NEVTRINO 2018 Heidelberg 4-9 June

倚倍

Solar neutrino from pp-chain and other results of Borexino

Oleg Smirnov (JINR, Dubna) on behalf of the Borexino collaboration

XXVIII International Conference on Neutrino Physics and Astrophysics, Heidelberg, June 5, 2018

Borexino Collaboration

BOREXINO (in operation from May,2007)

Solar neutrino spectra

(typically: drinking water ~10 Bq/kg; human body in ⁴⁰K: 5 kBq) Low energy->no Cherenkov light->No directionality, no other tags-> extremely pure scintillator is needed

Data selection for solar neutrino analysis

(Expected) contributions to the observed spectrum (MC)

MC input counting rates are quoted in cpd/100 t

Borexino since the start of the data taking

2014+ \rightarrow Phase II data used

Phase I/Phase II

Phase II: lower ⁸⁵Kr and ²¹⁰Bi, reduced ²¹⁰Po

Phase I data : devoted analysis for each of the neutrino species with restricted

Phase II data : analysis in the extended energy range, including pp, ⁷Be and pep species (also limits on CNO are obtained in the same energy range)

1000

Multivariate approach

Originally developed for pep-neutrino analysis (2012) to separate electron spectra from overhelming contribution of ¹¹C

Technique consists in including in the likelihood:

- Energy spectrum split into complementary TFC-tagged (¹¹C enriched) and TFCsubtracted (¹¹C depleted) spectra →next slide for details.
- Pulse-shape discriminator (PS-L_{PR}) of e⁺/e⁻: (¹¹C decays emiting β⁺) based on the difference of the scintillation time profile for e⁻ and e⁺ due to:
 - 50% of e⁺ annihilation is delayed by orthopositronium formation (τ~3 ns);
 - e⁺ energy deposit is not point-like because of the two annihilation gammas;

Radial distribution (allows to separate external backgrounds from uniformly distributed signals);

Three-fold Coincidence technique (TFC) for ¹¹C tagging

• muon dE/dx and number of muon clusters in an event

The TFC algorithm has $(92\pm4)\%$ ¹¹C-tagging eciency, while preserving $(64.28\pm0.01)\%$ of the total exposure in the TFC-subtracted spectrum.

Multivariate fit example

10-

4.5

4.6

4.7

L(PS)

4.9

5.3 PS-L_{pc}

4.8

L(Rad) x

Events / (day x 100 t x 40 cm

Multivariate fit is sensitive to pp, ⁷Be and pep contributions.

Note: CNO-neutrino energies are in the ROI and are included in the fit, but the sensitivity is limited because of the similarity to ²¹⁰Bi spectrum \rightarrow pp/pep rates ratio constrained in the fit to the predictions of HZ/LZ models

CNO (MSW/LMA): HZ: (4.92±0.55) cpd/100t LZ: (3.52±0.37) cpd/100t

Zoom into low-energy part of the spectrum

In this plot pep-neutrino characteristic shoulder is made visible by applying more stringent cuts (R<2.8 m and L_{PS}<4.8)

Results arXiv: 1707.09279

- **Data-set:** Dec 14th 2011- May 21st 2016
- **Total exposure**: 1291.51 days x 71.3 tons
- Fit range: (0.19-2.93) MeV

	Borexino experimental results		В	16(GS98)-HZ	B16(AGSS09)-LZ	
Solar ν	Rate	Flux	Rate	Flux	Rate	Flux
	[cpd/100t]	$[cm^{-2}s^{-1}]$	$\left[\mathrm{cpd}/\mathrm{100t} \right]$	$[cm^{-2}s^{-1}]$	[cpd/100 t]	$[cm^{-2}s^{-1}]$
pp	$134 \pm 10 {}^{+6}_{-10}$	$(6.1 \pm 0.5 \ ^{+0.3}_{-0.5}) \times 10^{10}$	131.0 ± 2.4	$5.98 (1 \pm 0.006) \times 10^{10}$	132.1 ± 2.3	$6.03(1\pm0.005)\times10^{10}$
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 \ ^{+0.4}_{-0.7}$	$(4.99 \pm 0.13 \stackrel{+0.07}{_{-0.10}}) \times 10^9$	47.8 ± 2.9	$4.93(1\pm0.06)\times10^9$	43.7 ± 2.6	$4.50(1\pm0.06)\times10^9$
pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19 \ ^{+0.08}_{-0.12}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009)\times10^{8}$
pep (LZ)	$2.65 \pm 0.36 \ ^{+0.15}_{-0.24}$	$(1.39 \pm 0.19 \ ^{+0.08}_{-0.13}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009)\times10^8$
CNO	$< 8.1 (95\% \mathrm{C.L.})$	$< 7.9 \times 10^8 (95\% \mathrm{C.L.})$	4.91 ± 0.56	$4.88(1\pm0.11)\times10^8$	3.52 ± 0.37	$3.51(1\pm0.10)\times10^8$

Backgrounds

Background	Rate
	[cpd/100 t]
$^{14}C [Bq/100 t]$	40.0 ± 2.0
85 Kr	6.8 ± 1.8
²¹⁰ Bi	17.5 ± 1.9
$^{11}\mathrm{C}$	26.8 ± 0.2
210 Po	260.0 ± 3.0
Ext. 40 K	1.0 ± 0.6
Ext. 214 Bi	1.9 ± 0.3
Ext. 208 Tl	3.3 ± 0.1

Systematics

	p_{1}	p	⁷ E	Be	$p\epsilon$	p = p	-
Source of uncertainty		+%	-%	+%	-%	+%	-
Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0	-
Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4	
Pile-up modeling	-2.5	0.5	0	0	0	0	
Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0	
Fit models	-4.5	0.5	-1.0	0.2	-6.8	2.8	²¹⁰ Bi, E-scale, response
Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0	R(⁸⁵ Kr)<7.5 @ 95%
Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05	ן
Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05	 LS mass
Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6	J
Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6	-

What is new

>5σ evidence of pep signal (including systematics)

	Earlier result (cpd/100t)	Actual result (cpd/100t)	Precision
рр	144±13±10	134±10 ⁺⁶ - ₁₀	11%
⁷ Be ^(*)	46.0±1.5 ^{+1.6} -1.5	46.3±1.1 ^{+0.4} -0.7	4.7→2.7%
рер	3.1±0.6±0.3	(HZ) 2.43±0.36 ^{+0.15} _{-0.22} (LZ) 2.65±0.36 ^{+0.15} _{-0.24}	22→16%

*Result for ⁷Be 862 keV line is quoted Precision improved by 10,43, and 39% correspondingly in simultaneous fit of all 3 components

Solar luminosity: $L_v^{\text{Borexino}} = (3.9 \pm 0.4) \times 10^{33} \text{ erg/s}$, is in agreement with measured photon luminosity $L_\gamma = (3.846 \pm 0.015) \times 10^{33} \text{ erg/s}$

CNO: 95% C.L. limit on CNO rate : R(CNO)<8.1 cpd/100 t flux : ϕ (CNO)<7.9-10⁸ cm⁻²s⁻¹

Less stringent constraints on pep in the CNO contribution analysis compared to Phase I

Expected (HZ) 4.92±0.55 (LZ) 3.52±0.37 cpd/100 t (2o apart)

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

arXiv:1709.00756

What is improved in analysis:

- Better understanding of backgrounds (external γs, cosmogenic)
- No FV cut : 1.5 ktons-yr exposure between 2008 and 2016 (x11.5 of the Phase I analysis)
- Lowest energy threshold among RT detectors
- Identified new source of background due to n capture on C and Fe
- New estimate of the cosmodenic ¹¹Be

 $R_{LE} = 0.133^{+0.013}_{-0.013} (stat) {}^{+0.003}_{-0.003} (syst) \text{ cpd}/100 \text{ t},$

 $R_{HE} = 0.087^{+0.08}_{-0.010} (stat) {}^{+0.005}_{-0.005} (syst) \text{ cpd}/100 \text{ t},$

$$\begin{split} R_{LE+HE} = & 0.220^{+0.015}_{-0.016}\,(stat)\,{}^{+0.006}_{-0.006}\,(syst)\,\,{\rm cpd}/100\,{\rm t.}\\ {\rm Expected\ rate\ in\ the\ LE+HE\ range:} \end{split}$$

0.211± 0.025 cpd/100 t

Assuming B16(G98) SSM and MSW+LMA

 ϕ (hep)<2.2 × 10⁵ cm⁻² s⁻¹ (90% C.L.) vs 7.98/8.25 × 10³ in HZ/LZ SSM.

MSW/LMA : electron neutrino survival probabilities

MSW errors (1 σ) are shown by rose band

Total error on P_{ee}:

- for pp and pep neutrinos, contribution of experimental errors dominates (easy to predict, difficult to measure)
- for ⁷Be and ⁸B theoretical predictions of the Solar model are worse than measurements

Solar metallicity problem

 Global fit to all solar + Kamland data (including the new ⁷Be result from BX)

$$f_{\rm Be} = \frac{\Phi({\rm Be})}{\Phi({\rm Be})_{\rm HZ}} = 1.01 \pm 0.03$$
$$f_{\rm B} = \frac{\Phi({\rm B})}{\Phi({\rm B})_{\rm HZ}} = 0.93 \pm 0.02$$

- a hint towards the HM : LZ is excluded by BX data at 1.8σ level
- theoretical errors are dominating

$$R \equiv \frac{<^{3} \text{He} + {}^{4} \text{He} >}{<^{3} \text{He} + {}^{3} \text{He} >} = \frac{2\phi({}^{7}\text{Be})}{\phi(\text{pp}) - \phi({}^{7}\text{Be})}$$

R(HZ)=0.180±0.011 R(LZ)=0.161±0.010

From the pp and ⁷Be fluxes measurement

Key to the Solar metallicity : CNO flux

other rates from last solar analysis

Main background from ²¹⁰Bi : ~20 cpd/100 t If we will be able to extract ²¹⁰Bi with few counts precision, we will be able to constraint it in the spectral fit and extract the CNO flux.

Predictions: HZ ~5 cpd/100 t LZ ~3 cpd/100 t

Another background in the region of sensitivity is pep-neutrino flux. Can be constrained through pp/pep ratio, using theoretical prediction for pp (luminosity constraint) or pp measured value.

Strategy towards CNO measurement

- Main route: using ²¹⁰Bi-²¹⁰Po temporal evolution to 210 measure "support term" for ²¹⁰Po (secular equilibrium in ²¹⁰Pb sub-chain)
 206
- Option: further purification of the LS by water extraction to reduce ²¹⁰Bi

Instabilities observed in the temporal evolution of the ²¹⁰Po (making impossible precision evaluation of the ²¹⁰Bi) were found to be the result of the temperature instabilities of the surrounding

Hardware solution for thermal stabilization : thermal insulation of the external tank

 $^{\rm 210}{\rm Po}$ in std FV

day 1300: insulation (summer 2015)

Hemi-shell #27

Hemi-shell #26

CNO sensitivity

Depends on both ²¹⁰Bi and pep-neutrino rates. We assume that ²¹⁰Bi will be measured (10-20%) and pep-rate can be constrained by constraining pp/pep ratio in the fit.

v(CNO) median p-value (LZ/HZ hypothesis)

Seasonal modulations of ⁷Be neutrino flux

M. Agostini et al. / Astroparticle Physics 92 (2017) 21-29

The duration of the astronomical year is measured from underground using neutrino!

Effective magnetic moment of Solar neutrino

M.Agostini et al.," Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data", Phys. Rev D 96, 091103(R) (2017)

Borexino is spectroscopical detector.

Solar neutrino analysis (spectral fit) is performed assuming SM cross sections

The shapes can be adjusted to take into account any non-standard interactions (NSI), including neutrino EM interactions

$$\chi^2 = \sum_{i=1}^{N_{bin}} \left(\frac{O_p^i - N_R^i(\mu_R)}{\Delta_i} \right)^2$$

Radiochemical (Ga) constraints

$$\sum_{i} \frac{R_i^{Brx}}{R_i^{Expected}} R_i^{Ga} \frac{\langle \sigma^{\odot}_i \rangle_{new}}{\langle \sigma^{\odot}_i \rangle_{old}} = 66.1 \pm 3.1 \pm \delta_R \pm \delta_{FV}$$

Without Ga constraint: $\mu_v < 4.0 \cdot 10^{-11} \mu_B$, 90% C.L.

With Ga constraint: $\mu_v < 2.6 \cdot 10^{-11} \mu_B$, 90% C.L.

+ systematics: μ_v<**2.8-10**⁻¹¹ μ_B, 90% C.L.

Limits on mm of neutrino flavours and mass eigenstates

In Solar neutrino experiments we measure:

In frames of the MSW/LMA solution:

$$(\mu_{\nu})_{eff}^{2} = \sum_{\alpha} P_{e\alpha}(\mu_{\nu})_{\alpha}^{2}$$

$$\mu_{eff}^{2} = P^{3\nu}\mu_{e}^{2} + (1 - P^{3\nu})(\cos^{2}\theta_{23}\mu_{\mu}^{2} + \sin^{2}\theta_{23}\mu_{\tau}^{2})$$

$\mu_{{m v}_{\it e}} < 3.9 \ \mu_{{m v}_{\it \mu}} < 5.8$	GEMMA: $\mu_{\nu_e} < 2.9$ LSND: $\mu_{\nu_{\mu}} < 68$	All @90% C.L. units of $10^{-11}\mu_B$
$\mu_{ u_{ au}} < 5.8$	DONUT: $\mu_{\nu_{\tau}} < 39000$	
Mass eigenstates	$ \mu_{11} \le 3.4 \mu_{22} \le 5.1$	$ \mu_{33} \le 18.7$
basis:	$ \mu_{12} \le 2.8 \mu_{13} \le 3.4$	$ \mu_{23} \le 5.0$

Astropysics: $\mu_{\nu}^{2} = \sum_{\alpha,\beta} |\mu_{\nu}^{\alpha\beta}|^{2} < 3 \cdot 10^{-12}$

More information : poster by Alina Vishneva (JINR) "Limit on the effective magnetic moment of solar neutrinos from Borexino Phase-II data"

Search for neutrinos in coincidence with cosmic events

the four extrasolar messengers are electromagnetic radiation, gravitational waves, neutrinos, and cosmic rays. They are created by different astrophysical processes, and thus reveal different information about their sources.

He

Mg, Ne

Multimessengers: GRBs

Search for neutrino/antineutrino in coincidence with 2350 GRB observed during 8 years of the **Borexino data taking** Astropart. Phys. 86, p.11 (2017)

Multimessengers: GW

Search for neutrino/antineutrino in coincidence with GW events (GW150914, GW151226, GW170104) Astrophys. J., 850:21 (2017)

No statistically significant event count above expected background is observed

For more details see poster by Drachnev Ilia (PNPI NRC KI) "A search for low energy neutrinos in correlation with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector"

Plans

- CNO neutrino flux measurement (or reasonable constraints). The thermal stabilization of the detector and unprecedented low background of the LS are two milestones of the effort. Will need more data in (proved) stable conditions, calibrations, and (optional) additional cycle of water extraction
- Joint analysis of Phase I and Phase II data aiming to improve pp-neutrino flux measurement (till now only the Phase II data has been analyzed)
- > Update of the geo-neutrino analysis with full statistics, improved selections and extended FV
- Neutrino non-standard interactions analysis
- Rare physics study (limits on unknown antineutrino fluxes, diffuse SN flux, some DM candidates etc.)