Status of the CONUS experiment

Werner Maneschg Max-Planck-Institut für Kernphysik

NEVTRINO 2018 Heidelberg 4-9 June - on behalf of the CONUS collaboration -

Challenges for coherent elastic neutrino nucleus scattering

It's all about...

noise threshold background

minimize

signal strength:

$$\sigma_{\nu A}^{tot} pprox rac{G_F^2}{4\pi^2} \cdot N^2 \cdot E_{\nu}^2$$

maximize E_{ν} , but coherency condition:

$$E_{
u} \leq rac{1}{2R_A} pprox rac{197}{2.5\sqrt[3]{A}} \; [{
m MeV}]$$

maximize N, but maximum recoil energy:

$$E_{rec}^{max} = rac{2 \cdot E_{
u}^2}{m_n \cdot A + 2 \cdot E_{
u}} pprox rac{2 \cdot E_{
u}^2}{m_n \cdot A}$$

CEvNS detection: From π -DAR to reactor neutrinos

Main artificial neutrino sources for CEvNS detection:

Expected number of CEvNS events:

ν source	π -DAR ν 's	reactor ν 's	Comparison of events rates - realistic flux
Experiments	COHERENT	CONNIE, CONUS, MINER,	Ge at reactor, $E_v = 3$ MeV Ge at pDAR, $E_v = 30$ MeV
& Projects		u-cleus, $ u$ GEN, RED-100,	
		RICOCHET, TEXONO,	
ν flux, Φ_{ν}	$4 \times 10^{15}/s \rightarrow$	$2 \times 10^{20} / (s \cdot GW) \rightarrow$	
	$4 \times 10^7/(s \cdot cm^2)$	$2 \times 10^{13} / (s \cdot cm^2)$	
	in 20m dist. @ SNS	in 15m dist. @ 3 GW core	Detector
u flux: on/off	pulsed-beam (60 Hz)	rare shut down periods	threshold
u flavor	$ u_{\mu}, u_{e}, \overline{ u_{\mu}} $	$\bar{\nu_e}$	Ž.
$ u$ ener., $E_{ u}$	<50 MeV	<8 MeV	10 ⁻³
	ightarrow cohdecoh. reg.	\rightarrow coh. reg.	
overburden	shallow depth	shallow depth	10^{-5} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{1}
troublesome bg	neutrons	neutrons	Recoil energy T [keV]

- several experiments/techniques, lead to **complementarities**
- rich physics program: SM/BSM, nuclear/solar physics, SN, DM

The CONUS experiment

CONUS: Coherent Neutrino nUcleus Scattering

Collaboration:

- C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg,
- T. Rink, T. Schierhuber, H. Strecker
 - Max Planck Institut für Kernphysik (MPIK), Heidelberg -
- K. Fülber, R. Wink
 - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf -

Scientific cooperation:

- M. Reginato, M. Zboril, A. Zimbal
 - Physikalisch-Technische Bundesanstalt (PTB), Braunschweig -

Reactor site for covus

Reactor:

- nuclear power plant at Brokdorf (GER)
- pressurized light water reactor
- thermal power: 3.9 GW
- high duty cycle (1 month/yr OFF)
- decommissioning plan: Dec 2021
 - → long reactor ON/OFF measurements

Experimental site for CONUS:

- beneath fuel cooling installation: 10-45 m w.e.
- distance from reactor core: 17 m
 - $\rightarrow \Phi = 2.4 \times 10^{13} \overline{v}/s/cm^{2}$

Access permission:

- demanding; full access since Sep 2017
- safety requirements inside containment:
 - → Impact on detector technology/shield design
- reactor data are available for CONUS

Expected CEvNS signal in CONUS

Main challenges for the calculation:

- reactor neutrino spectrum and flux: Parametrisation by P. Huber (Pu239, Pu241,U235) Data (U238) from N. Haag
- quenching factor in Ge:

D.Barker, D.-M. Mei, Astrop. P. 38 (2012): **k=0.159** B.J.Scholz et al., PR D 94, 122003 (2016): **k=0.179**

Expected signal rates:

Case study for 3.9 GW thermal power, 17 m distance: \rightarrow Flux: $\Phi_{\bar{\nu}}=2.4\times10^{13} \text{ s}^{-1} \text{ cm}^{-2}$

E_{ion}^{th} [eV _{ee}]	k=0.15	k=best fit	k=0.20
300	9±2	64±8	$154{\pm}12$
270	$29{\pm}5$	$152{\pm}12$	$339{\pm}18$
240	$90{\pm}10$	$348{\pm}19$	724 ± 27
210	$265{\pm}16$	$769{\pm}28$	$1501{\pm}39$
	lluit of votoo.		

Unit of rates: $[cts/(kg \cdot yr)]$

CONUS detectors

CONUS 1-4:

- p-type point contact HPGe
- crystal / active mass: 4.0 kg / 3.85 kg
- spec for pulser res. (FWHM): ≤85 eV
 - → Detector noise threshold of \leq 300 eV
- electrical PT cryocoolers
- very low bg components
- design compatible with shield dim.
- prod. in close coop. with Canberra France

CONRAD: CONus RADiation

- p-type semi-coaxial HPGe
- crystal / active mass: 2.47 kg / 2.2 kg
- standard N2 cooling
- extremely low bg components:
 - → refurbished Genius-TF diode [2]
 - → refurbished HdM copper cryostat [3]

novel

ment

develop-

Basis for CONUS shield design

- operated at shallow depth laboratory: 15 m w.e.
- optimized to reject muons and muon-induced signals
- background of (290+-4) cts/d/kg in ROI=(100,2700) keV
- test bench for Ge detector R&D, MC validation of bg [5], CONUS material selection

The CONUS shield

Main goal: bg supression at low energies:

ROI-1: (11,500) keV: O(Bg)=1 cts/ (d*kg*keV) **ROI-2:** (0.2,11) keV: O(Bg)=10 cts/ (d*kg*keV)

- better y-ray suppression: Pb instead of Cu as innermost layer
 - → Pb more bremsstrahlung than Cu (\sim Z²), but better self-shielding (\sim Z⁵)
- radon mitigation: no N2 flushing on site:
 - \rightarrow hermetical sealing of setup or other solution
- reactor site conformity: anti-seismic, reduce fire load & total mass

Volume: 1.65 m³ Mass: 11 tons → Very compact neutrino detector !

CONUS: construction and commissioning

W. Maneschg | Status of the CONUS experiment | NEUTRINO 2018

Detector energy resolution

Pulser resolution:

Commissioning at MPIK-based lab:

Detector	Pulser FWHM _P [eV _{ee}]
CONUS-1	74±1
CONUS-2	75±1
CONUS-3	$59{\pm}1$
CONUS-4	74±1

- pulser res.: all det's within spec's
- exp. elec. noise edge: ≈3xFWHM
- peak shape: highly Gaussian

X-ray peak resolution:

Ene. res. VS energy:

Enhanced gamma-line separation

- → background analysis
- → detector characterisation (e.g. active volume via Am-241 source)
- → energy scale calibration

Energy scale: linearity, stability, calibration

1. Linearity of energy scale:

- precision pulse generator: scale highly linear

2. Stability of energy scale:

→ Low repetition rate of calibrations

3. Calibration of energy scale:

- at low energies < 15 keV: rely on Ge-related isotopic X-rays:

Main	$T_{1/2}$	En		
isotope	[d]	[MeV]		
Ge-71	11.4	10^{-6} -1		
Ge-68	271.0	>20		
Ga-68	0.046	\leftarrow Ge-68		
Zn-65	244.0	>60		

- if x-ray rates too low: generate Ge71 alone via n-capture using n-sources: e.g. Cf-252 (E=2.13MeV)

Assembly at reactor site

Challenges during assembly:

- preservation of cleanliness (commissioning at MPIK-lab useful)
- work under 'unusual' conditions: up to 35°C, transport by handcraft

Challenges for operation:

- no intranet (due to safety regulations):
 - \rightarrow no remote control
 - \rightarrow data export only via shifter
- radon in air
- potential neutron background

January - February 2018

Radon mitigation at reactor site

Commissioning at reactor site

Radon in air at experimental site:

- closed environment, no fresh air, thick concrete walls:

→ Rn concentrations: ~100 Bq/m³ (max. 300 Bq/m³)

meas.value / meas.max

Counter measures:

Option	Consideration		
hermetical sealing	not sufficient		
boil-off N_2 dewar	not allowed		
pressurized air	to be filtered,		
	still Rn cont.		
synthetic air bottle	import/export		
breathing air bottle	refill in-house,		
	cheap		

→ for CONUS: cartridge 4 x 6.8 l bottles (300bar) flux: ~1 l/min CONUS1: integral bg in [20,440] keV

Neutron spectrometry at reactor site

Potential neutron background: Ge recoils from fast neutrons mimic CEvNS signals

Results from n measurements at experimental site:

- 1. Neutron field highly thermalized (>80%),
 - correlated with thermal power
 - \rightarrow fully absorbed by B-PE layers (MC)
- 2. Residual fluence:
 - if at all epithermal from reactor
 - cosmic 100 MeV n: negligible
 - → reactor-correlated fast n inside shield negligible

Physics data collection: Phase I

Background stability in DS-1 & DS-2

1. Bg rate stability in [20,440] keV

3. Bg stability in interval (0.5,1.0) keV

2. Rate stability of Ge line at 10.4 keV

→ Rate: C2-C4 ~const, C1 small decrease

Detector performance in DS-1 & DS-2

1. Pulser resolution

Detector	Pulser FWHM _P [eV_{ee}]
CONUS-1	$69{\pm}1$
CONUS-2	$77{\pm}1$
CONUS-3	$64{\pm}1$
CONUS-4	$68{\pm}1$

2. Energy scale stability

3. Trigger efficiency close to threshold

4. Noise threshold stability

W. Maneschg | Status of the CONUS experiment | NEUTRINO 2018

First rate analysis

Definition of cuts from reactor OFF time:

- energy scale calibration
- quality cuts (noise/spurious event red.)
- conservative ROI for CEvNS window (individual for every detector)

Definition of efficiencies:

- active volume: (96+-2)%
- muon AC ind. trg. Efficiency: (98+-1)%
- threshold trg. Efficiency (individual for every detector)

	counts	$counts/(d \cdot kg)$ (*)		
reactor OFF (114 kg*d)	582			
reactor ON (112 kg*d)	653			
ON-OFF (exposure corr.)	84	0.94		
Significance	2.4 σ	2.3 σ]►	Some systematics still under study

(*) Including stat. uncertainty and above efficiencies

\rightarrow Observed excess of events is consistent with expected CEvNS signal range

Conclusions

- Since its discovery by the COHERENT collaboration (π -DAR source) in 2017, CEvNS is still an elusive channel, but **not** invisible anymore.
- To cover the fully coherent regime, however, the lower energy **reactor neutrinos** are ideal probes.
- CONUS, a 4 kg based Ge-detector approach, is operational since April 1, 2018, at the nuclear power plant in Brokdorf (3.9GW) at 17m distance to the reactor core.
- After the first 2 months, 114 kg*d / 112 kg*d of reactor OFF/ON data were collected.
- We observe an excess of events in the ROI at a statistical significance of **2.4 sigma**.
 - \rightarrow First hint for CEvNS observation at a nuclear reactor.
- Sensitivity improvements with more statistics and including shape information are expected in the near future and will be published.

Thank you for your attention !

Acknowledgement:

PTB: T. Klages, A. Lücke; KBR: D. Solasse, A. Klischies, M. Alpers, T. Schröder, H. Rathjen; LNGS: M. Laubenstein; JKR: M. Wojcek; MPIK: M. Reissfelder, R. Hofacker, J. Westermann, B. Gramlich, A. Schwarz, S. Form, B. Mörk, T. Spranz, T. Apfel, N. Winkler, R. Heldner, M. Chardon, K. Zink, F. Köck; J. Schreiner, R. Lackner; C. Lüders; Canberra: V. Marian, M.O. Lampert, Q. Pascal

References

- [1] H. Wong et al., J Phys. Conf. Ser. 39 (2006)
- [2] L. Baudis et al., Nucl. Inst. Meth. A 481 (2002) 149-159
- [3] M. Guenther et al., Phys. Rev. D 55 (1997) 54-67
- [4] G. Heusser et al., Eur. Phys. J. C (2015) 75: 531
- [5] J. Hakenmüller et al., 2016 J. Phys.: Conf. Ser. 718 042028
- [6] https://www.ptb.de/cms/ptb/fachabteilungen/abt6/fb-64/643neutronenspektrometrie/nemus.html