge for nuclear recoils]

