

Recent Results from MINOS and MINOS+

Adam Aurisano University of Cincinnati For the MINOS and MINOS+ Collaborations

XXVIII International Conference on Neutrino Physics and Astronomy 4 June 2018 Heidelberg, Germany

Outline

- MINOS and MINOS+ overview
- **New:** Final Three-flavor oscillation results
	- Full MINOS and MINOS+ v_μ and v_μ beam samples
		- Updated with final year of beam data
	- Full MINOS and MINOS+ atmospheric samples
		- Updated with final three years of atmospheric data
	- MINOS v_e appearance sample
- **New:** Search for sterile neutrinos
	- v_{μ} -CC and NC disappearance
		- Full MINOS beam sample
		- First two years of MINOS+
	- New two-detector joint fit
- Additional Beyond the Standard Model searches
- Conclusions

MINOS and MINOS+ Overview

- MINOS and MINOS+ were designed to study neutrino oscillations over long baselines using two detectors that are:
	- Iron-scintillator tracking calorimeters to contain muons
	- Functionally identical for systematic uncertainty reduction
	- Magnetized for sign selection and energy estimation

MINOS and MINOS+ Beam

MINOS:

- ~3 GeV peak energy
- **Study oscillations at** atmospheric frequency

MINOS+:

- ~7 GeV peak energy
- Constrain deviations from 3 flavor paradigm

MINOS and MINOS+ Atmospheric Neutrinos

Three-Flavor Oscillation Analysis

- Standard analysis uses ND data to produce extrapolated FD predictions
- Improving the beam flux estimate makes this technique more powerful
- Parameterize hadron production for pions and translate to kaons using measured pion/kaon ratios
- Warp parameterization to fit ND data with no focusing to isolate just hadron production

Beam Flux Estimation: Focusing

- Hadron production and focusing effects are separable
	- Apply hadron production weights from focusing off sample to sample with focusing on
	- Fit for focusing efects
- Poster: Wednesday #89, A. Holin

Far Detector Beam Data

- MINOS and MINOS+ probe muon-neutrino disappearance over a broad range of energies
- Consistency with three flavor prediction tightly constrains alternate oscillations hypotheses

Far Detector Atmospheric Data

- Fit in bins of $cos(\theta_{\text{zen}})$ and energy
- Magnetic field helps separate atmospheric neutrino and antineutrino samples for extra mass hierarchy discrimination
- Complements beam neutrino samples

Combined Fit Results

Best fit $\Delta m_{32}^2 = 2.42 \times 10^{-3} \text{ eV}^2$ $\sin^2\theta_{23} = 0.42$

Exclusion of maximal mixing: 1.1σ Preference for lower octant: 0.80 Preference for normal hierarchy: 0.2σ

Comparison with Other Experiments

Poster: Wednesday #53, T. Carroll

Sterile Neutrino Search

 $\frac{1}{2}$ June 2018 $\frac{1}{2}$ and $\frac{1$

3+1 Model

- Anomalous short-baseline results consistent with new mass state and new sterile flavor
- Expand PMNS matrix from $3x3 \rightarrow 4x4$
- 6 new parameters
	- One mass scale (Δm^2_{41})
	- Three mixing angles $(\theta_{14}, \theta_{24}, \theta_{34})$
	- Two CP-violating phases $(\delta_{14}, \delta_{24})$
- Search in two modes
	- Neutral current disappearance
		- NC rate is insensitive to 3 flavor mixing
		- Sterile neutrinos do not couple to the Z boson
		- Sensitive to Δm^2_{41} , θ_{24} , θ_{34}
	- $\rm v_{\mu}$ charged current disappearance
		- Three flavor oscillations are modulated by the higher frequency sterile oscillations
		- Sensitive to Δm_{41}^2 and θ_{24}

$$
U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}
$$

4-Flavor Oscillations

Oscillations at Very Large Δm^2 41

Analysis Strategy

- To handle oscillations at many scales, analysis treats Near and Far Detectors on equal footing
	- Replace ND beam constraint from three-flavor analysis with flux estimate derived from a method using only hadron production experiment data developed by MINERvA
- Joint fit for v_{μ} charged current and neutral current disappearance in Near and Far Detectors
	- Uses full statistical power of Near Detector, unlike the Far-to-Near ratio dominated by FD statistics
- Encode correlations due to systematic uncertainties between energy bins and detectors with a covariance matrix
	- 26 systematic uncertainties considered
- Minimize covariance-matrix-based χ^2 function to allow for a high degree of cancellation of correlated shape uncertainties:

$$
\chi_{CC,NC}^2 = \sum_{i=1}^N \sum_{j=1}^N (x_i - \mu_i) [\mathbf{V}^{-1}]_{ij} (x_j - \mu_j)
$$

\mathbf{v} μ CC Sample

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal elements to indicate the equivalent of post-fit agreement

NC Sample

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal elements to indicate the equivalent of post-fit agreement

Sterile Disappearance Limit

Sterile Disappearance Limit

- MINOS and MINOS + 90% C.L. exclusion limit over 7 orders of magnitude in Δm^2_{41}
- Improvement at large Δm^2_{41} over previous MINOS result due to:
	- Near Detector statistical power
	- Sensitivity to normalization shifs
	- Improved binning around atmospheric dip in Far Detector
- Increased tension with global best fit
	- Displayed here with $|U_{\textrm{e4}}|^2$ = 0.023
- Final year of data is still to be analyzed
- Poster: Monday #140, A. Aurisano
- Posted to arXiv:1710.06488 and submited to PRL
	- See arXiv paper and ancillary materials for more details

^S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys.G43, 033001 (2016)

Additional Beyond the Standard Model Searches

New: Large Extra Dimensions Poster: Wednesday #52, S. De Rijck

In progress: Sterile-driven v_r appearance at the MINOS Near Detector Poster: Monday #143, K. Grzelak

In progress: Sterile-driven v_e appearance Poster: Wednesday #62, G. Pawolski

Conclusions

- MINOS/MINOS+ has improved its standard oscillation measurement using the full sample of beam and atmospheric neutrinos
	- Results are competitive with running experiments
	- Measured Δm^2_{32} to 3.5%
- Using a new two-detector fit technique, MINOS+ sets leading limits on sterile neutrino mixing, especially in the critical $1 - 10$ eV² region

- Over 11 years of running, MINOS/MINOS+ has collected a large dataset over a broad energy range
- The high resolution mapping of the first atmospheric maximum provides strong support for the three-flavor paradigm

Thank you!

Backup Slides

Event Topologies

Selecting NC and v μ CC Samples

Neutral current selection

- Selection based on topological quantities
	- Require compact events
	- No long tracks extending out of the hadronic shower
- 89% efficiency and 61% purity at FD
- Primary background is inelastic v_{μ} CC
- 97% of v_e CC pass selection
- v_{μ} charged current selection
- Use 4 variable kNN designed to distinguish muon from pion tracks
- Applied to events failing NC selection
- 86% efficiency, 99% purity at the FD

- ◆ Two techniques used to identify atmospheric neutrinos in the Far Detector.
- 1) Contained-vertex events:
	- Apply series of containment requirements on reconstructed tracks and showers to reduce cosmic-ray backgrounds.
	- Far Detector is equipped with a scintillator veto shield, which tags cosmic-ray muons with 96% efficiency.
- 2) Upward and horizontal muons:
	- Far Detector has a timing resolution of 2.5ns.
	- Can identify neutrino-induced upward and horizontal muons using timing information.
- Soudan mine has a uniform rock overburden, enabling events to be identified above the horizon (cos $\theta_{\sf zen}$ <0.05).

Selected atmospheric neutrinos are categorised based on event topology:

- select "high resolution" sample of events with well-measured muon propagation direction.
- 950 contained-vertex muons and all 736 non-fiducial muons pass this selection.
- Can reconstruct zenith angle and L/E for these events.
- Plots on right show zenith angle and L/E distributions of selected high-resolution events.
- Clear oscillation signature!

 Neutrinos and antineutrinos are separated based on muon charge sign, which is reconstructed using curvature of final-state muon tracks.

- In the MINOS+ oscillation analysis, atmospheric neutrino data are binned as a function of reconstructed energy and zenith angle.
- Sensitivity to Δm^{2}_{32} and sin² θ_{23} is complementary with accelerator data.
	- Additional limited sensitivity to mass hierarchy in MSW resonance region.

Results of oscillation fit to MINOS/MINOS+ atmospheric neutrino data:

Hadron Production MINOS+ Flugg08 Pi+

$$
\frac{d^2N}{dx_F dp_T} = [B(x_F)p_T + C(x_F)p_T^2]e^{-D(x_F)p_T^{E(x_F)}}
$$

A. Lebedev, Ph.D. thesis, Harvard University (2007)

- ND data provides a powerful constraint on beam flux
- Use samples with focusing horns off to isolate hadron production
- Fit empirical pion hadron production parameters for neutrinos and antineutrinos
- Transfer weights to kaons using measured pion/kaon ratios

Beam Flux Estimation: Focusing

- Apply hadron production weights to sample with focusing on
- Fit for focusing effects
- Poster: Wed. $# 89$, A. Holin

Systematics: Hadron Production - CC

Systematics: Hadron Production - NC

Systematics: Cross Sections - CC

Systematics: Cross Sections - NC

Systematics: Energy Scale - CC

Systematics: Energy Scale - NC

Systematics: Beam Optics - CC

Systematics: Beam Optics - NC

Systematics: Acceptance

Oscillations at Very Large Δm^2 41

Degeneracies

$$
P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2 - |U_{\mu 4}|^2) \sin^2 \Delta_{31}
$$

- 4 |U_{\mu 4}|^2 |U_{\mu 3}|^2 \sin^2 \Delta_{43} - 4 |U_{\mu 4}|^2 (1 - |U_{\mu 3}|^2 - |U_{\mu 4}|^2) \sin^2 \Delta_{41}
where $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$

If:

$$
\bullet \ \Delta m^2_{41} \approx \Delta m^2_{31}
$$

$$
\bullet \ \Delta m^2_{41} \approx 2\Delta m^2_{31}
$$

 \bullet $\Delta m^2_{41} \ll \Delta m^2_{31}$

Certain combinations of θ_{23} , θ_{24} , and θ_{34} can produce 4-flavor solutions nearly indistinguishable from 3 flavor.

Run each fit five times \rightarrow each θ_{23} octant and mass hierarchy choice and the degenerate region.

scenarios

Sensitivity: Shape vs. Normalization

Sensitivity: CC vs. NC

Comparison to MiniBooNE's Best Fit: CC Sample

New MiniBooNE paper – arXiv:1805.12028 Best fit: $\Delta m^2 = 0.041 \text{ eV}^2$ and $\sin^2 2\theta_{\mu e} = 0.958$ $\sin^2_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

Take sin²2 θ_{14} = 1 to minimize v_{μ} disappearance

Comparison to MiniBooNE's Best Fit: CC Sample

Reconstructed Energy (GeV)

Comparison to MiniBooNE's Best Fit: NC Sample

New MiniBooNE paper – arXiv:1805.12028 Best fit: $\Delta m^2 = 0.041 \text{ eV}^2$ and $\sin^2 2\theta_{\mu e} = 0.958$ $\sin^2_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

Take sin²2 θ_{14} = 1 to minimize v_{μ} disappearance

Comparison to MiniBooNE's Best Fit: NC Sample

4 June 2018 **Adam Aurisano - University of Cincinnati** 56 Adam 56

NC MiniBooNE best fit

Systematic uncertainty

v. CC background

 $\overline{30}$

NC MiniBooNE best fit

Systematic uncertainty

v_u CC background

 $30[°]$

v_e appearance

v. appearance

Beam v_e background

40

40

Beam v background

Comparison to MiniBooNE: MINOS/Daya Bay/Bugey Combination

- MINOS and MINOS+ are in significant tension with the new MiniBooNE result, even assuming a conservative sin² $2\theta_{14} = 1$
- Using θ_{14} from Daya Bay and Bugey combined with the previous MINOS result leads to an even larger tension which will only increase if a future combination with Daya Bay is performed

Consistency with Three Flavor Oscillations

Inadequacy of the Asimov Sensitivity

