
Towards Inter-Vendor Compatibility of True
Random Number Generators for FPGAs

Miloš Grujić, Bohan Yang, Vladimir Rožić and Ingrid Verbauwhede
imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
Email:{milos.grujic, bohan.yang, vladimir.rozic, ingrid.verbauwhede}@esat.kuleuven.be

Abstract—True random number generators (TRNGs) are fun-
damental constituents of secure embedded cryptographic systems.
In this paper, we introduce a general methodology for porting
TRNG across different FPGA vendor families. In order to demon-
strate our methodology, we applied it to the delay-chain based
TRNG (DC-TRNG) on Intel Cyclone IV and Cyclone V FPGAs.
We examine vendor-agnostic generality of the underlying DC-
TRNG principle and propose modifications to address differences
in structure of FPGAs. Implementation of the DC-TRNG on
Cyclone IV uses 149 LEs and has a throughput of 5Mbps, while
on Cyclone V it occupies 230 ALMs with an output rate of 12.5
Mbps. The quality of the random bits produced by the DC-TRNG
on Intel Cyclone IV and V is further confirmed by using NIST
statistical test suite.

I. INTRODUCTION

True random number generators (TRNGs) are essential
cryptographic components which generate unpredictable ran-
dom bits that can be used as challenges in cryptographic
protocols, secret keys, padding values and masks. TRNGs rely
on stochastic physical phenomena in order to generate truly
unpredictable outputs. The ever-increasing ubiquity of FPGAs
in modern cryptographic system has created the demand for
having FPGA compatible TRNGs. TRNG should have high
throughput, small logic consumption and appropriate accom-
panying stochastic model, which is needed as an explicit proof
of security [1], [2], [3]. Additionally, random bits should pass
statistical tests, such as NIST SP 800-22 [2] and AIS-31 [1].

Harvesting randomness from FPGAs is a challenge since
FPGAs are primarily developed to behave in a deterministic
digital manner. Most commonly used sources of randomness
in digital systems are the variable component of timing delays
– jitter and the metastable behavior of flip-flops. Consider-
ing that FPGA vendors aim to decrease variations of these
nondeterministic physical processes, they need to be carefully
characterized and studied before exploiting them as sources
of randomness in TRNG design. Moreover, physical variables
that describe these processes have significantly distinctive
values for FPGAs of different vendors due to different layouts
and process technologies. This often makes porting TRNG
designs from their native FPGA platform to the FPGA of a dif-
ferent vendor a challenging task, which requires an approach
different from the one used when porting conventional digital
designs. If not done correctly and without understanding of
the randomness generating processes, it can have disastrous
consequences on the security of the TRNG. The design of a
TRNG for FPGAs is further hindered by the fact that FPGA

design tools are not intended to deal with most primitives used
in TRNG designs because of their asynchronous nature.

In this paper we propose a methodology for migrating a
TRNG design to an FPGA platform of another vendor, while
maintaining the level of security. We then verify correctness
of the proposed methodology by applying it on the case of the
DC-TRNG, which is originally developed for Xilinx Spartan
FPGAs, by porting it to Intel Cyclone FPGAs. Moreover,
we propose a novel way of designing the priority encoder
component of the DC-TRNG by using the information about
the underlying FPGA carry-chain architecture obtained by
experiments and the stochastic model of the DC-TRNG. In
this way, we reduce the inherent bias introduced by differences
in propagation delays of carry-chain stages.

II. METHODOLOGY

As a solution for inter-vendor portability of TRNGs for
FPGAs, we propose a methodology with following steps:

• Resource identification
• Measurement of physical parameters
• Initial implementation parameters selection
• Architecture modifications
• TRNG implementation

In the remainder of this section we describe and explain each
step of our methodology.

1) Resource identification: Firstly, it is necessary to estab-
lish the availability of FPGA blocks and routing resources
which are needed for the TRNG implementation on the target
FPGA. Some TRNG designs require usage of specific FPGA
resources (e.g., PLLs), very fast lookup tables (LUTs) or
balanced routing paths [4], [5]. These are not always available
on FPGAs of all vendors, either because they do not exist or
they are already used by other digital blocks in the system. In
those cases, it is necessary to identify possible ways to replace
unavailable resources, but without deteriorating the security
level of the TRNG.

2) Measurement of physical parameters: After establishing
which resources will be used on the target FPGA, it is
essential to measure values of the physical parameters that
are specific for the target FPGA. These parameters are of the
utmost importance for the security of the TRNG, since they
characterize the randomness generating process and are thus
required for a correct entropy estimation of the TRNG on
the target FPGA. The values of the physical parameters will
differ significantly from one FPGA to another, due to process,

ENA

Q

Q
SET

CLR

D

Q

QD

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

LUT LUT LUT

CLK CLK CLK

m

n

Q11

Q12

Q1m

Q21

Q22

Q2m

Qn1

Qn2

Qnm

PRIORITY

ENCODER

C0

C1

Cm-1

RANDOM

BIT

Fig. 1. Architecture of the DC-TRNG.

n· dRO_stage dSTEPσacc

C0...Cm-1: 0 0 0 1 1 1

ENCODING: 0 1 1

RANDOM

BIT:

1

Fig. 2. Entropy extraction process.

voltage and temperature variations. Measuring of physical
parameters should be performed preferably on the target FPGA
itself, in order to obtain reliable values, without influence of
the noise introduced by the measuring equipment.

3) Initial implementation parameters selection: Only after
measuring the values of physical parameters on the target
FPGA, the designer can select implementation parameters for
it. These parameters can be the number of metastable elements,
the number of ring-oscillators, length of the delay lines, the
number of stages of the ring-oscillator etc. The choice of
implementation parameters is not only important from security
point of view, but also in terms of area, throughput and power.

4) Architecture modifications: Modifications of the original
TRNG design are necessary if there are substantial differences
in structure of native and target FPGA, if physical parameters
of target FPGA have values that hinder straightforward im-
plementation or if the throughput can be improved. However,
the modifications should be performed carefully, so that the
claimed level of TRNG security is maintained. After this step,
it might be needed to tweak implementation parameters.

5) TRNG implementation: Because of their asynchronous
nature, most TRNG designs require designer’s manual in-
tervention at some point of the design flow. This includes
instantiations of low-level FPGA primitives, manual placement
and routing. While it is usually feasible to automate placement
of TRNG components, some designs will still require manual
routing, which cannot be easily automated.

III. CASE STUDY: DC-TRNG
A. Behavioral Model and Operation Principle

DC-TRNG, originally proposed in [6], is a TRNG that
uses fast carry-logic (CARRY4 primitives) in Xilinx FPGAs

for time-to-digital conversion in order to precisely sample
the timing jitter of the ring-oscillators thereby enhancing the
amount of extracted entropy. The general architecture of the
DC-TRNG is given in Fig. 1. The entropy source is an n-
stage ring-oscillator, implemented using LUTs. The entropy
extractor consists of delay-chains constructed by cascading
CARRY4 primitives, the flip-flops and the priority encoder.

First, the oscillations in the ring-oscillator are enabled by
asserting signal ENA, and timing jitter starts to accumulate
over time. At the output of each delay stage of the ring-
oscillator there is a delay-chain, along which the ring-oscillator
signals propagate. After time tA, when sufficient jitter is
accumulated σacc(tA), the rising edge of the signal CLK
is asserted and states of the delay-chains are recorded in
corresponding flip-flops. Values of all flip-flops at the same
position in all parallel delay-chains are xored and the resulting
m-bit vector is connected to the input of the priority encoder
block. This block encodes the edge position. The LSB of the
edge position is the raw random bit at the TRNG output.

Platform-specific physical parameters that are of concern
for the DC-TRNG implementation are: delay of one stage of
ring-oscillator – dRO stage, standard deviation of LUT delay
– σLUT and delay of one stage of delay-chain – dstep.

The design parameters of the DC-TRNG are: the number of
stages of the ring-oscillator – n, the number of stages in each
delay-chain – m and the jitter accumulation time – tA. Several
restrictions exist for choosing the values of these parameters.
The value of parameter m has to be chosen such that the total
delay of the delay-chain m · dstep is greater than dRO stage.
This ensures that the jittery signal edge is always detected in at
least one delay-chain. Higher accumulation time tA results in
higher σacc, which in turn increases the amount of entropy
per bit. However, higher tA also means lower throughput.
The number of stages of the ring-oscillator – n is the only
implementation parameter that has no effect on the amount of
entropy per bit or correct operation of the DC-TRNG, and thus
can be chosen arbitrarily in order to achieve the most compact
implementation. Fig. 2 illustrates the process of extracting a
random bit from the position of the captured jittery edge. Raw
bits of the DC-TRNG are not statistically perfect, and are
enhanced by parity filter post-processing, to reduce biases and
pass NIST statistical tests [6], [7].

B. DC-TRNG on Intel Cyclone IV and V FPGA

Step 1: At this step, we identify which FPGA logic units the
DC-TRNG requires. Basic units in Cyclone IV - LEs (logic
elements) and in Cyclone V - ALMs (adaptive logic modules)
contain LUTs, flip-flops and carry-chains, needed for the DC-
TRNG porting. Carry-chain in Cyclone IV is implemented as
a small three-input LUT [8], while a carry-chain in Cyclone
V is implemented with only a few dedicated gates [9].

Step 2: The first physical parameter that we measure is
the jitter contribution of a single LUT. We implement an on-
chip jitter-measurement circuit, as recommended in [10]. The
setup consists of two ring-oscillators and two long tapped
delay-chains connected to their outputs. Accumulated jitter

10 20 30 40 50 60
0

5

10

15

20

Delay stages

W
id
th

[p
s]

max DNL = 1.2 ; mean DNL = 0.38 ; H
ideal

 = 7.5 ps

Fig. 3. Cyclone V - width of delay stages.

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Delay stages

W
id
th

[p
s]

max DNL = 1.4 ; mean DNL = 0.84 ; H
ideal

 = 42 ps

Fig. 4. Cyclone IV - width of delay stages.

can be determined by comparing the difference between edge
positions in the captured outputs of the delay-chains. Because
of the differential measurement setup, the effect of the global
noise on jitter measurement is minimized. Secondly, we deter-
mine the delay of a single stage of the ring-oscillator. We can
do that by counting number of oscillations between two rising
edges of the system clock, using the ripple counter. Finally, we
determine the average delay of one stage - bin of the delay-
chain. Bins of the delay-chain can be characterized by code
density test [11], [3]: an output of the ring-oscillator, whose
frequency is not correlated with the system clock frequency,
is used as input to the delay-chain, and the state of the delay-
chain is sampled at every system clock cycle. Considering that
edge of the signal can occur at any position relative to the
system clock period with equal probability, the proportion of
the number of detected edges in a bin corresponds to the time
width of that bin. Bin widths are generally not uniform, and
can differ considerably. Fig. 3 and Fig. 4 show bin widths of
the delay-chain in Cyclone V and IV, respectively. Parameter
dstep value is computed as the average width of bins.

Step 3: Since number of ring-oscillator stages can be chosen
arbitrarily, we decided to implement it with only 3 stages,
so that TRNG has small resource consumption. Value of
jitter accumulation time is selected as the smallest multiple
of the system clock period - 10ns, for which the amount
of accumulated jitter is higher than dstep. For Cyclone IV
and V we obtained tA = 30ns and tA = 10ns, respectively.
Number of stages in the delay-chain is chosen so that condition
m · dstep > dRO stage is fulfilled. For Cyclone IV this

5 10 15 20 25
0

5

10

15

20

Delay stages

W
id
th

[p
s]

max DNL = 0.83 ; mean DNL = 0.25 ; H
ideal

 = 13 ps

Fig. 5. Cyclone V - width of virtual delay stages.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Delay stages
W

id
th

[p
s]

max DNL = 0.32 ; mean DNL = 0.085 ; H
ideal

 = 83 ps

Fig. 6. Cyclone IV - width of virtual delay stages.

parameter is m > 10, and for Cyclone V it is m > 58. Since
Cyclone IV has 16 LEs in one LAB (logic array block), and
each LE has one carry-chain stage, we decided to use all 16
stages of carry-chain in one LAB. In Cyclone V, there are 10
ALMs in one LAB, and each ALM has two stages of carry-
chain, meaning that we need to use 3 LABs (60 stages).

Step 4: Unequal bin widths in delay-chains lower the per-
formance of TRNG, since more bits need to be xored together
in parity filter post-processing block so that bias is reduced.
Therefore, at this step, we propose architectural modifications
of the DC-TRNG, specifically in the priority encoder, that will
improve throughput of the DC-TRNG without affecting its se-
curity level. Differential nonlinearity (DNL) of the bin i in the
delay-chain is defined as DNLi =| H[i] −Hideal | /Hideal,
where H[i] is the actual width of bin i, and Hideal is the
ideal bin width – average of all bins in delay-chain [11]. We
perform adaptive bin calibration on the bins of the delay-chain.
Adaptive bin calibration maps bins of the original delay-chain
to bins of the new virtual delay-chain so that the bins of the
virtual delay-chain have smaller average DNL. One bin of
the original delay-chain can only be mapped to one bin of
virtual delay-chain, but several consecutive bins of the original
delay-chain can be mapped to the same bin of virtual delay-
chain. Average bin width of the virtual delay-chain will be
larger, resulting in larger accumulation time for jitter tA, but
since average DNL is smaller, bias of the output bits will be
lower. Adaptive bin width calibration is performed iteratively.
First, we set Hideal of virtual delay-chain 1.5 times bigger
than Hideal of the original delay-chain, then we selected tA

TABLE I
IMPLEMENTATION RESULTS AND PERFORMANCES

Implementation results and performances
Platform Resources Parity filter Throughput

order [Mb/s]
Spartan-6 [6] 67 Slices 7 14.3
Cyclone IV 149 LEs *4/8 *5 / 4.16
Cyclone V 230 ALMs *4/9 *12.5 / 10

Physical parameters [ps]
Platform dRO stage σLUT dstep

Spartan-6 [6] 480 2 17
Cyclone IV 400 2.6 *83 / 42
Cyclone V 435 1.5 *13 / 7.5

Implementation parameters
Platform m n tA [ns]

Spartan-6 [6] 36 3 10
Cyclone IV 16 3 *50 / 30
Cyclone V 60 3 *20 / 10

*with adaptive bin width calibration

in the same way as in Step 3 and parity filter order big
enough to reduce biases and after that calculated throughput.
We then gradually increased Hideal of the virtual delay-chain,
consequently increasing tA and lowering parity filter order. We
stop our procedure when further increasing of Hideal does
not contribute to increase in throughput. Information about
mapping of the bins from original delay-chain to bins of virtual
delay-chain is used to design the priority encoder block, which
encodes the edge position according to the bin of virtual delay-
chain in which it occurred. Bins of the virtual delay-chains for
Cylcone V and IV are shown in Fig. 5 and Fig. 6, respectively.

Step 5: In the final step, the DC-TRNG is implemented
on the target FPGA. Delay elements of the ring-oscillator
have to be instantiated by using low-level primitives. Since
the delay of LUT changes depending on which input is used
for the incoming signal, it is necessary to precisely control
which input is chosen by changing the routing constraints
file. It is also necessary to enforce the desired placement
of LUTs by using custom placement assignment entries for
LUT of the ring-oscillator. Stages of the ring-oscillator should
be placed in neighboring LABs, but in such way that carry-
chains of the needed length can be implemented below each
stage. Due to process variations inside one FPGA, LUTs tend
to have different delays depending on the location they are
placed. Thus, various locations should be examined for the
position of the ring-oscillator. Therefore, careful placing and
routing of the ring-oscillator is of key importance for the DC-
TRNG. A designer can instantiate dedicated carry-chains in
Cyclone IV and V as delay-chains by using the behavioral
HDL model of an adder. In order to get a homogeneous
structure of the delay-chain it is necessary to manually enforce
placement of carry-chains and their corresponding flip-flops.
If there is a connection between a ring-oscillator stage output
and the input to its corresponding delay-chain that is longer
than other connections, then there exists the possibility that
the jittery edge will not be captured in any delay-chain. In
order to prevent this, identical routing of these connections is
performed.

C. Implementation Results and Inter-Vendor Comparison

Table I shows implementation and performance results,
platform specific physical and implementation parameters of
the DC-TRNG on Xilinx FPGA and Intel FPGA. The or-
der of parity filter is selected as small as possible so that
output random bits pass all NIST tests [2]. As expected,
values of the parameters have significant differences because
of different FPGA structures and technology processes. Re-
source consumption of the DC-TRNG on both Cyclone IV
(EP4CGX150DF31C7) and Cyclone V (5CEBA4F17C8) is
well below 2%, satisfying the condition of compact TRNG
implementation.

IV. CONCLUSIONS

In this paper, we proposed a methodology for inter-vendor
migrating of TRNGs for FPGAs and demonstrated it by
migrating the DC-TRNG on Intel Cyclone IV and V FPGAs.
We conclude that the underlying principle of efficient entropy
extraction by using carry-chain primitives is general enough
to allow inter-vendor migrating of the DC-TRNG. Information
about non-linearities of the delay-chain on the target FPGA
was used to design new priority encoder and in this manner
improve the DC-TRNG performances.

ACKNOWLEDGMENTS

This work is supported in part by the Research Coun-
cil KU Leuven: C16/15/058. In addition, this work is sup-
ported by the Flemish Government through G.0130.13N and
FWO G.0876.14N, the Hercules Foundation AKUL/11/19, and
through the Horizon 2020 research and innovation programme
under grant agreement No 644052 HECTOR and Cathedral
ERC Advanced Grant 695305.

REFERENCES

[1] W. Killmann and W. Schindler, “A proposal for: Functionality
classes for random number generators, version 2.0,” [Available online:
https://www.bsi.bund.de/EN/Home/home node.htm], 2011.

[2] A. Rukhin et al., “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” SP 800-22, NIST,
2010.

[3] B. Yang, V. Rožić, M. Grujić, N. Mentens and I. Verbauwhede, “On-
chip jitter measurement for true random number generators,” AsianHOST
2017, 6 pages, 2017.

[4] O. Petura, U. Mureddu, N. Bochard, V. Fischer and L. Bossuet, “A survey
of AIS-20/31 compliant TRNG cores suitable for FPGA devices,” 2016
26th FPL , pp. 1-10, 2016.

[5] J.-L. Danger, S. Guilley and P. Hoogvorst, “High speed True Random
Number Generator based on Open Loop Structures in FPGAs,” Micro-
electronics Journal, Vol. 40, Iss: 11, pp. 1650-1656, 2009.

[6] V. Rožić, B. Yang, W. Dehaene and I. Verbauwhede, “Highly Efficient
Entropy Extraction for True Random Number Generators on FPGAs,”
2015 52nd DAC, pp.1-6, 2015.

[7] M. Majzoobi, F. Koushanfar and S. Devadas, “FPGA-based True Random
Number Generation Using Circuit Metastability with Adaptive Feedback
Control,” CHES 2011, pp. 17-32, 2011.

[8] Intel, “Cyclone IV Device Handbook,” 2016.
[9] Intel, “Cyclone V Device Handbook,” 2016.
[10] V. Fischer, F. Bernard, N. Bochard and M. Varchola, “Enhancing security

of ring oscillator-based TRNG implemented in FPGA,” 2008 FPL, pp.
245-250, 2008.

[11] R. Szplet, “Time-to-digital converters,” Springer-Verlag, pp.211-246,
2014.

