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Motivation
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How do we build on KATRIN’s success and increase our sensitivity to the neutrino mass?

We need an atomic-tritium ready 

technique

A fundamental systematic to any 

tritium beta-decay measurement is the 

tritium final-state distribution
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The electron cyclotron frequency is related 
to the electron kinetic energy

The cyclotron frequency is encoded in 
cyclotron radiation

Frequency is something we can measure 
very precisely – eV resolution demonstrated, 
sub-eV resolution expected

Cyclotron Radiation Emission 
Spectroscopy

(CRES)

3G. Rybka, Heidelberg, Neutrino 2018

B



Project 8 Collaboration

4

• Case Western Reserve University
Benjamin Monreal, Laura Gladstone, Yu-Hao Sun

• Karlsruhe Institute of Technology
Thomas Thümmler, Marcel Walter

• Lawrence Livermore National Laboratory
Kareem Kazkaz

• Johannes Gutenberg Universität, Mainz
Sebastian Böser, Christine Claessens, Alec Lindman

• Massachusetts Institute of Technology
Nicholas Buzinsky, Joseph Formaggio, Joseph Johnston, 
Valerian Sibille, Evan Zayas

• Pacific Northwest National Laboratory
Erin Finn, Mathieu Guigue, Mark Jones, Benjamin 
LaRoque, Noah Oblath, Jonathan Tedeschi, Brent 
VanDevender

• Pennsylvania State University
Luiz de Viveiros, Timothy Wendler

• Smithsonian Astrophysical Observatory
Shep Doeleman, Jonathan Weintroub, Andre Young

• University of Washington
Ali Ashtari Esfahani, Raphael Cervantes, Peter Doe, Martin 
Fertl, Eric Machado, Elise Novitski, Walter Pettus, Hamish 
Robertson, Leslie Rosenberg, Gray Rybka

• Yale University
Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum

This material is based upon work supported by the following sources: the U.S. Department of Energy 
Office of Science, Office of Nuclear Physics, under Award No. DE-SC0011091 to MIT, under the Early 
Career Research Program to Pacific Northwest National Laboratory (PNNL), a multiprogram national 
laboratory operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-
76RL01830, under Award No. DE-FG02-97ER41020 to the University of Washington, and under Award 
No. DE-SC0012654 to Yale University; the National Science Foundation under Award Nos. 1205100 and 
1505678 to MIT; the PRISMA Cluster of Excellence; the Massachusetts Institute of Technology (MIT) 
Wade Fellowship; the Laboratory Directed Research and Development Program at PNNL; the University 
of Washington Royalty Research Foundation.  A portion of the research was performed using PNNL 
Institutional Computing at Pacific Northwest National Laboratory.  The isotope(s) used in this research 
were supplied by the United States Department of Energy Office of Science by the Isotope Program in 
the Office of Nuclear Physics.  We further acknowledge support from Yale University, the PRISMA Cluster 
of Excellence at the University of Mainz, and the KIT Center Elementary Particle and Astroparticle Physics 
(KCETA) at the Karlsruhe Institute of Technology.

G. Rybka, Heidelberg, Neutrino 2018



Project 8 Goals
• Demonstrate that CRES can be used to measure the tritium 

endpoint in a small prototype 
(right now, “Phase II”)

• Scale to a large-volume system that has sufficient statistics to 
contribute to the global neutrino mass effort and serve as a 
intermediate step for an atomic experiment 
(near future, “Phase III”)

• Transition to an atomic tritium measurement and make the 
most sensitive measurement of the neutrino mass possible
(future, “Phase IV”)
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Progress Demonstrating 
CRES with Tritium

“Phase II”
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Project 8 Tritium Prototype

7

15
 c

m

B
1 

T
~1

0 
m

T

Gas
Volume

Tr
ap

 C
oi

l
Tr

ap
 C

oi
l

Window

Tritium with krypton co-magnetometry

Multiple trapping coils

Circular waveguide decay regionSee Poster #14 by N. Oblath
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Project 8 Events
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Frequency increases as energy is lost due to radiation (continuous) and collisions (discrete)

Project 8 Electron Event with Energy 18 keV
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Energy loss via cyclotron radiation

Scattering off the residual gas

Electron is emitted
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Decay Spectrum of 83mKr
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• Starting frequency of 
track gives  electron 
energy

• Histogram of starting 
energy gives decay 
spectrum 83mKr
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18.0 keV

PRELIMINARY
Krypton line from 
tritium-ready system

17.8 keV



Preparations for Tritium
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1 keV

We use an additional magnetic field to 
move the 18 keV 83mKr line through the 
range where we will measure the tritium 
endpoint

Understanding linearity and detection 
efficiency is critical!

Linearity test completed, good to 0.2 eV

Efficiency data being taken right now

Once this is complete, we are ready to 
measure the tritium endpoint and 
calculate how much we need to scale up

T2
Endpoint
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Designs for Scaling to a 
Large-Volume System 

“Phase III”

G. Rybka, Heidelberg, Neutrino 2018 11



The Need for a Large-Volume 
System
• The next apparatus needs a much larger volume for 

sufficient statistics
• A larger volume requires multiple readout channels
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Target scale: fill the volume of a 
human-sized MRI magnet with 
tritium



Multichannel Read-Out
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We will use interferometry to localize electrons in this volume

See Poster #24 by Brent VanDevender

Model of meter squared trapping 
volume surrounded by multiantenna 
array

Simulation of electron position 
reconstruction in antenna array
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Concept for Atomic 
Tritium System

“Phase IV”
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Challenges for Atomic Tritium

• Produce atomic tritium
• Transport to active 

volume
• Maintain sufficient 

density
• Keep molecular 

contamination to <10-5
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See Poster by A. Lindman

A summary slide from a recent atomic tritium 
report: much of the effort goes into 
identifying techniques that won’t work.



Guiding and Selecting Tritium 
Atoms
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Magnetic moment of atomic tritium 
allows atoms to be guided, cooled 
(to 30 mK), and trapped

Magnetic fields can be used to lens tritium 
beam and select preferred velocity range, 
as is commonly done with neutrons

G. Rybka, Heidelberg, Neutrino 2018
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Schematic Diagram of Atomic 
Tritium Experiment
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1: Molecular 
tritium thermally 
cracked

2: Atomic tritium 
cooled in 
accommodator

3: Cool atoms 
sprayed into 
velocity and state 
selector

4: Cold low-field 
seeking spin 
tritium selected 

5: Atoms cooled to 
millikelvin temperatures by 
magnetic step, linger in 
decay volume



Cold Tritium Selection
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1: Molecular 
tritium thermally 
cracked

2: Atomic tritium 
cooled in 
accommodator

3: Cool atoms 
sprayed into 
velocity and state 
selector

4: Cold low-field 
seeking spin 
tritium selected 

5: Atoms cooled to 
millikelvin temperatures by 
magnetic step, linger in 
decay volume
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Trapping the Correct Density of 
Atomic Tritium
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Combined Solenoid/Ioffe Trap:

Traps atomic tritium

Molecular tritium not trapped

Emitted electrons are also trapped and radiate

Technique successfully used in antihydrogen 

experiments (e.g. ALPHA )

Status: Conceptual design stage

A Ioffe Conceptual Design 

Scale: 10 m3 trapping volume

G. Rybka, Heidelberg, Neutrino 2018

Simulated containment field for Ioffe design



Project 8 Projected Capabilities 
with Atomic Tritium
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Atomic tritium 
should allow us 
sensitivity to a  40 
meV mass scale 
with  10-100 m3-
years exposure

G. Rybka, Heidelberg, Neutrino 2018

Volume x Time x Efficiency (m3 yr)



The Atomic Future

• Initial Project 8 prototype gives 
promising results for beta-decay 
electron measurement
• Conceptually, the path to atomic 

tritium is clear
• Engineering challenges are 

numerous, but approachable
• Project 8 will bring us into the 

Atomic (tritium) Age!
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HOW DOES PROJECT 8 FIT INTO
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Project 8: Advances in Event 
Reconstruction
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RF signal encodes electron motion in trap

Broadens linewidths with naïve analysis

Sophisticated analysis leverages more 
information for precision energy resolution 

Distortion of Lineshape with Naïve Analysis

Paper describing relationship between electron signal and electron 
kinematics in preparation.


