

M. Mezzetto, INFN Padova

The talk has been prepared in collaboration with A. Blondel 13 posters related to this argument (mentioned in the slides) 12 projects described in the talk

Thanks to: J. Conrad, F. Terranova, A. Longhin, M. Dracos, T. Ekelof, K. Long, C. Vallee, R. Jacobsson, A. Golutvin, J. Brunner, A. Bross, J. Tang, N. Vassilopoulos

Outline

Alternative configurations for LBL experiments: P2O, Pacific, Chips

Ancillary setups for LBL experiments: Enubet, NuStorm, (Hadroproduction: next talk by A. Marino)

Measurements not covered by LBL experiments: Heavy neutrinos

New concepts for neutrino beams (and their first stages): ESSnuBeam, DAEδALUS (IsoDAR), Nufact (nuSTORM), Moment (EMuS)

Alternative configurations of LBL experiments

P2O (Adv. High Energy Phys.2013, 782538 (2013)):

Use ORCA as far detector and create a neutrino beam at Protvino (Omega project, 70 GeV, 450 kW). Baseline: 2590 km. Excellent sensitivity on MH, mild sensitivity on CP

J. Brunner, Poster #74

Pacific (arXiv:1610:08655):neutrino beam from FNAL similar to NUMI medium energy tune, fired to a 10 Mton KM3NeT-like detector placed at a baseline of \mathbb{N} 3100 km (Neptune/OOI deep sea observatories). $E_v \approx 6.2$ GeV. It would accumulate 100 more events than Dune for the same number of pot.

CHIPS(Cherenkov Detectors In mine PitS)

UCL, Nikhef, UW, UMn, U.Alberta, UC. arXiv:1307.5918

- CHIPS has two goals: to prove that a detector costing \$200-300k/kiloton is viable for measuring accelerator produced neutrinos
- To contribute to world knowledge of the mixing parameters $sin^22\theta_{23}$, $sin^2\theta_{13}$ and to $\delta_{CP},\,MH$

1) Location

sunk in a flooded mine pit in the path of the NuMI neutrino beam, will make use of the water for cosmic overburden and mechanical support;

2) Structure design

will allow it to grow in size with time but with no financial penalty beyond the instrumentation costs

3) PMT choice and layout

3" PMT's good position and time resolution and beam <u>optimized</u> layout

4) Electronics

will make use of ubiquitous mobile phone and communications technology and already developed KM3Net Solutions

5) Simple water purification plant

will use straightforward filtering to maintain water clarity.

Progress and Status

- Downstream part of detector will use
 - -5500 HCZ 80mm XP82B2FN PMTs
 - Km3Net electronics
 - Light cones for improved light collection
- Upstream wall will use donated
 - -PMTs (NEMO-III)
 - Madison designed electronics
 - +ve HV CW
 - microprocessor on each PMT for TOT
 - Beaglebone single board computer
- Detector planes made from standard PVC fittings
- Cables inside and dryl

- Procurement and production on-going
- Goal to have data in October 2018

Heavy neutrinos searches

Some bibliography

- SHiP Physics Paper: Rep.Progr.Phys.79(2016) 124201 (137pp),
- SLAC Dark Sector Workshop 2016: Community Report arXiv: 1608.08632,
- Maryland Dark Sector Workshop 2017: Cosmic Visions arXiv:1707.04591

M. Lamoureux, Poster # 43 (Search for heavy neutrinos in T2K)O. Fischer, Poster # 91 (Sterile Neutrinos at the FCC)

Operating with electrons assumes vector portal

NA64@CERN (e@100, 10¹²), LDMX@SLAC (e@10, 10¹⁶)

Courtesy of R. Jacobsson

Ship Experiment

SHiP is aiming at exploiting maximum yield and acceptance at the proton beam dump in virtually 0-background conditions, it is not optimized for a single or sub-set of simplified models

DSTau project: measure ν_τ cross section Y. Gornushkin, Poster #38

>10¹⁸ D, >10¹⁶ τ, >10²⁰ γ for 2×10²⁰ pot (in 5 years) Spectrometer Particle ID

Hidden Sector decay volume

Muon flux (prompt dose)

v_r/iSHiP detector

Active muon shield

Mo-W target/ hadron absorber

10⁶ x 4x10¹³ p.o.t. / year at 400 GeV (eq. to CNGS) at 1s slow extractions

Search for heavy right-handed neutrinos in collider experiments.

Phys. Rev. D 92, 075002 (2015)

Hadron colliders

Z factory (FCC-ee, Tera-Z) arXiv:1411.5230 HE Lepton Collider (LEP2, CEPC, CLIC, FCC-ee, ILC, μμ)

Physics reach in the HNL parameter space

E. Graverini, arXiv:1611.07215

(a) Decay length 500 μ m to 2 m

Neutrino beams for precision physics: the ERC ENUBET Project

The next generation of short baseline experiments for cross-section measurement and for precision ν physics at short baseline (e.g. sterile neutrinos and NSI) should rely on:

- ✓ a high precision, direct measurement of the fluxes
- a beam covering the region of interest from sub- to multi-GeV
- ✓ a narrow band beam where the energy is known a priori from the beam width

the ENUBET facility fulfills simultaneously all these requirements

€'n	
be	erc
et	

Enhanced NeUtrino BEams from kaon Tagging

ERC-CoG-2015, G.A. 681647 (2016-21) A. Longhin, INFN

CERN-EoI: 41 physicists, 10 institutions:

CERN, IN2P3 (Bordeaux), INR, INFN (Bari, Bologna, Insubria, Milano-Bicocca, Napoli, Padova, Roma-I)

+ NUTECH funding from the Italian Min. of Research (MIUR)

End-to-end simulation of the ENUBET beamline

see G. Brunetti, Poster Wall #84

Flux and rates at the far detector:

focusing system	π+/pot (10 -3)	K+/pot (10 ⁻³)	increase w.r.t. the ENUBET proposal (*)
horn	77.3	7.9	2.2
static focusing system	19.0	1.37	5.2 (π), 3.2 (K)

Rates at the far detector: O(10⁴) v_e CC events, O(10⁶) v_µ CC events in about 1 year of data taking at CERN SPS (400 GeV protons) even without the horn Static system: slow extraction (2 s, ~ 3 10¹³ pot/spill), strong reduction of rates in the instrumented decay tunnel, pave the way to the "tagged neutrino beams"

Flux monitoring:

kaon yield (main source of v_e in ENUBET) pion yield: conventional techniques + constraints from kaons

(*) A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

Particle identification in the decay tunnel

e⁺/π⁺/μ separation (1) Compact shashlik calorimeter $(3x3x10 \text{ cm}^2 \text{ Fe+scint. modules + energy catcher})$ with longitudinal $(4 X_0)$ segmentation and SiPM embedded in the bulk of the calorimeter

Tested in 2017-2018:

- ✓ Both calorimeter options (shashlik and lateral readout)
- ✓ Photon veto
- Radiation hardness up to nominal ENUBET doses (both ionizing and non-ionizing)

G. Ballerini et al., JINST 13 (2018) P01028 A. Coffani et al., arXiv:1801.06167

v_{μ} CC events at the ENUBET narrow band beam

The neutrino energy is a function of the distance of the neutrino vertex from the beam axis (R). The beam width at fixed R (\equiv neutrino energy resolution at source) is 8-22%

New concepts in neutrino beams

Few well known considerations

The high value of θ_{13} made possible to design powerful setups to look for leptonic CP violation based on conventional neutrino beams.

Conventional neutrino beams have severe limitations:

- Intrinsic v_e contamination
- Neutrino parents are secondary particles and their production is not entirely described (next talk)
- The strong correlation among flux and cross section uncertainty makes very difficult to keep systematic errors below 4-5%

Solutions:

- Short term^(*): Better and better close detectors,
 hadroproduction and ancillary experiments
- Long term: New concepts in neutrino beams, where neutrino parents are under control and intrinsic backgrounds smaller

^(*) In neutrino physics metrics short term could be 20 years ...

New concepts for ν beams

- More powerful proton driver, breaking the MW wall: ESSnuSB
- Different concepts:
 - π -DAR neutrinos: DAE δ ALUS (first stage: IsoDAR)
 - Neutrinos from muon decays: Nufact (first stage: nuSTORM) and Moment (first stage: EMuS)
 - Not discussed here: pure $v_e(\bar{v}_e)$ beams from accelerated radioactive ions: Beta Beams (but see O.Titov, Poster #118)

The European Spallation Source Linac

- The ESS will be a copious source of spallation neutrons.
- **5 MW** average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons).
- Duty cycle 4%.
- 2.0 GeV protons
 o up to 3.5 GeV with linac upgrades
- >2.7x10²³ p.o.t/year.

How to add a neutrino beam line to ESS: ESSnuSB

ESSnuSB Design Study funded by H2020: 23 sites, 15 European countries

M. Dracos, Poster # 39

- The neutron program must not be affected modifications.
- **Linac**: double the pulse rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μ s the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA)
 - H⁻ source (instead of protons), space charge problems in the accumulator ring to be solved.
- Target station (studied in EUROv).
- **Underground detector** (WC à la Hyper-K studied in LAGUNA).
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.

~1 BEuros for the neutrino facility including detector

The DAE δ ALUS concept

- π -DAR neutrino beams are free from \overline{v}_e
- Powerful searches for CP violation can be performed looking for $\overline{\nu}_{\mu}$ - $\overline{\nu}_{e}$ oscillations at different distances ...
- ... requiring LS or GD-doped WC detectors
- First stage of DAE δ ALUS is IsoDAR

Principle operation of IsoDAR

S. Axani, Poster # 127

IsoDAR @KamLAND

The IsoDAR (Isotope Decay-A-Rest) experiment is a high-intensity neutrino factory paired with a kiloton scale detector, that is able to make a **definitive statement about the existence of light sterile neutrinos**.

- 3. Impinge H_2^+ on a ⁹Be target to produce neutrons
- 4. Capture neutrons : ⁷Li+n \rightarrow ⁸Li \rightarrow ⁸Be + e⁻ + \overline{v}_{e}
- 5. Measure the ∇_e disappearance via IBD within a kiloton scale detector like KamLAND.

Expected sensitivity of IsoDAR

- Probe the 3+1 global allowed region:
 - 5σ in 4 months
- Distinguish between different sterile models.
 - 3+1 versus 3+2
 - sterile neutrino decay
- Collect the worlds largest sample of low energy ve - e elastic scattering events.
- IsoDAR makes innovations in:
 - High current cyclotrons
 - Axial injection into cyclotrons
 - Ion source development
 - Medical isotope production

Progress on the Design

Two Conceptual Design Reports available:

The neutrino source design (accelerator and target): https://arxiv.org/abs/1511.05130 The facility design at KamLAND: https://arxiv.org/abs/1710.09325

Neutrino Factory

- v parents (μ) have all the same energy, same direction and are well counted
- v beam known at % level (before any close detector constrain)
- Signal events are wrong sign muons
- The first stage of a Muon Collider ...
- ... but still very expensive (and challenging)

FIRST DEMONSTRATION OF IONIZATION COOLING IN MICE

C. White, Poster #59; F. Drielsma, Poster #64; A. Young Poster #61; S. Boyd, Poster #62

MICE is a single particle experiment where single muons are selected upstream of the absorber and formed into ensembles to represent a muon beam.

Neutrinos from stored muons

CCQE measurement at nuSTORM

10.1103/PhysRevD.89.071301; arXiv:1305.1419

CCQE at nuSTORM:

- Six-fold improvement in systematic uncertainty compared with "state of the art"
- Electron-neutrino cross section measurement **unique**
- Require to demonstrate: ~<1% precision on flux

Individual ν_e measurements from T2K and MINERvA [10.1103/PhysRevLett.113.241803, 10.1103/PhysRevLett.116.081802]

Moment (China)

First stage of Moment: EMuS

Poster #46 by N. Vassilopoulos

Description

- The experimental muon source project EMuS is foreseen at China Spallation Neutron Source and is being optimized for both muon and neutrino experiments
- It is primarily intended for muon science as μSR techniques in matter physics and chemistry while its neutrino beam is an option for cross section measurements if valuable
- Staged and cost-conscious design approach

Motivations

- lack of recent cross section measurements at lower energies
- R&D platform for MOMENT, a future muon-decay medium-baseline neutrino beam facility in China
 - EMuS as high power targetry and accelerator R&D platform

Conclusions

- DUNE and Hyper-K are the first priority for the future of accelerator neutrino physics and must be pursued with the maximum support
- Any possibility of optimization should anyway be studied with great attention
- And other topics in neutrino physics exist that require different accelerator experiments to be addressed
- In the long term (neutrino physics has always been an exercise of patience) new concepts in neutrino beams will become necessary. It is important that the R&D is kept alive and first stage experiments are welcome.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

Additional slides

Target and Sleeve:

New result on arXiv:

arXiv.org > physics > arXiv:1805.00410

Physics > Instrumentation and Detectors

Optimizing the ⁸Li yield for the IsoDAR Neutrino Experiment

Adriana Bungau, Jose Alonso, Larry Bartoszek, Janet Conrad, Michael Shaevitz, Joshua Spitz

Sleeve is now ⁷Li with embedded beryllium to multiply neutrons

total ⁸Li production

High yield for much less ⁷Li !

0.02 0.018 Target design: 8Li/proton on target produced 0.016 Columbia, Bartoszek Engineering 0.014 optimized 0.012 Sleeve design: vield U. Michigan, Huddersfield 0.01 0.008 Shielding design: 0.006 Huddersfield 0.004 (100-x)% Li + x% Be 0.002 20 40 80 60 100 Fraction of Be in sleeve

Development of NSF proposal for neutrino source (accelerator and target/sleeve) underway

A possible site at CERN

Results for the neutrino beam

Simulation parameters

- Neutrino beam from pions at 3 m downstream of decay tunnel ٠
- 100 % π^+/π^- separation ٠
- Decay tunnel: L = 25 m, aperture = 30 cm ٠

1-8%	N _v (x10 ¹⁶) / m ² / 200 days		CC / ton / 200 days		
stat. error, FLUKA	> 53 MeV	%		%	
ν _μ	3.78	94.5	959	96.5	
\bar{v}_{μ}	0.13	3.2	10	1	
v _e	0.09	2.3	25	2.5	led
- v _e	-	-	0.004	mance and	alysis needeu
$\langle E_v \rangle = 300 \text{ MeV}$	at EMuS rear at CSNS – I		Detector order to	investigate its va	lue

- 1. CC v_{μ} at <E_v> = 300 MeV at EMuS
- 2. ~ 1000 CC events / ton / year at CSNS I
- 3. x 50 with capture system and decay channel upgrades at CSNS-II
- 4. Preliminary study for the muon beam shows severe reduction in neutrino flux

Muon collider dead?

- Yes, according to P5
- Community is proposing it in the process of the CERN strategy discussion
- With original new configurations
- Workshops happen in Europe

