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Lightweight Prediction-Based Tests for On-Line
Min-Entropy Estimation
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Abstract—Health tests (on-the-fly tests) play an important role
in true random number generators because they are used to
assess the quality of the bits produced by entropy source and
to raise an alert when failures or attacks are detected. Most
of classical tests are implemented as statistical tests. A set of
new health tests based on predictors was presented by NIST
(National Institute of Standards and Technology) in CHES 2015.
These off-line tests attempt to predict the next output of the
entropy source by trying to learn the patterns that the previously
produced sequence of bits may possess. We provide the first
integrated lightweight implementation of prediction-based tests
for min-entropy estimation and verify their validity.

Index Terms—Field-programmable gate arrays (FPGA), min-
entropy estimation, True random number generators (TRNG).

I. INTRODUCTION

TRUE random number generators (TRNG) are necessary
components of every cryptographic system. They are

most commonly used for generation of secret session keys,
challenges, salts, nonces and padding values. The entropy
source is the core component of TRNGs and relies on un-
predictable physical events in order to produce unpredictable
raw bits [2]. However, entropy sources are also very sensitive
to external perturbations, making them an ideal target for the
attacker of the crypto system. Therefore, the quality of the
produced raw bits needs to be monitored in order to detect
attacks and weaknesses of the entropy source.

A suite of new prediction-based tests for min-entropy es-
timation during prototype evaluation was proposed in [1].
Predictors are machine learning units that constantly update
their internal state based on a success/failure of their previous
prediction. In this light, min-entropy is defined as the most
conservative way of predicting the most-likely output of the
entropy source.

Our contribution is a flexible lightweight FPGA implemen-
tation of three prediction-based tests for estimation of min-
entropy level. These implementations are shown to be suitable
for on-the-fly tests and not only during prototype evaluation.
Our implementations use short bit sequences produced by the
entropy source, enabling attack or failure detection with very
low latency.
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II. SET OF IMPLEMENTED PREDICTORS

The predictors proposed in [1] are divided into two cate-
gories based on the interpretation of data samples - Categorical
data predictors and Numerical predictors. In Categorical data
predictors samples serve as bare labels, while in Numeri-
cal predictors samples have numerical meaning. In order to
simplify the implementations, data samples produced by the
entropy source in this work belong to a fixed alphabet of two
symbols - the output of the entropy source produces one bit at
a time. This assumption eliminates the need for Numerical
predictors, as they become identical to the predictors that
already exist in Categorical data predictors set.

The Categorical data predictors set consists of four predic-
tors. However, we noticed that the predictor LZ78Y, which
gives prediction based on the most common sample that
followed the current value according to the dictionary, shares
concepts with Markov Model with Counting predictor and
they both perform well with the entorpy sources that produce
samples according to similar distributions [1]. The remaining
three predictors are implemented and explained further in this
section.

Each of the predictors is realized with several different
model parameters, and all the models of one predictor are
grouped together into one ensemble predictor. The ensemble
predictor gives the prediction based on the success rate of its
subpredictors. Therefore, our implementation consists of three
ensemble predictors - prediction-based tests for min-entropy
estimation. In order to be consistent with previous work [3],
the tests in this letter also report eight levels of min-entropy
on a scale from 0 to 7. Assessment of min-entropy level in
all tests is done by calculating the percentage of successful
predictions.

Most Common in Window (MCW) is a predictor that keeps
track of the last w output samples of the entropy source, and
bases its prediction on the most common sample observed.
This predictor is designed for entropy sources that produce
samples which have a clear most common value. MCW
predictor is used as a part of ensemble predictor MultiMCW.

Single Lag Predictor gives as prediction the value equal to
the output sample that appeared N observed samples back in
the sequence. It is designed for entropy sources that produce
sample sequences which express periodic behavior. This pre-
dictor is used as a part of ensemble predictor MultiLag.

Markov Model with Counting (MMC) predictor keeps counts
for each sample that has followed each N-sample string.
Whenever the string is observed again, this predictor gives
a prediction equal to the most observed sample that followed
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Fig. 1: General overview of the prediction-based test platform archi-
tecture.

Fig. 2: Hardware architecture of the Single Lag predictor.

Fig. 3: Hardware architecture of the MCW predictor.

that string in the past. The MMC predictor is used as a part
of ensemble predictor MultiMMC.

III. IMPLEMENTATION

An architectural overview of the implemented prediction-
based test platform, which contains all prediction-based tests,
is shown in Figure 1. All implemented tests use one common
shift register to store bit samples produced by the entropy
source. The width of this register corresponds to the maximum
number of samples needed for one of the tests. The test
platform also contains a 14-bit wide counter used solely for
the detection of the end of the bit sequence.

Each predictor in one test contains a local scoreboard (SCB)
counter which is updated every time the predictor makes a
successful prediction. Each test contains a global scoreboard
comparator to select the prediction given by the predictor
which was most successful in the past; a global scoreboard
counter which is used for min-entropy level assessment and a
comparator with 7 predefined cut-off values for min-entropy
level assessment of the bit sequence. After the end of each bit
sequence, all scoreboard counters in each test are reset. The
final min-entropy level of the bit sequence is computed as the
minimum of all min-entropy levels given by each test.

Figure 2 shows the implementation of the Single Lag
predictor which is a part of the MultiLag test. Due to its
simplistic behavior, this predictor can be implemented with
one shift register, one comparator and one counter.

Figure 3 shows the implementation of MCW predictor
which is a part of the MultiMCW test. Since in our work
the sample space of the entropy source has only two values

Fig. 4: Hardware architecture of the MMC predictor.

(0 and 1), we observe that this predictor’s statistics can be
described with only one parameter - number of 1s observed in
the last w output samples. If this parameter is greater than w/2,
the prediction of MCW is 1, otherwise it is 0. This approach
enables us to implement the MCW predictor by using one shift
register, two counters, two comparators and one XOR gate.

Figure 4 shows part of the implementation of MMC predic-
tor. A straightforward implementation of the MMC predictor
has a rather complex structure, but several simplifications
can be made in order to make a lightweight version of this
predictor. Namely, keeping track of the number of each sample
that follows each string can be implemented with one up/down
counter. The counter works in down mode whenever bit value
1 is observed, and in up mode whenever bit value 0 is
observed. Thus, we can further reduce the number of needed
comparators, since the first bit of the up/down counter can be
directly used for comparison with the current output of the
entropy source. Each predictor contains 2N counters, where
N is the length of a bit string, that are used for keeping
track of the number of each sample that followed the string.
Whenever the string is observed again, the counter is updated,
and the most significant bit of the counter is selected by
the multiplexer as the corresponding prediction of the MMC
predictor.

IV. SELECTION OF THE IMPLEMENTATION PARAMETERS

The parameter space of our test platform consists of bit
sequence length and test specific parameters (window sizes for
MultiMCW, lag depths for MultiLag and lengths of strings for
MultiMMC). For the sake of comparison of different versions
of tests according to their prediction performance, we establish
two figures of merit - precision of predictions and accuracy
of the predictions. Precision of predictions refers to variability
of the test reported min-entropy for different bit strings of the
same characteristics, whereas accuracy of predictions refers
to proximity of the test reported min-entropy to 8-levels
quantized theoretical min-entropy.

Precision of predictions is directly proportional to bit se-
quence length because the tests give more consistent predic-
tions when they are provided with more data. Therefore, the
length of the bit sequence is determined as a compromise
between two contradictory requirements: the need for more
reliable results (requiring long bit sequences) and the fast
detection of failures of the entropy source (low latency).
We initially started our validation experiments, described in
Section V, by choosing the sequence length of 29 bits and
recording the highest min-entropy span reported by the tests.
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Fig. 5: Precision analysis Fig. 6: Accuracy analysis for entropy source with varying bias

All three tests reported min-entropy levels of high variability,
spreading across 4 levels for some bit sequences, independent
on test specific parameters. Hence, we have preformed the
same validation experiments for bit sequences of lengths 210,
211, 212, 213 and 214, and recorded highest reported min-
entropy spans depending on the bit sequence length. These
results are shown in Figure 5. The shortest bit sequence length,
for which all tests report min-entropy levels with variability
not higher than 1 level, is 213. This level of variability is
acceptable for the use in on-line testing, and thus is our starting
point for accuracy analysis. Accuracy of predictions depends
on bit sequence length, test specific parameters and suitability
of the test for the entropy source (as described in Section II).
The accuracy of the tests that are suitable for the tested entropy
source increases with longer bit sequences, but the accuracy
of those tests can also be improved by exploring a second
degree of freedom - test specific parameters. The accuracy
of prediction-based tests that are unsuitable for the tested
entropy source does not increase with longer bit sequences,
but it can be somehow enhanced by choosing adequate test
specific parameters. Because of the complex dependency of
accuracy on test specific parameters, we implemented different
versions of each test in order to establish that dependency
and find lightweight implementations that at the same time
most correctly predict min-entropy of the entropy source. The
accuracy analysis was performed on these tests by calculating
the proximity of the highest reported min-entropy level to the
corresponding 8-level quantized theoretical min-entropy of 2
entropy sources - unbiased generator with varying correlations
and generator without correlations with varying bias. Figure 6
shows the results of accuracy analysis for several characteristic
values of the test specific parameters when tests are performed
on the data produced by entropy source with varying bias. It
can be seen that for both MultiMCW and MultiMMC tests
several different versions preform equally well, so we decide
for the most lightweight versions - 7 and 15 for window
sizes of MultiMCW and 1 and 2 samples for MultiMMC test.
Because of the unsuitability of MultiLag test for this entropy
source, all versions of this test report higher min-entropy level,
so we decide to implement the one that has the lowest number
of deviations - lags 2 and 1. Similar analysis was performed
with entropy source with varying correlations, and analogous
conclusion to these were made. In order to be sure about the
level of achieved accuracy of our tests, we increased the length
of the bit sequence to 214 bits and repeated the experiment.
This showed that approximately 1 level better accuracy can be
achieved with this bit sequence for MultiMCW and MultiMMC
tests. However, since 1 level of min-entropy variability is

acceptable for the on-line testing, we decided to keep value
213 as the length of the bit sequence in order to achieve lower
latency and at the same time being sure that our estimations
are no more than 1 level off.

V. VALIDATION OF IMPLEMENTED TESTS

The validity of the implemented prediction-based tests is
verified by simulating the non-ideal entropy sources and
comparing the results produced by the tests with the theoretical
value of the min-entropy of the entropy source. Three types of
non-ideal sources have been used: an unbiased generator with
correlation between consecutive bits [3], a biased generator
without correlation between consecutive bits [3] and a sampled
ring oscillator. The theoretical value of the min-entropy of
the entropy source is represented using continuous line in all
figures of this section.

Figure 7 shows test results for the entropy source which
produces unbiased bit sequences with correlation between
consecutive bits. The bit flipping probability was varied from
0% to 100% in steps of 5%. For each step, 100 sequences
of 213 bits were generated. The graph named Final represents
the final min-entropy estimate that is taken as the minimum
of all tests. It can be seen that the only test that is able to
accurately estimate the min-entropy of this entropy source is
MultiMMC. As expected, the MultiMCW test fails because
there is no clear common value in bit sequences whose bits
randomly flip with certain probability, although no full min-
entropy is reported until the probability of bit flipping reaches
50%. The MultiLag test is almost able to follow the theoretical
min-entropy because it is able to predict the next output of
the entropy source when the probability of bit flipping is very
low, very high, or equal to 50%, since at this points certain
periodicity of bit sequences can be observed.

Figure 8 shows test results for the entropy source which
produces biased bit sequences. The bias in bit sequences is
expressed by the probability of the bit being equal to 0. The
probability of 0 was also varied from 0% to 100% in steps of
5%. For each step, 100 sequences of 213 bits were generated.
In this case, it can be seen that the MultiMMC test is again
able to accurately estimate the min-entropy of the entropy
source. The MultiMCW test also accurately estimates the min-
entropy because there exists a clear common value in every
bit sequence, which depends on the value of probability of
appearing 0. It can be observed that the MultiLag test behaves
in the same way as in the previous case, as this test is not
designed to predict this type of bit sequence behavior.

As the final step in the verification process, the effectiveness
of the proposed tests was evaluated using data generated by
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Fig. 7: Test results of the sequences produced by the unbiased
generator.

Fig. 8: Test results of the sequences produced by the biased generator.

Fig. 9: Test results of the sequences produced by sampling ring
oscillator.

a simulated ring oscillator. The data were generated using
a Matlab model of an oscillator with white noise jitter. We
varied the quality factor, which represents the phase variance
accumulated between two samples, from 1% to 25% in steps
of 1%. The results are presented in Figure 9. For each step,
100 sequences of 213 bits were generated. The test results of
all three implemented tests follow the same trend as theoretical
min-entropy of the source, as presented in [4]. The observed
trend can be properly explained by the fact that for very
low values of the quality factor, which correspond to high

sampling rates, this entropy source produces bit sequences
with alternating runs of 0s and 1s. MultiMCW test is now
able to determine a clear common value in sliding window,
whereas the MultiLag test can detect periodic behavior in the
runs of 0s and 1s. MultiMMC test can successfully estimate
the min-entropy of all three sources since all three can be
modeled by a Markov model.

VI. CONCLUSION

The proposed hardware design is synthesized using Xilinx
ISE 14.7 on Spartan-6 XC6SLX45 FPGA. Modelsim SE 6.6d
and ISim 14.1 are used for functional simulation. The imple-
mentation result of the test platform (unified implementation
of all tests), with implementation parameters from Section IV,
is given in Table I. Our design uses 87 slices and it can
work on maximum frequency of 187.5 MHz. The separate
implementation results of each test are also given in Table
I. These results do not include logic for min-entropy level
assessment, since it is the same size inside each test. It should
be noted that every slice is counted in every test that has its
basic elements packed in that slice.

TABLE I: Implementation Results of Tests

Test Slices LUTs FFs
Unified implementation 87 282 223

MultiMCW test 18 50 54
MultiMMC test 38 134 132
MultiLag test 4 14 14

In this letter, we proposed a hardware implementation of
prediction-based tests for min-entropy estimation of sources
that produce non-ideal data. The achieved throughput of 187.5
Mbit/s and small resource consumption makes our design suit-
able for use with FPGA TRNGs in resource constrained envi-
ronments where the security of the system is of paramount im-
portance. From the conducted experiments we deduce that the
MultiMMC test can be used to detect all types of failures
presented. This is supported by the fact that a large number of
physical processes, which are basis for randomness extraction
in TRNGs, can be modeled with a Markov model. However,
the MultiMMC test is at the same time the part of our design
that consumes most hardware resources on FPGA, which
can be clearly observed in Table I. The MultiMCW and the
MultiLag tests are much smaller, but can be used to detect
only limited number of failures.
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