

Recent Results from MINOS and MINOS+

Adam Aurisano University of Cincinnati For the MINOS and MINOS+ Collaborations

XXVIII International Conference on Neutrino Physics and Astronomy 4 June 2018 Heidelberg, Germany

Outline

- MINOS and MINOS+ overview
- New: Final Three-flavor oscillation results
 - Full MINOS and MINOS+ v_{μ} and v_{μ} beam samples
 - Updated with final year of beam data
 - Full MINOS and MINOS+ atmospheric samples
 - Updated with final three years of atmospheric data
 - MINOS v_e appearance sample
- New: Search for sterile neutrinos
 - v_{μ} -CC and NC disappearance
 - Full MINOS beam sample
 - First two years of MINOS+
 - New two-detector joint fit
- Additional Beyond the Standard Model searches
- Conclusions

MINOS and MINOS+ Overview

- MINOS and MINOS+ were designed to study neutrino oscillations over long baselines using two detectors that are:
 - Iron-scintillator tracking calorimeters to contain muons
 - Functionally identical for systematic uncertainty reduction
 - Magnetized for sign selection and energy estimation

4 June 2018

MINOS and MINOS+ Beam

MINOS:

- ~3 GeV peak energy
- Study oscillations at atmospheric frequency

MINOS+:

- ~7 GeV peak energy
- Constrain deviations from 3 flavor paradigm

4 June 2018

MINOS and MINOS+ Atmospheric Neutrinos

Three-Flavor Oscillation Analysis

- Standard analysis uses ND data to produce extrapolated FD predictions
- Improving the beam flux estimate makes this technique more powerful
- Parameterize hadron production for pions and translate to kaons using measured pion/kaon ratios
- Warp parameterization to fit ND data with no focusing to isolate just hadron production

Beam Flux Estimation: Focusing

- Hadron production and focusing effects are separable
 - Apply hadron production weights from focusing off sample to sample with focusing on
 - Fit for focusing effects
- Poster: Wednesday #89, A. Holin

Far Detector Beam Data

- MINOS and MINOS+ probe muon-neutrino disappearance over a broad range of energies
- Consistency with three flavor prediction tightly constrains alternate oscillations hypotheses

Far Detector Atmospheric Data

- Fit in bins of $\cos(\theta_{zen})$ and energy
- Magnetic field helps separate atmospheric neutrino and antineutrino samples for extra mass hierarchy discrimination
- Complements beam neutrino samples

Combined Fit Results

Best fit $\Delta m_{32}^2 = 2.42 \times 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.42$

Exclusion of maximal mixing: 1.1σ Preference for lower octant: 0.8σ Preference for normal hierarchy: 0.2σ

Comparison with Other Experiments

Poster: Wednesday #53, T. Carroll

Sterile Neutrino Search

3+1 Model

- Anomalous short-baseline results consistent with new mass state and new sterile flavor
- Expand PMNS matrix from $3x3 \rightarrow 4x4$
- 6 new parameters
 - One mass scale (Δm_{41}^2)
 - Three mixing angles $(\theta_{14}, \theta_{24}, \theta_{34})$
 - Two CP-violating phases $(\delta_{14}, \delta_{24})$
- Search in two modes
 - Neutral current disappearance
 - NC rate is insensitive to 3 flavor mixing
 - Sterile neutrinos do not couple to the Z boson
 - Sensitive to Δm_{41}^2 , θ_{24} , θ_{34}
 - ν_{μ} charged current disappearance
 - Three flavor oscillations are modulated by the higher frequency sterile oscillations
 - Sensitive to $\Delta m_{{}^{2}\!_{41}}$ and $\theta_{{}^{24}}$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

4-Flavor Oscillations

Oscillations at Very Large Δm^2_{41}

Adam Aurisano - University of Cincinnati

Analysis Strategy

- To handle oscillations at many scales, analysis treats Near and Far Detectors on equal footing
 - Replace ND beam constraint from three-flavor analysis with flux estimate derived from a method using only hadron production experiment data developed by MINERvA
- Joint fit for ν_{μ} charged current and neutral current disappearance in Near and Far Detectors
 - Uses full statistical power of Near Detector, unlike the Far-to-Near ratio dominated by FD statistics
- Encode correlations due to systematic uncertainties between energy bins and detectors with a covariance matrix
 - 26 systematic uncertainties considered
- Minimize covariance-matrix-based χ² function to allow for a high degree of cancellation of correlated shape uncertainties:

$$\chi^2_{CC,NC} = \sum_{i=1}^N \sum_{j=1}^N (x_i - \mu_i) [\mathbf{V}^{-1}]_{ij} (x_j - \mu_j)$$

v_{μ} CC Sample

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal elements to indicate the equivalent of post-fit agreement

NC Sample

- Covariance matrix fits do not include systematics as nuisance parameters
- The error bands and prediction account for off-diagonal elements to indicate the equivalent of post-fit agreement

Sterile Disappearance Limit

Sterile Disappearance Limit

- MINOS and MINOS+ 90% C.L. exclusion limit over 7 orders of magnitude in Δm_{41}^2
- Improvement at large Δm_{41}^2 over previous MINOS result due to:
 - Near Detector statistical power
 - Sensitivity to normalization shifts
 - Improved binning around atmospheric dip in Far Detector
- Increased tension with global best fit
 - Displayed here with $|U_{e4}|^2 = 0.023$
- Final year of data is still to be analyzed
- Poster: Monday #140, A. Aurisano
- Posted to arXiv:1710.06488 and submitted to PRL
 - See arXiv paper and ancillary materials for more details

[^]S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys.G43, 033001 (2016)

Additional Beyond the Standard Model Searches

New: Large Extra Dimensions Poster: Wednesday #52, S. De Rijck

In progress: Sterile-driven v_{τ} appearance at the MINOS Near Detector Poster: Monday #143, K. Grzelak

In progress: Sterile-driven v_e appearance Poster: Wednesday #62, G. Pawolski

Conclusions

- MINOS/MINOS+ has improved its standard oscillation measurement using the full sample of beam and atmospheric neutrinos
 - Results are competitive with running experiments
 - Measured Δm_{32}^2 to 3.5%
- Using a new two-detector fit technique, MINOS+ sets leading limits on sterile neutrino mixing, especially in the critical 1 - 10 eV² region

- Over 11 years of running, MINOS/MINOS+ has collected a large dataset over a broad energy range
- The high resolution mapping of the first atmospheric maximum provides strong support for the three-flavor paradigm

Thank you!

Backup Slides

Event Topologies

Selecting NC and v_{μ} CC Samples

Neutral current selection

- Selection based on topological quantities
 - Require compact events
 - No long tracks extending out of the hadronic shower
- 89% efficiency and 61% purity at FD
- Primary background is inelastic $\nu_{\mu}\,CC$
- 97% of $\nu_{\rm e}$ CC pass selection
- v_{μ} charged current selection
- Use 4 variable kNN designed to distinguish muon from pion tracks
- Applied to events failing NC selection
- 86% efficiency, 99% purity at the FD

- Two techniques used to identify atmospheric neutrinos in the Far Detector.
 - 1) Contained-vertex events:
 - Apply series of containment requirements on reconstructed tracks and showers to reduce cosmic-ray backgrounds.
 - Far Detector is equipped with a scintillator veto shield, which tags cosmic-ray muons with 96% efficiency.
 - 2) Upward and horizontal muons:
 - Far Detector has a timing resolution of 2.5ns.
 - Can identify neutrino-induced upward and horizontal muons using timing information.
 - Soudan mine has a uniform rock overburden, enabling events to be identified above the horizon ($\cos\theta_{zen} < 0.05$).

Selected atmospheric neutrinos are categorised based on event topology:

Event Classification	Data	No oscillations	Best fit
Contained-vertex showers	1123	1248	1134
Contained-vertex muons	1399	1923	1379
Non-fiducial muons	736	924	737
Total events	3258	4095	3250

- Timing information is used to select "high resolution" sample of events with well-measured muon propagation direction.
 - 950 contained-vertex muons and all 736 non-fiducial muons pass this selection.
 - Can reconstruct zenith angle and L/E for these events.
- Plots on right show zenith angle and L/E distributions of selected high-resolution events.
- Clear oscillation signature!

 Neutrinos and antineutrinos are separated based on muon charge sign, which is reconstructed using curvature of final-state muon tracks.

	Selected ν_{μ}	Selected anti- v_{μ}	Total
Contained-vertex muons	574	255	829
Non-fiducial muons	239	143	382
Total	813	398	1211

- In the MINOS+ oscillation analysis, atmospheric neutrino data are binned as a function of reconstructed energy and zenith angle.
- Sensitivity to Δm_{32}^2 and $\sin^2\theta_{23}$ is complementary with accelerator data.
- Additional limited sensitivity to mass hierarchy in MSW resonance region.

Results of oscillation fit to MINOS/MINOS+ atmospheric neutrino data:

Hadron Production MINOS+ Flugg08 Pi+

$$\frac{d^2 N}{dx_F dp_T} = [B(x_F)p_T + C(x_F)p_T^2]e^{-D(x_F)p_T^{E(x_F)}}$$

A. Lebedev, Ph.D. thesis, Harvard University (2007)

- ND data provides a powerful constraint on beam flux
- Use samples with focusing horns off to isolate hadron production
- Fit empirical pion hadron production parameters for neutrinos and antineutrinos
- Transfer weights to kaons using measured pion/kaon ratios

Beam Flux Estimation: Focusing

- Apply hadron production weights to sample with focusing on
- Fit for focusing effects
- Poster: Wed. # 89, A. Holin

Systematics: Hadron Production - CC

Systematics: Hadron Production - NC

Systematics: Cross Sections - CC

Systematics: Cross Sections - NC

Systematics: Energy Scale - CC

Systematics: Energy Scale - NC

Systematics: Beam Optics - CC

Systematics: Beam Optics - NC

Systematics: Acceptance

Oscillations at Very Large Δm^2_{41}

Degeneracies

$$\begin{split} P(\nu_{\mu} \to \nu_{\mu}) = & 1 - 4 |U_{\mu3}|^2 \left(1 - |U_{\mu3}|^2 - |U_{\mu4}|^2 \right) \sin^2 \Delta_{31} \\ & - 4 |U_{\mu4}|^2 |U_{\mu3}|^2 \sin^2 \Delta_{43} - 4 |U_{\mu4}|^2 \left(1 - |U_{\mu3}|^2 - |U_{\mu4}|^2 \right) \sin^2 \Delta_{41} \\ & \text{where} \quad \Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E} \end{split}$$

If:

•
$$\Delta m_{41}^2 \approx \Delta m_{31}^2$$

• $\Delta m_{41}^2 \approx 2\Delta m_{31}^2$

• $\Delta m_{41}^2 \ll \Delta m_{31}^2$

Certain combinations of θ_{23} , θ_{24} , and θ_{34} can produce 4-flavor solutions nearly indistinguishable from 3-flavor.

Run each fit five times \rightarrow each θ_{23} octant and mass hierarchy choice and the degenerate region.

Sensitivity: Shape vs. Normalization

Sensitivity: CC vs. NC

Comparison to MiniBooNE's Best Fit: CC Sample

New MiniBooNE paper – arXiv:1805.12028 Best fit: $\Delta m^2 = 0.041 \text{ eV}^2$ and $\sin^2 2\theta_{\mu e} = 0.958$ $\sin^2_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

Take $\sin^2 2\theta_{14} = 1$ to minimize v_{μ} disappearance

Comparison to MiniBooNE's Best Fit: CC Sample

MiniBooNE's Best Fit Near Detector, v_u-mode MINOS+ Preliminary 7.99×10²⁰ POT MINOS CC Near Detector data 5.87×10²⁰ POT MINOS+ CC MiniBooNE best fit Systematic uncertainty NC background Beam v background v, appearance v_{τ} appearance $\Delta m_{41}^2 = 0.041 \text{ eV}^2$ $\sin^2(\theta_{24}) = 0.9580$ $\sin^2(\theta_{14}) = 0.5000$ 20 10 30 40 Reconstructed Energy (GeV) Far Detector, vu-mode **MINOS+** Preliminary 10.56×10²⁰ POT MINOS CC Far Detector data 5.80×10²⁰ POT MINOS+ CC MiniBooNE best fit Systematic uncertainty NC background Beam v background v_ appearance v_{τ} appearance $\Delta m_{41}^2 = 0.041 \text{ eV}^2$ $\sin^2(\theta_{24}) = 0.9580$ $\sin^2(\theta_{14}) = 0.5000$

20

Reconstructed Energy (GeV)

10

30

40

4 June 2018

Comparison to MiniBooNE's Best Fit: NC Sample

New MiniBooNE paper – arXiv:1805.12028 Best fit: $\Delta m^2 = 0.041 \text{ eV}^2$ and $\sin^2 2\theta_{\mu e} = 0.958$ $\sin^2_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

Take $\sin^2 2\theta_{14} = 1$ to minimize v_{μ} disappearance

Comparison to MiniBooNE's Best Fit: NC Sample

40

40

Comparison to MiniBooNE: MINOS/Daya Bay/Bugey Combination

- MINOS and MINOS+ are in significant tension with the new MiniBooNE result, even assuming a conservative $\sin^2 2\theta_{14} = 1$
- Using θ_{14} from Daya Bay and Bugey combined with the previous MINOS result leads to an even larger tension which will only increase if a future combination with Daya Bay is performed

Consistency with Three Flavor Oscillations

Inadequacy of the Asimov Sensitivity

