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Convolutional Neural Networks

Main benefit (over MLPs): they exploit the structure of the data.

Key properties:
I Convolutional: translation invariance (stationarity).
I Localized: deformation stability & compact filters (independent of input size n).
I Multi-scale: hierarchical features extracted by multiple layers (compositionality).
I O(n) computational complexity.
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ConvNets on graphs

Graphs vs Euclidean grids:
I Irregular sampling.
I Weighted edges.
I No orientation or ordering (in general).

Ingredients:
I Convolution (local)
I Non-linearity (point-wise)
I Down-sampling (global / local)
I Pooling (local)

Challenge: efficient formulation of convolution and
down-sampling on graphs.
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Convolution on Graph, the GSP way

y = x ∗G g = U

ĝ(λ1) 0
. . .

0 ĝ(λn)

UT x = Uĝ(Λ)UT x = ĝ(L)x

I Combinatorial L = D −W or normalized L = In − D−1/2WD−1/2 Laplacian.
I The eigendecomposition of the Laplacian L = UΛUT ∈ Rn×n gives eigenvectors

uk and eigenvalues λk . U = [u1, . . . , un] ∈ Rn×n forms the graph Fourier basis
and Λ = diag(λ1, . . . , λn) are graph “frequencies”.

I Fourier Transform: x̂ = FG{x} = UT x ∈ Rn

I Inverse Fourier Transform: x = F−1
G {x̂} = Ux̂ = UUT x = x

I Convolution theorem: y = x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
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Spectral filtering of graph signals
Non-parametric filter, can learn any filter (n degrees of freedom):

ĝθ(Λ) = diag(θ), θ ∈ Rn
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I Non-localized in vertex domain
I Learning complexity is O(n)
I Computational complexity is O(n2) (& memory)
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Polynomial parametrization

ĝθ(Λ) =
K−1∑
k=0

θkΛk =
K−1∑
k=0

θ̃kTk(Λ̃), Λ̃ = 2
λn

Λ− In

Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Can learn any K -localized filter.
I Allows a distributed implementation: only access the K -neighborhood.

I K -localized
I Learning complexity is O(K )
I Computational complexity is O(K |E|) (same as classical ConvNets!)
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Fast implementation by recursion

y = ĝθ(L)x =
K−1∑
k=0

θkTk(L̃)x =
K−1∑
k=0

θk x̄k , L̃ = 2
λn

L− In

Recurrence: x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2

x̄1 = L̃x
x̄0 = x

I Can be implemented as an accumulator.
I Any polynomial can be used. They all have the same representative power.

Optimization difficulty might vary.
I Any matrix can be used instead of the Laplacian L, including the adjacency

matrix, or even a non-symmetric adjacency or “Laplacian”.
I The learned filter parameters θ can be transferred across graphs (i.e. used with

different L).
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Spatial vs Spectral

In the end, almost all formulations are spatial.

Our formulation is spectrally motivated.

y = Uĝθ(Λ)Uᵀx

In the absence of an O(n log n) Fast Fourier Transform (FFT), which only exists for specific domains,
that is however too expensive with O(n3) operations.

With polynomials, the implementation is spatial.

y = ĝθ(L)x =
∑

k
θkLkx =

∑
k
θ̃kTk(L̃)x

Many papers get this wrong and imply that an eigendecomposition of the Laplacian or adjacency
matrix is needed.
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Filter localization

I Value at j of gθ centered at i : (ĝθ(L)δi )j = (ĝθ(L))i ,j =
∑

k θk(Lk)i ,j

I dG(i , j) > K implies (LK )i ,j = 0
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Multiple kinds of problems

Graphs which model discrete relations
I Social networks
I Graph of citations or hyperlinks
I Molecules
I Knowledge graphs

Graphs which represent sampled manifolds
I Meshes
I Point clouds
I Data on spheres (planets, sky)
I Traffic on roads

Problems:
I Node classification or regression (e.g. semi-supervized learning)
I Graph classification or regression
I Signal classification or regression → what I’m most interested about
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Cosmology: Data & Problem

I Cosmologists devise models of how the universe works.
I We only get to observe one real universe.
I Problem: which simulation is closest to the real thing? A signal classification task.
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Cosmology: Graph

I Data lives on the sky, a sphere.
I The sphere is discretized, and can be represented by a graph.
I Numerous kind of spherical sky maps in cosmology and astrophysics.

Cosmic microwave background, galaxy clustering, gravitational lensing.

Sphere discretized by graph.

Eigenvector 0 Eigenvector 1 Eigenvector 2 Eigenvector 3

Eigenvector 4 Eigenvector 5 Eigenvector 6 Eigenvector 7

Eigenvector 8 Eigenvector 9 Eigenvector 10 Eigenvector 11

Eigenvector 12 Eigenvector 13 Eigenvector 14 Eigenvector 15

Fourier modes resemble spherical harmonics.

14 / 27



Cosmology: Model

A classical ConvNet, but on graph.

Downsampling
Pooling

Graph Convolutions
Non-linearity (ReLU)
Batch Normalization

Graph Convolutions
Non-linearity (ReLU)
Batch Normalization

Downsampling
Pooling

Graph Convolutions
Non-linearity (ReLU)
Batch Normalization

Fully connected layers
Softmax
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Cosmology: Results

0.0 0.5 1.0 1.5 2.0
Relative noise level

0
5

10
15
20
25
30
35

Er
ro

r i
n 

%
Order 2

Histogram + linear SVM
SCNN
PSD + linear SVM

0.0 0.5 1.0 1.5 2.0
Relative noise level

0

10

20

30

40

Er
ro

r i
n 

%

Order 4
Histogram + linear SVM
SCNN
PSD + linear SVM

Standard benchmarks in cosmology:
I Histogram of values.
I Power spectral density.
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Point Cloud Segmentation: Data & Problem

I Drones take aerial pictures of the ground.
I Each point is photographed multiple times from different point-of-views.
I Point cloud constructed by photogrammetry.
I Problem: assign a class to each point, a node classification task.

x,y,z coordinates with RGB features class labels
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Point Cloud Segmentation: Graph

A graph gives:
I Neighborhood information, needed for consistent labeling.
I A support, needed for efficient computation.

RGB features Graph Labels
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Point Cloud Segmentation: Model

64RGBZ

128

256

512 512

256
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64

BN + conv K=5 + BN + Relu

Conv K=1  + softmax

Max Pooling size=4 + conv K=5 + BN + Relu

Unpooling with repetitions + conv K=5 + BN

Conv K=5 + BN

Characteristics:
I Dense prediction.
I Reason at multiple scales.

Main difficulties:
I Large number of points.
I Training samples are of varying sizes.
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Point Cloud Segmentation: Results

Accuracy
Overall Mean

Model (micro) (macro)

Random Forest 75% 52%
Graph ConvNet 83% 68%
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Point Cloud Segmentation: Results

Random forest baseline
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The need to consider multiple scales

Most signals on large graphs exhibit patterns at multiple scales.

Some filters thus need to have larger receptive fields to capture longer-range
dependencies. This can be achieved by:
1. increasing the size of the filters (the polynomial order),
2. increasing the number of layers,
3. down-sampling the domain (pooling).

While we can easily do (1) and (2), it can drastically increase the number of parameters
to learn. For now, we don’t yet have a generic and functional approach to (3).
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Coarsening

Graph coarsening is certainly an answer to the down-sampling problem.

I Feature or structure-based coarsening can be used when the sampling is regular.
I It is however much harder on non-regular graph (with power-law degree

distributions and hubs), like social networks.
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Conclusion

Successes:
I Convolution operation mostly solved (many formulations have been proposed for

specific tasks) and understood (with multiple interpretations, including
message-passing, local aggregation function, attention).

I The framework can be applied to many problems.

Challenges:
I Multiple scales, down-sampling, coarsening.
I Unified framework.
I Better knowledge of method - problem fit.

Last year I told the audience that DL was coming to GSP. This year I think it has been realized,
with many of you gaining interest in DL and many ML researchers gaining interest in GSP.
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PyGSP: Graph Signal Processing in Python
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Slides https://doi.org/10.5281/zenodo.1286818

Paper Defferrard, Bresson and Vandergheynst, Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering, NIPS, 2016.

Code https://github.com/mdeff/cnn_graph

Paper Seo, Defferrard, Bresson and Vandergheynst, Structured Sequence Modeling with
Graph Convolutional Recurrent Networks, arXiv, 2017.

Code https://github.com/youngjoo-epfl/gconvRNN

GSP in Python https://github.com/epfl-lts2/pygsp

Thanks Questions?
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