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Deep Learning on Graphs
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Convolutional Neural Networks

Main benefit (over MLPs): they exploit the structure of the data.

Feature maps

Convolutions Subsampling Convolutions Subsampling  Fully connected

Key properties:
» Convolutional: translation invariance (stationarity).
» Localized: deformation stability & compact filters (independent of input size n).
» Multi-scale: hierarchical features extracted by multiple layers (compositionality).
» O(n) computational complexity.
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ConvNets on graphs

Graphs vs Euclidean grids:
» Irregular sampling.
> Weighted edges.

» No orientation or ordering (in general).

Ingredients:
» Convolution (local)
» Non-linearity (point-wise)
» Down-sampling (global / local)
» Pooling (local)

Challenge: efficient formulation of convolution and
down-sampling on graphs.
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Convolution on Graph, the GSP way

&(M) 0
y=x*xgg=U UTx = UE(NU"x = g(L)x
0 &(An)

» Combinatorial L = D — W or normalized L = I, — D~Y/2WD~1/2 Laplacian.

» The eigendecomposition of the Laplacian L = UAUT € R"™*" gives eigenvectors
uk and eigenvalues Ax. U = [u1,...,uy] € R"™" forms the graph Fourier basis
and A = diag(A1,...,\,) are graph “frequencies”.

» Fourier Transform: % = Fg{x} = UTx € R"

» Inverse Fourier Transform: x = fgl{ﬁ} =Us=UU"Tx=x

» Convolution theorem: y = x g g = U (UTg ® UTX) =U (g ® UTX>
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Spectral filtering of graph signals
Non-parametric filter, can learn any filter (n degrees of freedom):
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A: laplacian's eigenvalues / graph frequencies

» Non-localized in vertex domain

» Learning complexity is O(n)

» Computational complexity is O(n?) (& memory)
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Polynomial parametrization

K—-1
=) 0N = Zekn —2A-,
k=0 An

Chebyshev polynomials:  Ty(x) = 2xTk_1(x) — Tk—2(x)
with To =1 and T; = x

» Can learn any K-localized filter.

P Allows a distributed implementation: only access the K-neighborhood.

v

K-localized

» Learning complexity is O(K)

v

Computational complexity is O(K|E|) (same as classical ConvNets!)
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Fast implementation by recursion

. 2
y =8(L)x = Zeka X = Zkak, L:)\—nL—I,,
Recurrence: X = Tk(Z)x =2[X 1 — Xp_»
)_<1 = ZX
)_<0 =X

» Can be implemented as an accumulator.

» Any polynomial can be used. They all have the same representative power.
Optimization difficulty might vary.

» Any matrix can be used instead of the Laplacian L, including the adjacency
matrix, or even a non-symmetric adjacency or “Laplacian”.

» The learned filter parameters 6 can be transferred across graphs (i.e. used with
different L).
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Spatial vs Spectral

In the end, almost all formulations are spatial.

Our formulation is spectrally motivated.
y = Ugyp(N)UTx

In the absence of an O(nlog n) Fast Fourier Transform (FFT), which only exists for specific domains,

that is however too expensive with O(n®) operations.

With polynomials, the implementation is spatial.
y = éG(L)X = ZekLkX = Zék Tk(Z)X
k k

Many papers get this wrong and imply that an eigendecomposition of the Laplacian or adjacency
matrix is needed.
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Filter localization

> Value at j of gy centered at it (&(L)d:); = (89(L))ij = Sk Ok(L5)i
> dg(i,j) > K implies (LK);; =0
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Applications
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Multiple kinds of problems

Graphs which model discrete relations Graphs which represent sampled manifolds
» Social networks » Meshes
» Graph of citations or hyperlinks » Point clouds
> Molecules » Data on spheres (planets, sky)
» Knowledge graphs » Traffic on roads
Problems:

» Node classification or regression (e.g. semi-supervized learning)
» Graph classification or regression

» Signal classification or regression — what I'm most interested about
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Cosmology: Data & Problem

» Cosmologists devise models of how the universe works.

> We only get to observe one real universe.

» Problem: which simulation is closest to the real thing? A signal classification task.

‘Smocthed map from class 1, 0,=0.31, h=0.7

Coos -002 obo 0@  oba  oos 008

00 -002 o obz obs 006 008

Two mass maps generated from different cosmological parameters.
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Cosmology: Graph

» Data lives on the sky, a sphere.
» The sphere is discretized, and can be represented by a graph.

» Numerous kind of spherical sky maps in cosmology and astrophysics.

Cosmic microwave background, galaxy clustering, gravitational lensing.

Eigenvector 3

Eigenvector 2

Eigenvector 0 Eigenvector 1

Eigenvector 4 Eigenvector 5 Eigenvector 6 Eigenvector 7

Eigenvector 11

Eigenvector 10

Eigenvector 8 Eigenvector 9

——

Sphere discretized by graph. Fourier modes resemble spherical harmonics.
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Cosmology: Model

A classical ConvNet, but on graph.
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Downsampling
Pooling

Graph Convolutions
Non-linearity (ReLU)
Batch Normalization
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Graph Convolutions
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Fully connected layers
Softmax
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Cosmology: Results

Order 2 Order 4
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Standard benchmarks in cosmology:
» Histogram of values.

> Power spectral density.
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Point Cloud Segmentation: Data & Problem

» Drones take aerial pictures of the ground.
» Each point is photographed multiple times from different point-of-views.

» Point cloud constructed by photogrammetry.
» Problem: assign a class to each point, a node classification task.

x,y,z coordinates with RGB features class labels
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Point Cloud Segmentation: Graph

A graph gives:
» Neighborhood information, needed for consistent labeling.

> A support, needed for efficient computation.

RGB features Graph Labels
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Point Cloud Segmentation: Model

—— BN + conv K=5 + BN + Relu —* Max Pooling size=4 + conv K=5 + BN + Relu — Conv K=5 + BN
— Conv K=1 + softmax % Unpooling with repetitions + conv K=5 + BN
Characteristics: Main difficulties:
» Dense prediction. » Large number of points.
> Reason at multiple scales. » Training samples are of varying sizes.
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Point Cloud Segmentation: Results

Accuracy
Overall Mean
Model (micro)  (macro)

Random Forest  75% 52%
Graph ConvNet  83% 68%

Human made objects

High vegetation

Class distribution

o %0 )
Proportion (in %)
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Point Cloud Segmentation: Results

True label

Ground
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Current Challenges and Future Work
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The need to consider multiple scales

Most signals on large graphs exhibit patterns at multiple scales.

Some filters thus need to have larger receptive fields to capture longer-range
dependencies. This can be achieved by:

1. increasing the size of the filters (the polynomial order),
2. increasing the number of layers,

3. down-sampling the domain (pooling).

While we can easily do (1) and (2), it can drastically increase the number of parameters
to learn. For now, we don't yet have a generic and functional approach to (3).
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Coarsening

Graph coarsening is certainly an answer to the down-sampling problem.

P Feature or structure-based coarsening can be used when the sampling is regular.

» It is however much harder on non-regular graph (with power-law degree
distributions and hubs), like social networks.
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Conclusion

Successes:

» Convolution operation mostly solved (many formulations have been proposed for
specific tasks) and understood (with multiple interpretations, including
message-passing, local aggregation function, attention).

» The framework can be applied to many problems.

Challenges:
» Multiple scales, down-sampling, coarsening.
» Unified framework.
» Better knowledge of method - problem fit.

Last year | told the audience that DL was coming to GSP. This year | think it has been realized,
with many of you gaining interest in DL and many ML researchers gaining interest in GSP.
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PyGSP: Graph Signal Processing in Python

import numpy as np
import matplotlib.pyplot as plt

G = graphs.Logo()
G.compute_fourier basis()

g = filters.Heat(G, tau=50)
g.plot()

DELTAS = [28, 30, 1890]

5 = np.zeros(G.N}

s[DELTAS] = 1

s = g.filter(s)

G.plot_signal(s, highlight=DELTAS)

LogoGSP
G.N=1130 nodes, G.Ne=3131 edges
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A: laplacian's eigenvalues / graph frequencies
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GSP in Python

https://doi.org/10.5281/zenodo.1286818

Defferrard, Bresson and Vandergheynst, Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering, NIPS, 2016.

https://github.com/mdeff/cnn_graph

Seo, Defferrard, Bresson and Vandergheynst, Structured Sequence Modeling with
Graph Convolutional Recurrent Networks, arXiv, 2017.

https://github.com/youngjoo-epfl/gconvRNN

https://github.com/epfl-1ts2/pygsp

Thanks Questions?
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