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My grateful thanks to the close colleagues Marijan, Olga, Marko and Marija. From them, I have
learned a lot about cooperation and team-work. Special thanks to Marijan; for all our funny&supportive
talks, discussions, and great time we’ve spent together in our office. I am thankful to the numerous other
colleagues at the Faculty who helped and supported me all these years.

Many thanks to Dr.-Ing. Heiner Denker and Prof. Dr.-Ing. Jürgen Müller from the Institut für
Erdmessung (IfE), Leibniz Universität Hannover (LUH) for their hospitality during the crucial stages of
my PhD research.

The authors of the software routines that were used as a starting point for my research are greatly ac-
knowledged. Especially, Carl Christian Tscherning (1942-2014), René Forsberg, Mario Brkić, Ramazan
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Abstract

One of the ultimate goals in geodesy, a 1 cm geoid model, is still unreachable for most of
the areas worldwide. Several theoretical, methodological, numerical and data problems will
have to be resolved in order to achieve it. The main motivation of this research is in making
methodological and empirical contribution towards resolving some of the open problems in the
regional gravity field and geoid modeling.

Topographic and density effects which affect short and very-short wavelengths of the gravity
field have been traditionally modelled using the constant parameters of the Earth’s crust. As such
parameters are only an approximation, this has been a limitation in more accurate filtering and
reduction of the gravity data. Therefore, a methodology was developed which allows inclusion
of surface and three dimensional crustal models in all steps of geoid determination. Prior to
this, surface crustal density models were developed based on the inversion methods according to
Pratt-Hayford, Airy-Heiskanen, and Parasnis-Nettleton. Additionally, three-dimensional crustal
models EPcrust and CRUST1.0 were included in the computations. As a result of including
crustal density models, the accuracy of developed gravimetric geoid models was improved from
1 to 3 cm.

The second major focus of research was related to the problem of the diversity of possible
geoid computation methods and dozens of ways to perform reduction of the gravity field. The
comparison of two widely used geoid modelling approaches was performed: Royal Institute of
Technology (KTH) and Remove-Compute-Restore (RCR). Furthermore, compute step in RCR
approach may be performed using several spectral and spatial methods. Therefore, different
geoid computation methods were compared, including analytic Stokes integration using different
deterministic modifications of the Stokes’ kernels, planar and spherical Fast Fourier Technique
(FFT), flat-Earth and 3D least squares collocation (LSC). KTH approach, being a relatively
straightforward geoid modelling approach compared to the RCR, was used for the analysis of
the influence of all input models and parameters on the accuracy computed geoid models. From
the large number of computed geoid solutions, two final gravimetric and hybrid geoid models
for Croatia were selected HRG2018-RCR and HRG2018-KTH having standard deviation of
±3.0 cm and ±3.5 cm. The accuracy of geoid models was validated on GNSS/levelling points
with seven parametric models using a unique cross-validation fitting methodology. Few other
aspects of regional gravity field modeling were researched: i) investigation of the influence of
input models and parameters in obtaining residual gravity field used in the RCR approach, ii)
validation of the accuracy of global geopotential models, and iii) validation of gridding methods
for several types of gravity anomalies.
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Sažetak

Jedan od glavnih ciljeva geodezije, 1 cm model geoida, još je uvijek nemoguće izračunati
u mnogim područjima diljem svijeta. Za postizanje toga moraju se riješiti mnogi teoretski,
metodološki, numerički i podatkovni problemi u postupku modeliranja polja ubrzanja sile teže.
Glavna motivacija ovog istraživanja je rješavanje nekih od otvorenih problema regionalnog mod-
eliranja sile teže i geoida.

Modeliranje topografskih efekata, koji utječu na kratke i ultra-kratke valne duljine polja sile
tež, uobičajeno se radi korištenjem konstantnih vrijednosti parametara Zemljine kore. To pred-
stavlja ograničenje u pogledu točnosti redukcije mjerenja ubrazanja sile teže. Stoga je razvijena i
primijenjena metodologija koja omogućava korištenje dvodimenzionalnih (2D) i trodimenzion-
alnih (3D) modela kore. Prethodno su izrad̄eni modeli površinskih gustoća kore korištenjem
inverznih metoda Parasnis-Nettletona, Airy-Heiskanena i Pratt-Hayforda. U računanjima i anal-
izi su korišteni i dostupni trodimenzionalni globalni modeli kore EPcrust i CRUST1.0. Rezultati
upućuju na značajan utjecaj parametara i modela kore na točnost izračunatih modela geoida.

Drugi fokus istraživanja odnosi se na postojeće različitosti u pristupima i metodama pri re-
dukciji gravimetrijskih podataka i računanju geoida. U tom kontekstu, napravljena je usporedba
dva najkorištenija pristupa računanja modela geoida- remove-compute-restore (RCR) i metode
najmanjih kvadrata s adicijskim korekcijama (KTH). Korak compute u RCR pristupu može se
napraviti brojnim spektralnim i prostornim metodama. Stoga su uspored̄ene različite metode
računanja geoida, koje uključuju analitičko rješenje Stokesovog integrala (koristeći različite de-
terminističke modifikacije Stokesovog integrala), ravninski i sferni FFT, 2D i 3D LSC.

KTH pristup, kao relativno direktan pristup u usporedbi s RCR pristupom, korišten je za
analizu utjecaja svih ulaznih modela i parametara na izračunate modele geoida i njihovu točnost.

Točnost modela geoida procijenjena je usporedbom na raspoloživim GNSS/nivelmanskim
točkama korištenjem sedam različitih parametarskih modela primjenom modificiranog postupka.
Parametarski model s najmanjim standardnim odstupanjem korišten je za fitanje gravimetrijskog
i dobivanje hibridnog modela geoida.

Iz svih izračunatih rješenja, izabrani su konačni gravimetrijski i hibridni modeli geoida za
hrvatsko područje: HRG2018-RCR i HRG2018-KTH, sa standardnim odstupanjem ±3.0 cm i
±3.5 cm.

Obrad̄eni su i drugi problemi kao što su: utjecaj ulaznih modela i parametara na dobivanje
rezidualnog polja sile teže u RCR pristupu, točnost globalnih geopotencijalnih modela (GGM) i
točnost metoda interpolacije anomalija ubrzanja sile teže.

Ključne riječi: gravimetrijski geoid, GNSS/niveliranje, modeli kore, topografske reduk-
cije, remove-compute-restore (RCR) pristup, modifikacija Stokesa po najmanjim kvadratima s
dodatnim korekcijama (KTH)
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Chapter 1

Introduction

“If I have seen further than others, it is by
standing upon the shoulders of giants.”

Sir Isaac Newton, 1643-1727

Earth’s gravity field has been a subject of exploration and research since the end of the
16th century. Its importance manifests in many tasks in geosciences, including geodesy and
geophysics. Today, modeling of the Earth’s gravity field is still one of the main scientific interests
in geosciences.

Gravimetry (Latin: gravis, heavy, Greek: µετρεω , measure), measurements of the gravity
field, have been continuously performed using absolute and relative gravimeters since 1940s,
and have increased substantially both in terms of an accuracy and spatial coverage. Today,
gravity is measured with accuracy of around 1 µ Gal using absolute gravimeters, and 2-10
µGal using relative gravimeters. A significant increase in the quantity of the globally available
data has started from 2000 after the start of satellite gravity missions CHAllenging Minisatellite
Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE) and Gravity Field and
Steady-State Ocean Circulation Explorer (GOCE). Since satellite gravimetry measure gravity
field globally (up to approximately 100 km), data from other measurement instruments have to
be used for filling spectral and spatial gaps, such as airborne and shipborne gravimetric data.

Apart from the standard gravimetric data, other sources of information such as crustal data
and models have the potential for inclusion into the gravity field modelling. Crustal models
may be created from several types of geodetic, geophysical, geological, and seismological data
using geophysical inversion methods and procedures. Such data provide more information about
the internal structure of the Earth. For a long time global and regional crustal structure of the
Earth was mostly unknown due to a lack of the appropriate geophysical and geological data. For
comparison purposes, digital elevation models, as models of the Earth’s external topography, are
published in resolutions of 1′′or 3′′since 2000, while the most recent and detailed global crustal
model was published in 2015 and has resolution of 1◦. This means crustal models, describing
situation below Earth’s topographic surface, give almost 3600 times less details. From these
reasons, Earth’s complex and layered crustal structure was usually approximated and described
with only few globally estimated parameters. For example, constant value of 2670 kgm−3 has
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been almost exclusively used as the best approximated global mean crustal density value (Hinze
2003). The situation has changed in the last two decades, as there have been numerous attempts
to acquire data about the Earth’s internal structure, as well as to develop and improve crustal
models. Available crustal models have opened up a possibility of applying them in gravity field
modelling, instead of using only approximate global values.

One the other hand, mathematical and computational methods for modelling of the gravity
field have been developed and improved throughout the years, along with increasing collection
and availability of the gravity and crustal data on all spatial scales. Methods for geoid deter-
mination have been theoretically founded, with less simplifications and approximations. Error
sources which affected geoid solutions and had to be neglected in the past are currently success-
fully removed, modeled and filtered in the modeling process.

As a consequence, geoid computation process has diverged in a number of different ways.
Currently few geoid determination approaches are used, whereas each approach has again di-
verged in several methods. For example, only gravity anomaly data may be used in analytic
Stokes method, while in Least Squares Collocation method both gravity anomalies and gravity
gradients data can be used. From the theoretical standpoint, if methods are mathematically well-
defined, they shall all give the same or almost similar result. From the practical point of view,
this is almost never the case. This leads to some kind of paradoxical situation where the true
geoid surface can possibly be only one (specific value of the real potential W0), but the geoid
model, as its best approximation, can be computed in almost infinite number of different ways.
In fact, there are no two researchers that will derive exactly the same geoid model. This was
shown in multiple cases where different groups of scientists came out with differences between
geoid solutions of more than 5 or 10 cm. See, for instance, development of the NKG2015 (Ågren
et al. 2015) or GEOMED2 (Barzaghi et al. 2017) geoid models.

1.1 Statement of the problem

One of the main tasks of geodesist’s is determination of the geopotential surface- geoid. From
the beginning of the 21st century, the ultimate goal has been determination of the geoid model
with 1 cm accuracy. However, this is possible only with the optimal usage of all available data
and methods. One of the current limitations towards achieving a geoid model with wanted
accuracy is in using constant crustal parameters in gravity field modelling. Errors in modelling
are included because in local and regional areas crustal structure is significantly different to
be satisfactorily approximated with such simplification. Although examples in the world exist
where crustal models were used in computations, there are methodological unknowns on how
to derive and implement crustal models, as well as insufficient empirical research on different
study areas worldwide.

1.2 Thesis objectives

The main objectives of the thesis are:



CHAPTER 1. INTRODUCTION 3

• Development of methodology for including two (2D) and three dimensional (3D) crustal
density models in all steps of regional gravity field modelling and geoid determination.

• Development of the lateral (2D) crustal density models for the study area.
• Assessment of the influence of crustal density models on the accuracy of geoid models by

using:
– different constant crustal density values (1D),
– developed surface (2D or lateral) crustal density models,
– existing 3D crustal models (EPcrust and CRUST1.0).

• Determination of updated and improved gravimetric and hybrid geoid models for the Re-
public of Croatia.

• Comparison of the most often used geoid determination approaches: Remove-Compute-
Restore (RCR) and Royal Institute of Technology (KTH).

• Comparison of spatial and spectral geoid computation methods.
• Assessment of the influence of all input parameters and models on the accuracy of geoid

models.
All computations are performed over the study area which covers the territory of the Republic
of Croatia and its close surrounding.

1.3 Expected scientific contribution

Expected scientific contributions of the thesis are:
• Lateral (2D) crustal density models developed using Pratt-Hayford’s, Airy-Heiskanen’s,

and Parasnis-Nettleton’s inversion methods for the study area.
• Estimation of the optimal constant crustal density value over the study area.
• New gravimetric and hybrid geoid models for the Republic of Croatia computed using the

most recent geopotential, elevation and crustal models.
• Maps of terrain correction, Faye, simple Bouguer, complete Bouguer, and topographic-

isostatic gravity anomalies over the study area.
• Closer insights into the importance of various input parameters and models (crustal, geopo-

tential and elevation) on reduced gravity anomalies and computed geoid undulations.
• Statistical and visual results related to the comparison and validation of the RCR and KTH

geoid modelling approaches.
• Results of comparisons and validations of geoid models computed using several spatial

and spectral geoid computation methods: analytic Stokes’ integration with different ker-
nel modifications, spectral methods (planar, spherical, spherical multi-band FFT), least
squares collocation (planar and 3D).

• Results of the accuracy validation of the most recently published global geopotential mod-
els from the GOCE and GRACE satellite gravity missions using the independent gravity
and GNSS/levelling data.

• Results of the investigations of the interpolation (gridding) methods for several types of
gravity anomalies. Eleven interpolation methods with different input parameters are used
including: Inverse Distance to a Power (IDW), Kriging, Minimum Curvature, Modified
Shepard’s, Natural Neighbour, Nearest Neighbour, Polynomial Regression, radial base
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functions (RBFs), triangulated irregular network (TIN), Moving Average, Local Poly-
nomial. Types of gravity anomalies included in the investigations are: free-air, simple
Bouguer, complete Bouguer, residual (FA-GGM-RTM) gravity anomalies.

• Known accuracy of the gravimetric and hybrid geoid models using different fitting para-
metric models: bias, linear, 2nd and 3rd polynomials, 4, 5, and 7 parameters.

• Developed scripts for calculation of topographic and topographic-isostatic effects on grav-
ity field quantities with possibility for using global and regional 2D and 3D crustal models.

• Developed scripts for gravity field modelling and geoid determination allowing automa-
tized and seamless determination of geoid models starting from the input parameters and
models without necessity for a manual work.

1.4 Brief literature review

A brief literature review is given in this section with reference to the publications which are
relevant for this thesis either from a theoretical or practical aspect. The section is divided in a
few topic-related subsections in order to improve comprehension. Additional references are also
provided throughout the part I: Theory.

Crustal density models in regional geoid determination

Several investigations have been conducted in the past related to the usage of the Earth’s crustal
data and models in regional gravity field modelling and geoid determination. Martinec (1993)
shows theoretically that small density variations can have an effect on the gravity reduction and
then on geoid undulations of more than 1 decimeter in mountainous areas. He investigated den-
sity effects of lateral (horizontal) anomalies and approximated topography with mass columns.
Tziavos et al. (1996) studied the effect of surface density variation in modelling of terrain ef-
fects. Kühtreiber (1998b) evaluated contributions of a density variation using RCR approach for
geoid model in the central part of Austria. He found that small changes in density can change
gravimetric geoid by more than 10 cm. Pagiatakis and Armenakis (1999) used Geographic In-
formation System (GIS) to create surface crustal density model from geological maps for the
Canadian territory. Pagiatakis et al. (1999) and Esan (2000) found that the effect of surface
densities have almost 3 mGal effect on terrain corrections and 1 decimeter on geoid undula-
tions. According to Omang (2000), the use of density informations in the geoid determination
did alter the geoid by as much as 20-30 cm, but the improvement in hybrid geoid models were
not conclusive. Huang et al. (2001) and Huang (2002) implemented Martinec (1993) theoretical
research and studied lateral variation of topographical density on gravity and geoid in western
Canada, and found that the effect on the geoid ranges from -7.0 to 2.8 cm. Kuhn (2000), Kuhn
(2001), and Kuhn (2003) used Pratt-Hayford (P-H), Airy-Heiskanen (A-H) and Vening-Meinesz
(V-M) topographic-isostatic models and geological information to compute geoid in Germany.
He found out that the effect may reach 1 decimeter. Tziavos and Featherstone (2001) improved
geoid solutions by 1-2 cm when using density models in Australia. Sjöberg (2004b) computed
the total effect on the geoid due to the lateral density anomaly which can be more than 2 cm
for elevations higher than 1000 m and in extreme cases may reach more than few decimeters.
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Kiamehr (2006a) and Kiamehr (2006b) studied lateral density effects on geoid by creating a
density variation model using Pratt-Hayford model and found differences of more than 2 dm
compared to constant crustal density values. Herceg et al. (2015) investigated how uncertainties
in seismic and density structure of the crust propagate to uncertainties in the mantle and gravity
anomalies. In his work he used satellite gravity data from GOCE mission and global crustal
models CRUST 5.1, CRUST 2.0 and CRUST 1.0.

Tsoulis (2013) gave an overview on the geodetic uses of global digital crustal models for
retrieval of very-high frequencies of the measured gravity field. He concluded that crustal data
and models should be implemented whenever possible both for global and regional gravity field
modelling, but this is still not routinely done due to the low resolution and unknown quality of
available data.

Modelling of topographic effects

One of the central issues in geoid determination is modelling of topographic gravity potential
effects. Throughout years, many methods and algorithms have been published for calculation of
the effects in spatial and spectral domains. The main difference between methods is the way they
define, approximate and formulate a unit or a body for which topographic attraction or potential
is calculated. Possible bodies used as approximations of real topographic masses in the spatial
domain are:

• prisms (Everest 1830, Nagy 1966a, Nagy 1966b, Hjelt 1974, Ketelaar 1976, Forsberg
1984, Ketelaar 1987,Werner and Scheeres 1996, Tsoulis 1998, Tsoulis 1999, Nagy et al.
2000, Smith 2000, Smith et al. 2001, Tsoulis 2001, Heck and Seitz 2007, Tsoulis et al.
2009),

• line-masses (Tsoulis 1999, Wild-Pfeiffer 2008),
• point-masses (Tsoulis 1999, Heck and Seitz 2007, Wild-Pfeiffer 2008, Reguzzoni et al.

2013),
• layer-masses (Tsoulis 1999, Tsoulis et al. 2003, Wild-Pfeiffer 2008),
• Gauss-Legendre quadrature (Hwang et al. 2003, Asgharzadeh et al. 2007, Roussel et al.

2015, Uieda et al. 2016),
• polyhedral bodies (Coggon 1976, Pohánka 1988, Tsoulis et al. 2003, Tsoulis 2012, D’Urso

2013, D’Urso 2014, Werner 2017),
• tesseroids (Ku 1977, Heck and Seitz 2007, Wild-Pfeiffer 2008, Tsoulis et al. 2009, Li et al.

2011, Grombein et al. 2013, Hirt and Kuhn 2014, Uieda et al. 2016),
• tetrahedra (Casenave et al. 2016),
• prisms and tesseroids combination (Tsoulis et al. 2009, Shen and Han 2013),
• prisms and polyhedrons combination (Chai and Hinze 1988, Garcia-Abdeslem 2005, D’Urso

2015).
Some of the available routines for calculation of topographic effects include: TC (Forsberg

1984, Tscherning 1994), Terrain (Ma and Watts 1994), INTLOG5A (Smith 2000), TcLight (Bi-
agi and Sanso 2001), TCQ (Hwang et al. 2003), FA2BOUG (Fullea et al. 2008), GTeC (Cella
2015), GTE (Sampietro et al. 2016, Capponi et al. 2018), and Tesseroids (Uieda et al. 2010,
Uieda et al. 2016).
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Topographic effects using surface and 3D crustal densities

One of the main focuses of research in this thesis is integration of surface (2D) and 3D crustal
density models in gravity field modelling and geoid determination. Source code called TC is
used as a starting routine, which was developed by prof. René Forsberg, PhD in 1984 (Fors-
berg 1984). Since then the code was updated several times, and the latest update was done in
September 2009. The code is written in Fortran programming language and still has widespread
usage in physical geodesy worldwide, especially in geoid determination using RCR approach
(see also GRAVSOFT package, Tscherning 1994, Forsberg and Tscherning 2008). The soft-
ware has possibilities for computation of terrain, topographic-isostatic and RTM correction for
different gravity field functionals, such as gravity anomalies and geoid undulation. Analytic
numerical integration of the effects of topographic masses is performed by division of topog-
raphy on rectangular prisms. The effect of topography for wanted gravity field functionals in
some computation point is obtained by summation of the prisms within the selected radius of
integration. For increasing of the calculation efficiency, integration area is divided in two zones.
Standard input data are fine, coarse and reference digital elevation models. Forberg’s original
version of TC uses constant crustal density for all topographic masses. In 1994, original TC
code was modified by Mario Brkić (Brkić 1994a, Brkić and Bašić 2001). Prisms with constant
densities were divided in vertical z direction. What was before one prism with constant density,
became several prisms where each prism has its own density. Vertical limits of prisms were de-
fined by layers from the models of crustal thickness. In Brkić (1994a) study topographic masses
are divided on three layers in vertical direction defined by crustal thickness (depths): 1) sediment
2) crustal thickness, and 3) Moho. Each thickness layer has corresponding density layer, there-
fore there were three density layers for sediments, crustal thickness and Moho. Brkić’s solution
enables integration of including additional available layers or even complete 3D seven-layered
crustal models, such as CRUST1.0, in computation of topographic effects.

RCR vs KTH approach

Theoretical research on the differences between most frequently used geoid determination ap-
proaches, RCR and KTH, is given in Klu (2015) and Sjöberg and Bagherbandi (2017a). Only
few empirical studies have been published where these two approaches are compared on the
same test-area and using identical input data. Ågren et al. (2009) compared geoid models over
Sweden and reported Root Mean Square (RMS) 2.2 cm for KTH and 4.0 cm for RCR after
1-parameter fitting. Abbak et al. (2012) compared RCR and KTH over mountainous area in
central Turkey and found that the accuracy of geoid computed with KTH is around 3 cm, which
is slightly better than geoid computed using RCR approach. Yildiz et al. (2012) computed geoid
models for the Auvergne area in France. Geoid computed using KTH approach had accuracy of
2.4 cm, and 2.9 cm for geoid computed using RCR approach.

Geoid models around the world

Large number of geoid models have been published since first attempts somewhere in 1950s.
They were mainly developed for two purposes. First, for scientific purposes as a part of research
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and development of various geoid computational methodologies and methods. Second, for prac-
tical usage in transformation from ellipsoidal to orthometric heights in national height reference
system. As part of the International Association of Geodesy (IAG) service, International Ser-
vice for the Geoid (ISG) is running a geoid repository where large number of geoid models from
different countries over all continents are collected and stored (see, Reguzzoni et al. 2017). The
web-link of repository is IAG (2017). A list of the geoid models developed for different parts of
the world along with corresponding references is given in table 1.1.

Regional gravity field modelling in the Republic of Croatia

Gravity field modelling and especially geoid determination in Croatia has a long tradition lasting
more than three decades. Čolić et al. (1992) created the first digital surface density model for the
test area "Slovenia and surrounding part of Croatia" for the regional uses in physical geodesy.
Brkić (1994b) investigated inclusion of the Earth’s crustal layers, including models of the sur-
face density distribution and base sediments’ depths, in reduction of the topographic effects from
gravity-field field measurements. Petrović and Čolić (1994) estimated density contrast at the
Mohorovičić discontinuity from the correlation with the geoid. Čolić et al. (1996) used several
kinds of geodetic, gravimetric, and geophysical data in gravity field modelling for calculation of
topographic and topographic-isostatic effects. Švehla (1998) and Čolić et al. (1999) calculated
an astro-geodetic geoid model for the city of Zagreb and Croatia. Bašić et al. (2000) described
establishment of new geoidal points in the Republic of Croatia. Hećimović (2000) modeled and
compared gravimetric, GPS/levelling, gravimetric and astro-geodetic geoid models in Germany
and Croatia. Brkić (2001b) implemented three layer Earth’s crust approximation in topographic
reductions. The research continued in Brkić and Bašić (1997), Brkić and Bašić (2000), Brkić
(2001a), Brkić and Bašić (2001) where terrain correction is computed in spatial and spectral do-
main. Hećimović and Bašić (2002) evaluated different Global Geopotential Model (GGM) over
Croatian territory. Hećimović (2005) compared European Vertical Reference Network solution
UELN95/98 with CHAMP and GRACE global gravity models. Hećimović (2000) modeled ter-
rain effects of gravity field functionals using different DEMs and DEMs resolutions in Croatia.
In Pavasović (2007), Pavasović et al. (2008), and Pavasović (2008) GRACE monthly solutions
are compared on 138 GNSS/levelling points across Croatia. Liker et al. (2010) performed qual-
ity control of the national geoid model HRG2000, and different CHAMP and GRACE GGMs
using 65 control GNSS/levelling points. Varga (2012a) and Varga (2012b) created a model of
Airy-Heiskanen topographic-isostatic anomalies for Croatian territory. He tested different val-
ues of reference densities and compensation depths. Varga et al. (2012) reviewed regional geoid
models in the world at that period. Grgić et al. (2014) investigated application of HRG2009
geoid model in tunnel construction. Rezo et al. (2014) analysed influence of Earth’s topographic
masses on deflections of vertical. Repanić et al. (2015) determined vertical gravity gradient for
Croatian area. Bjelotomić et al. (2015) investigated possibilities of the refinement of the geoid
model on Croatian islands with sparse terrestrial gravity data. Grgić et al. (2015) reviewed height
systems in some European countries. Dragčević et al. (2016) validated HRG2000 and HRG2009
geoid solutions over the area of City of Zagreb on the newly established network of GNSS/lev-
elling points. They found standard deviation of HRG2000 is 3.7 cm, and HRG2009 2.4 cm. In
Varga et al. (2016) initial considerations of the modernization of the Croatian Height Reference
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Table 1.1: A list of geoid models and corresponding references worldwide

Country, continent Reference

Africa Obenson 1974, Merry et al. 2005, Gachari 1998
Algeria Benahmed Daho and Kahlouche 2000, Daho et al. 2006
Antarctica Scheinert et al. 2008, Schwabe et al. 2012
Argentina Tocho et al. 2007, GAR (Corchete and Pacino 2007), GEOIDEAR16 (Piñón et al. 2017)

Australia AUSGeoid98 (Featherstone et al. 2001), AUSGeoid09 (Featherstone et al. 2011),
AGQG2017 (Featherstone et al. 2018)

Austria AGG97 (Kühtreiber 1998a), Kühtreiber 2002
Bolivia BOLGEO (Corchete et al. 2006)
Brasil MAPGEO2015 (de Matos et al. 2016)
Cameroon CGM05 (Kamguia et al. 2007)

Canada CGG1993 (Sideris and She 1995), CGG2000 (Véronneau and Huang 2002, Véronneau
et al. 2006), CGG2010, CGG2013 (Huang and Véronneau 2013)

Caribbean Sea Smith and Small 1999
Croatia HRG2009 (Bašić and Bjelotomić 2014), HRG2015 (Bjelotomić 2015)
Czech Republic CR2000 (Kosteleckỳ et al. 2004), CR2005 (Kosteleckỳ et al. 2004)
Egypt EGY-HGM2016 (El-Ashquer et al. 2017), Abd-Elmotaal 2017
Ethiopia Hunegnaw 2001

Europe EGG1 (Torge et al. 1983), Denker and Torge 1992, EGG97 (Denker et al. 1997), EGG98
(Denker and Torge 1998), EGG07 (Denker et al. 2009), EGG2015 (Denker 2015)

France QGF96, RAF96, GGF97, QGF98, RAF98, RAF09, Ismail and Jamet 2015, Ismail 2016
Germany GCG2005 (Liebsch et al. 2006)
Ghana Klu 2015, GGG2017 (Yakubu et al. 2017)
Great Britain OSGM02 (Iliffe et al. 2003), OSGM05 (Ziebart et al. 2008)
Greece Daras 2008
Hong-Kong HKGEOID-2016 (Guo et al. 2017)
Hungary HGTUB98 (Toth et al. 2000), HGTUB2007 (Tóth 2009)
Iberia IGG2005 (Corchete et al. 2005)
Indonesia Kasenda 2009
Iran Kiamehr 2006a, Abdollahzadeh and Alamdari 2011

Italy ITALGEO99 (Barzaghi et al. 2002), ITALGEO05 (Barzaghi et al. 2007), ITG2009
(Corchete 2010)

Japan GSIGEO2000 (Kuroishi et al. 2002), JGEOID2004 (Kuroishi and Keller 2005),
JGEOID2008 (Kuroishi 2009), Odera et al. 2012

Kazakhstan Inerbayeva 2010
Korea Yun 1999
Malaysia Vella 2003
Mediterranean Sea Brovelli and Sansó 1993, Barzaghi et al. 2017
Moldova Danila 2012
Morroco Corchete et al. 2007
Mozambique Fan 2002
New Zealand Amos 2007, NZGeoid09 (Claessens et al. 2011), NZGM2010 (Abdalla and Tenzer 2011)

Nordic- Baltic Region Tscherning 1982, Forsberg et al. 1997, Omang and Forsberg 2002, Ellmann 2004,
NKG2015 (Ågren et al. 2016)

Norway Gerlach and Ophaug 2017
Oman Lasagna 2017
Pakistan Sadiq et al. 2010
Philippines PGM2016 (Gatchalian, Forsberg, and Olesen Gatchalian et al.)
Poland Łyszkowicz 2010, Kuczynska-Siehien et al. 2016
Saudi Arabia Abdalla and Mogren 2015
Slovenia SLOAMG2000 (Kuhar et al. 2011)
South America Blitzkow et al. 2016
South America de Matos et al. 2014, GEOID2015 (Blitzkow et al. 2016)

Sudan KTH-SDG08 (Abdalla and Fairhead 2011, Abdalla 2009), SUD-GM2014 (Godah and
Krynski 2015)

Sweden Nahavandchi 1998, KTH08 (Ågren et al. 2009)
Switzerland Marti 1997, CHGEO2004 (Marti 2004, Marti 2007)
Tanzania Olliver 2007, TZG08 (Ulotu 2009)
Tierra Del Fuego Gomez et al. 2014
Turkey TG-91 (Ayhan 1993), THG-09 (Kiliçoğlu et al. 2011)
Uganda Sjöberg et al. 2015, Ssengendo 2015

USA GEOID90 (Milbert 1991), GEOID96 (Smith and Milbert 1999), GEOID99 (Smith and
Roman 2001), USGG2009 (Wang et al. 2012)

Zambia Nsombo 1998
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Table 1.2: Information and validation of previous geoid model solutions over Croatia

Stats and info
HRG2000 HRG2009 HRG2015

Grgić et al. 2010 Bašić and
Bjelotomić 2014

Bašić and
Bjelotomić 2014

Bašić and
Bjelotomić 2014 Bjelotomić 2015

min [cm] -38 -27.5 -7.1 -7.8 -11.8
max [cm] 42 24.2 6.9 5.8 15.8
mean [cm] 1 -2.4 -0.04 -1.2 0.4
st. dev. [cm] 10.9 11.4 2.7 3.5 4.7

comp. method RCR/LSC RCR/LSC KTH
no. gravity points 7500 ∼ 29300 ∼ 28000
no. GNSS/lev. 495 59 495 59 59

System by implementation of the gravimetric geoid-based vertical datum were considered.

Geoid determination

Since 1990s, several geoid model solutions have been determined for the territory of Croatia.
After preliminary research by Čolić et al. (1992) and Čolić et al. (1993) for Slovenia and part
of Croatia, the first gravimetric geoid since Croatian independence was developed by Bašić
and Čolić (1993). Afterwards, following models were published: HRG98 and HRG98a (Bašić
et al. 1999, Bašić and Brkić 1999a, Bašić and Brkić 1999b), HRG2000 (Bašić 2000, Bašić
and Hećimović 2006), HRG2009 (Bašić and Bjelotomić 2014), HRG2015 (Bjelotomić 2015).
Results of validation of the three latest geoid solutions HRG2000, HRG2009, and HRG2015 are
given in table 1.2. HRG2000 was the first official geoid solution with an accuracy of around 11
cm.

The currently official model used for transformation of ellipsoidal to normal-orthometric
heights is Croatian quasi-geoid 2009 (HRG2009). Its development in 2009 brought a huge
improvement in accuracy compared to the past geoid models with an external accuracy of -1.2±
3.5 cm. It was computed from around 30 thousand free-air gravity anomalies by RCR approach
using LSC method. EGM2008 and SRTM3 were used as input data. Taking into account not
large number and somewhere questionable reliability of the data as well as complex topography
and non-rectangular shape of Croatia with high and rough mountains and unsurveyed sea areas,
HRG2009 is still a state-of-the-art geoid model. Without significant efforts in creating a more
detailed gravity database, accuracy at the 1-2 cm level, which is a geodetic goal nowadays, is
probably not possible.

The latest geoid solution HRG2015 is a first geoid model computed using the KTH approach.
It’s accuracy is 0.4 ± 4.7 cm.

1.5 Chapter summary

In chapter 1 Introduction is given on the subjects of research. Motivation, problems, objectives
and expected scientific contribution of the research is described.
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The thesis is divided in two parts; first part, where theoretical foundations are briefly ex-
plained using existing references, and second part, author’s research, contribution with numeri-
cal investigations, results and discussion. The first part is divided in three chapters: gravity field
(chapter 2), topographic reductions in gravity field modelling (chapter 3) and geoid determina-
tion ( chapter 4).

In chapter 2 the basics of gravity field and physical geodesy are described. In chapter 3
topographic effects in gravity field modelling are explained in more detail. Equations are given
for different types of gravity reductions and anomalies starting from free-air, then simple and
complete Bouguer, Airy-Heiskanen and Pratt-Hayford, and RTM anomalies. Their properties
are described from the perspective of their usefulness for different geodetic and geophysical
applications. Mathematical apparatus is given for calculation of terrain effects using surface
(2D) and 3D crustal models. In chapter 4 solution of the boundary value problem is in focus.
RCR and KTH approaches and different spatial and spectral methods of geoid determination
are described. Stokes’ kernel modifications are given. The process of gravimetric and global
geopotential models validation and fitting is presented.

After providing theoretical foundations, part II starts with chapter 5 referring to the input
data: gravity anomalies, GNSS/levelling data, global geopotential models, digital elevation mod-
els and crustal models. Study area is visualized on which computations are performed, as well as
the spatial borders (extent) of the used models. In chapter 5.4.1 different satellite and combined
global geopotential models are validated using available GNSS/levelling and gravity points. The
most appropriate GGM is found over Croatian territory. Remove step of RCR approach is stud-
ied in chapter 6, where residual gravity field modelling is performed with all combinations of
input parameters and models. In final two chapters 7 and 8, RCR and KTH geoid computation
approaches are compared and analysed in order to derive the best possible geoid model for the
study area, as well as to study effects of crustal models in each step of geoid determination.
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Part I

Theory
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Chapter 2

Fundamentals of gravitational field
“Almost every geodetic measurement depends
in a fundamental way on the Earth’s gravity
field.”

W. A. Heiskanen, H. Moritz, Physical
geodesy, 1967

Theoretical foundations related to the gravity field are briefly presented in this chapter. Basic
definitions of real, normal and disturbing gravity field, as well as other related functionals, such
as gravity anomalies, are described.

All quantities are expressed in spherical or rectangular coordinate systems which is illus-
trated in figure 2.1. Spherical coordinates are geocentric latitude ϕ , geocentric longitude λ and
radius from the center of the Earth r, whereas rectangular coordinates are x, y and z which are
also known as Cartesian coordinates. Conversion between rectangular and spherical coordinates
is performed using expressions:

x = r cosϕ cosλ ,y = r cosϕ sinλ ,z = r sinϕ. (2.1)

X

Y

Z

P

O

r z

y

x

Greenwich

equator

Figure 2.1: Definition of spherical and rectangular coordinate systems (after Hofmann-Wellenhof and Moritz 2005)
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2.1 Earth’s gravity field

Gravity force is the force of attraction on some point with mass m1 due to: 1) gravitational
force: the gravitational attraction of the body with mass m2, and 2) centrifugal force: caused
by the rotation of the mass. According to the law of gravitational attraction, formulated by an
English scientist Isaac Newton (1643-1727), gravitational force between two masses is:

F = G
m1m2

l2 . (2.2)

The law is valid for all bodies in the universe, and the force is directly proportional to the product
of masses and inversely proportional to the square of the distance between them. Each mass in
the gravitational field has gravity potential W , which consists from gravitational potential V and
centrifugal potential Φ (Hofmann-Wellenhof and Moritz 2005, eq. 2-7, p. 43):

W =W (x,y,z) =V +Φ. (2.3)

Gravitational potential V is a potential energy an object has in a gravitational field:

V = G
y

υ

dm
l

dυ , (2.4)

while centrifugal potential Φ is a potential energy an object has because of the gravitational
acceleration:

Φ =
1
2

ω
2(x2 + y2), (2.5)

where: υ is Earth’s volume, dm is mass element, x,y,z are Earth-fixed rectangular coordinates, l
is the distance between masses, ρ is mass density, G is the Newtonian gravitational constant, ω

is the angular velocity of the Earth’s rotation. Gravity potential varies with time, but here it will
be assumed to be fixed at some time epoch.

Gravity vector g is gradient of the gravity potential W (Hofmann-Wellenhof and Moritz
2005, eq. 2-10, p. 44):

g = ∇W =−g

cosΦcosΛ

cosΦsinΛ

sinΦ

=

Wx

Wy

Wz

≡ [∂W
∂x

,
∂W
∂y

,
∂W
∂ z

]
, (2.6)

where Φ and Λ are astronomical latitude and longitude, Wx, Wy, and Wz are partial derivatives
of W . Direction of gravity vector, conventionally taken as positive towards the center of the
Earth, defines the curve- Earth’s plumb line or vertical. The magnitude of gravity vector g is
gravity acceleration (sometimes referred as only acceleration or gravity) measured by absolute
and relative gravimeters.

Second-order derivatives of gravity potential W are gravity gradients, which form the Eötvös
tensor:

Wrr = ∇(∇W ) = ∇g =

Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz

 . (2.7)

International System of Units (SI) unit for gravity acceleration is [ms−2], though miligal is
commonly used in most applications and publications, where:
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O

P

x

z

y

l

Figure 2.2: The gravitational potential (after Hofmann-Wellenhof and Moritz 2005)

1 mGal= 10−3 Gal= 10−5 ms−2=10−3 cms−2.

Unit for gravitational potential is [m2s−2], and for gravity gradients 10−9 s−2 or Eötvös [E].

2.2 Normal Field

In the most simple approximation Earth is a rotating sphere, and in the second approximation it
is an equipotential (level) rotational ellipsoid. The theory of equipotential ellipsoid was firstly
explained by P. Pizzeti (Pizzetti 1894) and C. Somiglianna (Somigliana 1929). Level ellipsoid
is defined as a mathematical approximation (or model) of the real gravity potential W which
generates normal potential U (Hofmann-Wellenhof and Moritz 2005):

U = Ψ+Φ, (2.8)

where Ψ is the gravitational potential of the ellipsoid and Φ the centrifugal potential. Normal
gravity vector γ is defined as gradient of the potential U (Hofmann-Wellenhof and Moritz 2005,
eq. 2-10, p. 44):

γ = ∇U =−γ0

cosϕ cosλ

cosϕ sinλ

sinϕ

=

Ux

Uy

Uz

≡ [∂U
∂x

,
∂U
∂y

,
∂U
∂ z

]
, (2.9)

where γ0 is magnitude of normal gravity, ϕ and λ are geodetic latitude and longitude, Ux, Uy,
and Uz are partial derivatives of U .

Conventionally, equipotential ellipsoid is completely described with four basic constants
which define geometric and physical properties of the normal Earth. Ellipsoids Geodetic Ref-
erence System 1980 (GRS80) and World Geodetic System 1984 (WGS84) are mostly used in
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Table 2.1: Defining constants of GRS80 ellipsoid

Symbol Parameter Value

a semi-major axis 6378137 m
GM geocentric gravitational constant 3.986005 ·1014m3s−2

J2 dynamic form factor 0.001 082 63
ω angular velocity of the Earth’s rotation 7.2921159 ·10−5s−1

geodesy (Moritz 1980 and Moritz 2000). Defining constants of the GRS80 ellipsoid are given
in table 2.1.

Equipotential ellipsoid has following properties: a) it has the same angular velocity ω and
mass as the actual Earth, 2) its potential U0 on the ellipsoid surface is equal to the potential W0
on the geoid, and 3) its center is in the centre of the masses of the Earth (Li and Götze 2001).

Normal gravity

The magnitude of normal gravity γ0 on the surface of level ellipsoid (point Q on the figure 2.3)
is calculated from the Somigliana-Pizzetti closed-form equation (Somigliana 1929):

γ0 = γQ =
γe(1+ ksin2

φ)

(1− e2sin2
φ)

1
2
=

γecos2φ +(1− f )γpsin2
φ√

cos2φ +(1− f 2)sin2
φ

, (2.10)

where φ is geocentric latitude of the point, γe is normal gravity on the equator, γP normal gravity
on the poles, a and b are the semi-major and semi-minor axes of the level ellipsoid, e first
numerical eccentricity of the ellipsoid, and k is a normal gravity constant obtained from k =
bγP
aγE
−1.

Normal gravity at the height above the level ellipsoid γh is obtained as:

γh = γ0 +
∂γ

∂h
h+

1
2

∂γ2

∂h2 h2, (2.11)

which means normal gravity is first computed on the surface of level ellipsoid (h = 0), but is
then upward continued on the height h, neglecting all masses. Term ∂γ

∂h h is sometimes referred
as free-air reduction.
The 2.11 equation may be converted into more simpler and exact form:

γh = γ0

[
1− 2

a

(
1+ f +m−2 f cos2

θ
)

h+
3
a2 h2

]
, (2.12)

where θ = 90◦− φ , f is the geometrical flattening, m = ω2a2b
GM is the ratio of centrifugal and

gravity acceleration at the equator.
Both equations 2.11 and 2.12 may be applied if normal gravity is needed at the topographic
surface (γH or γH∗), for example in free-air reduction. In these cases, ellipsoidal height h is
replaced with orthometric height H or normal orthometric height H∗.
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2.3 Disturbing field

Disturbing (anomalous) potential T is defined as the difference between gravity potential of the
Earth W and normal gravity potential of the level ellipsoid U :

T =W −U, (2.13)

where normal gravity potential U accounts for approximately 99.99995 % of the gravity poten-
tial W .

Disturbing potential T is a function has to be valid for two conditions in a mass-free space:
Laplace’s and Poisson’s equations. Laplace’s equation is valid outside of the topographic and
atmospheric masses (Hofmann-Wellenhof and Moritz 2005, p. 95, eq. 2-253):

∆T =
∂ 2T
∂ 2x

+
∂ 2T
∂ 2y

+
∂ 2T
∂ 2z

= 0, (2.14)

whereas Poisson’s equation is valid inside topographic masses (Hofmann-Wellenhof and Moritz
2005, p. 44, eq. 2-9):

∆T =−4πGρ. (2.15)

From the disturbing potential T various functionals may be computed and used by three
types of methods: a) linear approximation methods, b) integral formula methods, and c) fre-
quency domain or spectral methods (Tscherning et al. 1990). In linear approximation method,
all anomalous quantities are spatial derivatives (functionals) or functions of the T in the latitude,
longitude or radial (vertical) direction (see table 2.2). Functionals have smaller values and are
suitable for modelling and computation (Vaníček and Krakiwsky 2015).

Table 2.2: Functionals of disturbing potential T in spherical approximation (e.g. Denker 1988)

Functional of T Equation Unit

disturbing potential T =W −U [m2s−2]

height anomaly ζ = T
γ

[m]

geoid undulation N = T−2πGρH2

γ0
[m]

gravity anomaly ∆g =− ∂T
∂ r −

2
r T [mGal]

gravity disturbance δg =− ∂T
∂ r [mGal]

meridional DOV ξ =− 1
rγ

∂T
∂ϕ

[′′]

prime vertical DOV η =− 1
rγ cosϕ

∂T
∂λ

[′′]

2.3.1 Anomalous gravity field

The differences between gravity measurements on topographic surface originate from the mass
surplus and deficits, as well as from the density anomalies in the Earth’s lithosphere. Usually,
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ellipsoidU= W
0

geoid
W=W0

n n'

N

P

gP

Q

Figure 2.3: Geoid and ellipsoid (after Hofmann-Wellenhof and Moritz 2005)

in order to make measurements interpretable and meaningful, modelling and calculations are
performed in the anomalous gravity field. Anomalous gravity field is obtained when normal
gravity field is subtracted from the real gravity field. Gravity anomaly ∆g is one of the most
important quantities of the anomalous (disturbing) field. In the broadest sense, it is defined as
the difference between actual (measured or observed) and normal (theoretical) gravity. If gP is a
gravity value of the point on the geoid, and γQ normal gravity of the point on the level ellipsoid,
then (Hofmann-Wellenhof and Moritz 2005):

∆gP = gP− γQ =

[
−∂T

∂ r
+

T
γ

∂γ

∂ r

]∣∣∣∣
P
, (2.16)

where r is the radial distance between point P and the Earth’s center of mass. The above equation
is illustrated on figure 2.3.

2.3.2 Bruns formula, fundamental equation of physical geodesy and Boundary
Value Problem

Three boundary value problems are important from geodetic perspective and are defined as fol-
lows (Heiskanen and Moritz 1967):
1st or Dirichlet’s BVP. The potential in the interior Vi and exterior Ve of the boundary surface

may be computed from the values of the function V given at the surface S.
2nd or Neumann’s BVP. The potential in the interior Vi and exterior Ve of the boundary surface

may be computed from the values of the first normal derivatives of the function ∂V
∂ r given

at the surface S.
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S

V

Figure 2.4: 3rd Boundary Value Problem (after Hofmann-Wellenhof and Moritz 2005)

3rd BVP. The potential in the interior Vi and exterior Ve of the boundary surface may be com-
puted from the values of the function V and first normal derivatives of the function ∂V

∂ r .
See figure 2.4.

Three boundaries may be selected for the solution of the BVP:
Topographic surface when quasi-geoid model is obtained as a solution. According to Molo-

denskii (1962) no gravity reduction is needed, as all topographic masses are inside the
boundary surface. However, the Earth’s surface is very rough so solution might not exist
in more complex terrains.

Geoid when topographic masses have to be reduced inside the boundary surface. Also known
as the classical solution of the Boundary Value Problem (BVP) (Heiskanen and Moritz
1967).

Reference ellipsoid as a modern alternative where measurements used for obtaining solution
are given on the level ellipsoid.

Traditionally, BVP has been the problem of determining geoid from geodetic measurements
such as gravity and potential difference (Moritz 1989). Both N and T are unknowns, but it is
enough to know one quantity to compute another. Equations 2.17 and 2.18 relate observation
(measured) quantities (∆g) with the unknown disturbing potential T through the differential
operator 2

R T + ∂

∂ r . This is known as the 3rd BVP. The solution of T in the exterior space exist,
only if partial derivatives ∂V

∂ r are known everywhere on the Earth’s surface. Relationship between
disturbing potential T , anomalous gravity anomaly ∆gP and geoid undulation N follows from the
Bruns’ equation (Hofmann-Wellenhof and Moritz 2005, p. 93, eq. 2-237):

N =
T
γ

(2.17)

and fundamental equation of physical geodesy (FEPG):

∂T
∂h
− 1

γ

∂γ

∂h
T +∆g = 0. (2.18)

Geoid surface may be computed using Bruns’ equation only if FEPG (eq. 2.18) has solution.
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Chapter 3

Topographic reductions

“Since the Earth’s actual surface is not strictly
a surface of equilibrium, on account of the
elevation of the continents and islands above
the sea level, it is necessary to consider in the
first instance in what manner observations
would have to be reduced in order to render
the preceding theory applicable. ”

George Gabriel Stokes, 1819-1903

Raw measurements of the gravity field are not suitable for interpretation and analysis. Var-
ious external effects are included in the measured gravity signal, which all have to be removed
and filtered before usage in particular application. In geophysical applications gravity measure-
ments are reduced and modeled, and as such, they are used for investigations of the Earth’s
internal structure. Hereby, it is crucial that reduced gravity field has physical meaning and inter-
pretation. On the other hand, geodesist’s primarily reduce gravity measurements to solve BVP
and determine boundary surface. The solution of the classical BVP require that data refer to
the boundary surface and that no masses exists outside of the boundary surface. Therefore, all
gravity reductions in its principle shall: 1) move gravity station from the Earth’s surface to the
boundary surface, and 2) reduce all atmospheric and topographic masses between topographical
surface of the Earth were measurement are performed and boundary surface. For step 2) it is
crucial to have knowledge about the crustal structure down to the boundary surface. Thus, if
geoid is selected as boundary surface, the gravity measurements from the topographic surface
(such as gravity anomalies ∆g) have to be reduced down to the geoid P, as visualized in fig. 3.1.
Because of the mostly unknown internal structure of the Earth this is one of the most complex
and non-unique steps in gravity field modelling.

It should be noted that the equations given here refer to the reduction of the gravity anoma-
lies ∆g as they are mostly available and used data type for gravity field modelling and geoid
determination. However, additional equations are available in references which may be applied
for topographic reduction of other types of data and functionals of the gravity field, such as de-
flections of vertical (ξ , η) or gravity gradients (Tzz). Another note is related to the two symbols
which are used throughout the text that follows; δ is used for reduction, and ∆ for anomaly.
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S

topographic surface

geoid
P

ellipsoid Q

HP

N

Figure 3.1: Reduction of gravity from Earth’s topography surface S down to the geoid P

In geodesy and geophysics many methods are available for topographic reductions of the
gravity field functionals: Free-Air, Bouguer, 1st and 2nd Helmert’s condensation, Molodenskii,
Airy-Heiskanen, Pratt-Hayford, Vening-Meinesz, inversion of Rudzki, and Residual Terrain
Modelling (RTM). A chosen topographic reduction would ideally produce small and smooth
gravity field anomalies (∆g) with geophysical meaning and with small indirect effect (Heiskanen
and Moritz 1967). From the theoretical standpoint, all topographic reduction schemes should re-
sult in the same geoid model. However, this is not the case. Therefore, only Helmert’s (second)
condensation method, Molodenskii’s method and RTM method are used for geoid modelling.
Isostatic reduction schemes have large indirect effects on geoid undulations, and find only in-
direct application in geoid modelling, for example for derivation of crustal density models by
inversion procedures or interpolation of anomalies (Sneeuw 2006).

3.1 Free air reduction

Given the gravity value at the surface of the Earth g (or more precise gS), gravity value at the
geoid P is obtained by analytic continuation with the free-air reduction. The gravity at point S is
downward continued along the real plumb line down to the point P on the geoid. All topographic
masses between point on the Earth’s topographic surface S and corresponding point on the geoid
P are neglected, and reduction is performed as in the mass-free space. Free-air gravity value is
obtained as (Heiskanen and Moritz 1967):

gFA = g+δgFA = g+
(
− ∂g

∂H
HP

)
, (3.1)

where HP is orthometric height of the point P measured from the geoid up to the topographic
surface, δgFA = − ∂g

∂HP
HP is free-air reduction or vertical gradient of the real Earth’s gravity

which depends on the location and real gravity field. Exact value of the real vertical gravity
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gradient is obtained as:
∂g
∂H

=−2gJ+4πGρ−2ω
2 (3.2)

where J is the mean curvature of a level surface computed as −Wxx+Wyy
2g , and ρ stands for the

density of the masses between topographic surface and geoid. Real vertical gravity gradient
using equation 3.2 is usually not computed due to unknown density of topographic masses. It is
approximated with a normal gravity gradient (Heiskanen and Moritz 1967, Tziavos et al. 2010):

∂g
∂H
≈ ∂γ

∂H
, (3.3)

where normal vertical gravity gradient is :

∂γ

∂H
≈−0.3086 [mgal/m]. (3.4)

Classical vs Molodenskii free-air gravity anomaly

Two theoretical definitions of free-air anomalies exist: classical and Molodenskii, which are
defined by following expressions (e.g. Heiskanen and Moritz 1967, Barthelmes 2009):

classical: ∆gFA = g− γ
H = g+δgH

FA− γ0,

Molodenskii: ∆gFA = g− γ
H∗ = g+δgH∗

FA− γ0,
(3.5)

where γH is normal gravity computed at orthometric height HP measured from geoid, and γH∗ is
normal gravity at normal-orthometric height measured from telluroid. Telluroid is an imaginary
surface approximating gravimetric geoid, defined by height anomalies ζ measured from the
Earth’s topography surface into topographic masses (see, e.g. Hirvonen 1961). Both γH and γH∗

are computed using equations 2.12 from section 2.2.
The distinction between classical and Molodenskii free-air anomaly is mainly a conceptual,

while for practical purposes they can be considered identical (Heiskanen and Moritz 1967, p.
310).

3.2 Bouguer reduction

In Bouguer reduction, gravitational effect of topographic masses between Earth’s topographic
surface and geoid is modelled through the infinite plate of thickness HP known as Bouguer plate
(figure3.2). Gravity attraction of a Bouguer plate is computed from (Hofmann-Wellenhof and
Moritz 2005, p. 135):

δgB = 2πGρHP, (3.6)

where ρ is density, Bouguer gradient equals − ∂g
∂h = −2πGρ expressed in mGal

m . Equation 3.6
is also known as direct topographical effect (DTE), or attraction change effect (Wichiencharoen
1982, Vaníček et al. 1995).
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Figure 3.2: Bouguer plate: modelling the topography point-wise by an infinite plate of thickness HP.

Usually when globally estimated value for crustal density is used ρ = 2670 kgm−3, equation
3.6 becomes:

δgB ≈ 0.1119HP. (3.7)

Bouguer reduced gravity gB is obtained by removing the effect of Bouguer plate from the g
and then moving the station on the geoid (Hofmann-Wellenhof and Moritz 2005):

gsB = g+δgFA−δgB. (3.8)

Simple Bouguer gravity anomaly is:

∆gsB = gsB− γ0. (3.9)

3.2.1 Complete Bouguer reduction

Approximation of the topographic masses with the Bouguer plate is a simplified approximation
of reality in the areas of complex and mountainous topography. The Bouguer plate does not
remove all the attractive effect of the topographic masses as surplus or deficient masses are
present around the point S. Excess’ and deficits of masses are shown on figure 3.3. Masses are
represented with blue colored rectangular prisms. Therefore, the effect of topographic masses is
remedied by taking into account a terrain correction (TC). It is a key auxiliary quantity in gravity
reductions containing the high frequency part of the gravity signal caused by the irregular part
of the topography, which is not filtered by the Bouguer plate.

3.2.2 Terrain correction

Terrain correction smooths gravity for the variations in local topography by removing the effect
of terrain variation relative to the height of the point gravity observation (figure 3.3). It is one
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Figure 3.3: Terrain correction, illustrating residual gravitational effect caused by surplus and deficiencies of the
topographic masses (after Hofmann-Wellenhof and Moritz 2005, p. 136).

order of magnitude smaller than Bouguer reduction in most areas, typically ranging from 1 to 5
mGal. However, in mountainous areas it can achieve values from 10 to 30 mGal.
According to Moritz (1968) terrain correction is equal to:

δgTC =
GρR2

2

∫
σ

(H−HP)
2

l3 dσ . (3.10)

Analytic expression for the terrain correction is (Tziavos and Sideris 2013):

δgTC = G
∫ ∫ HP∫

H

ρ(x,y,z)(HP− z)
l3 dxdydz, (3.11)

and is valid on the continent. Over the oceans, terrain correction is replaced by bathymetric
correction (δgBC) or density contrast effect given as (Tsoulis 1999, Tziavos and Sideris 2013,
pp. 346, eq. 8.12):

δgBC = G
∫ ∫ 0∫

−H

∆ρ(x,y,z)(HP− z)
l3 dxdydz, (3.12)

where P is computation point, l is the distance between computation point and integration point
l =
√

(xP− x)2 +(yP− y)2 +(HP− z)2, ∆ρ is the density contrast between the upper crust and
water (≈ 1670 kgm−3).

Using equation 3.11 terrain correction in planar approximation becomes (Tziavos and Sideris
2013, pp. 344, eq. 8.8, Sideris 1995):

δgTC(xP,yP) = G
x

σ

−ρ(x,y)(
l2
0 + z2

) 1
2
|∆H
0 dxdy =

G
x

σ

ρ(x,y)
l0

1−

[
1+
(

∆H
l0

)2
]− 1

2
dxdy,

(3.13)
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where ∆H = H(xP,yP)−H(x,y) and l2
0 = (xP− x)2 +(yP− y)2. Equation 3.13 after simplifica-

tion becomes in planar approximation:

δgTC(xP,yP) =
1
2

G
x

σ

ρ(x,y)
[
H(xP,yP)−H(x,y)2)

]
[(xP− x)2 +(yP− y)2]

3
2

dxdy. (3.14)

Practical computation

Several computational methods for evaluation of the terrain correction integral (equation 3.11)
exist, such as numerical integration, Fast Fourier transform or their combination. Topographic
masses may be approximated by various geometrical bodies based on conventional numerical
integration approaches, which evaluate the TC integral of equation 3.14 using a model of rect-
angular prisms with flat or inclined tops (Nagy 1966b). TC computation based on the closed
analytic expressions is known to be time-consuming, but most accurate. Other methods for TC
computation include a polynomial model or FFT, having the TC convolution integral expanded
in the form of Taylor series (see, e.g. Schwarz et al. 1990).

Rectangular prisms

Since 1970s, closed analytical expressions for the gravity potential have been extensively used
for computation of terrain effects in flat-Earth approximation (Nagy 1966b). One of the mostly
used solutions is based on approximation of topographic masses around point of interest with
rectangular prisms. The effect is computed and summed up for each prism ∑δgTC (Tziavos et al.
2010) inside computational area around the gravity point. Terrain correction may be computed
for different gravity field functionals. For gravity anomalies, it is (Jung 1961, Forsberg 1984,
Nagy et al. 2000):

δgTC = Gρ

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣x ln(y+ r)+ y ln(x+ r)− zarctan

xy
zr

∣∣∣∣x2

x1

∣∣∣∣∣
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and for geoid undulation:

δNTC = Gρ
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(3.16)

where r =
√

(x2− x1)2 +(y2− y1)2 +(z2− z1)2, while geometry of the rectangular prisms is
defined as in figure 3.4.

Terrain effects around computation point have largest values, which start to decrease with
increasing distance. For this reason, integration of terrain effects is always performed only up to
some radius r. Traditionally for terrain correction radius is r <= 200 km. Terrain information,
heights H, which define z component of the prisms, are taken from digital elevation model
(DEM), which are nowadays available with the resolutions of up to 1′′, and can for continental
areas be quite large. Thus, computation of terrain effects requires high computational resources.
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Figure 3.4: Rectangular prism (after Nagy 1966b).

Analytic equations from the above are accurate but time-consuming, because contributions
of all prisms have to be calculated up to some radius around the computation point. This draw-
back has been resolved through several modifications:

• Integration area is split in two zones: inner and outer as in figure 3.5. DEMs of the finest
(most-detailed) resolution are used in the inner zone, while coarser DEM are used for
outer zone. Inner and outer zones are defined by parameters; inner radius r1 and outer
radius r2. Integration of the prisms in inner zone is performed up to some smaller radius,
e.g. 5 < r1 < 20 km, while in outer zone up to maximal radius, e.g. 20 < r2 < 200 km.

• Spline densification of the vicinity around computation point with additional heights in-
formation, in case input DEM does not have high-resolution (less than few arc-seconds).

• Using approximative equations, such as MacMillan and mass plane, that are faster for
computation.

More information along with detailed discussion may be found in Forsberg (1984) and Tziavos
and Sideris (2013).

3.2.3 2D and 3D rectangular prisms

Rectangular prisms typically have uniform density value. Moreover, only one value (ρc = 2670
kgm−3) is used for the whole computation area as for most areas worldwide lateral density
models do not exist (e.g. Hinze 2003). However equations allow to treat rectangular prisms as
3D bodies where each prism has its own density. It is possible to split prism in vertical direction
in a number of prisms where each splitted prism has its own density. Then each splitted prism
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Figure 3.5: Computation of terrain effects using fine and coarse resolution DEMs up to radiuses r1 and r2, with
spline densification around computation point P.

gets its own density value ρc from available 3D crustal model.

In 2D case, density value may be appended to each rectangular prism in case for the whole
computation area lateral (surface) density model exists. In 3D case, it is supposed that layered
(horizon) crustal model has: 1) depths defining each layer or horizon, 2) densities for each
layer. The example of such crustal model is CRUST1.0. Then each rectangular prism with
coordinates x1, x2, y1, y2, z1 and z2 can be divided in additional prisms by modifying z1 and z2
limits. z1 and z2 limits are modified depending of the depth of layer from 3D crustal model.
Therefore, what has previously been one rectangular prism, becomes several rectangular prisms
depending of the number of layers (horizons) in the crustal model. For each reduction scheme
few different cases may emerge, as z1 and z2 corners are changing depending of the reduction
scheme. Detailed discussion of all possible cases are given in (Brkić, 1994b, pp. 29-40), where
software routines were developed allowing inclusion of three crustal layers (horizons). These
routines are modification of original Forsberg’s TC program (Forsberg 1984). For the purpose
of this thesis routines were furtherly modified allowing inclusion of up to eight layers, which
now makes available 3D crustal models, such as EPcrust with three and CRUST1.0 with eight
layers.

Representation of topography by rectangular prisms for constant density (1D), surface (2D)
and 3D cases are shown in figure 3.6. Prisms geometry in x and y directions (length and width)
is determined by resolution of the input DEM. All prisms have the same constant density values
ρc in 1D case. In 2D case (subfigure b), each prism has its own crustal density value taken from
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Figure 3.6: Rectangular prisms for three cases: a) constant crustal density ρc, b) surface (2D) crustal density model,
and c) 3D crustal density model.

the surface (lateral) density model. There is no difference in geometry x and y directions for 1D
and 2D cases.

The most realistic case, for 3D prisms representation is shown on subfigure c. In 3D case,
prisms are divided according to the available layers of depths and densities. Geometry of each
prism in z direction is determined by the depth taken from the input 3D density model. The
example is given for three layers, but they can be divided in as much additional layers as there
are available. Layers correspond to the crustal layers, for example sediments, upper crust, lower
crust, mantle, etc. Slightly idealized example is given for this case as all prisms have the same
value in z direction, that would mean that the prisms have te same depth in all layers, which is
not the case in reality. For example, sediment thickness layer may be somewhere much smaller
than the upper crust layer. It can be seen that prisms in the same layer have similar density
values (for example in layer 1 they have slightly different values) compared to the density values
of prisms in layer 2.

3.2.4 Complete Bouguer anomaly

Correcting for the terrain effect yields the complete Bouguer or the terrain-corrected gravity field
(Hofmann-Wellenhof and Moritz 2005):

gcB = g+δgFA−δgB +δgTC. (3.17)

Starting from free-air gravity anomalies ∆gFA, complete Bouguer gravity anomalies are ob-
tained as:

∆gcB = gcB− γ0, (3.18)

where: ∆gcB is the complete (refined) Bouguer gravity anomaly, δgTC is terrain correction.
Bouguer anomalies indicate variations in the underlying density structure. They are smooth

in shorter spatial scales, but due to the isostatic compensation have large systematic bias in
spectral lengths of 50 to 100 km. Therefore, they are systematically negative over the continents



30 3.3. ISOSTASY

and positive over the oceans. In mountain areas, can easily be negative by hundreds of mGal.
Much smoother than FA anomalies they are suitable for interpolation and prediction of gravity
anomalies, in situations where the available gravimetric material is sparse. However, because of
aforementioned large systematic bias they are not used in geoid determination (Heiskanen and
Moritz 1967).

3.3 Isostasy

Already in the 18th and 19th centuries it was asserted that a certain compensation with a negative
density contrast has to exist below the topography. This led to the concept of isostasy which
assumes equilibrium of the Earth down to a certain level of compensation. The word isostasy
comes from Greek meaning equal pressure or equal standing or equilibrium (Bowie 1927, Banks
1968). According to Brkić (2016) Croatian scientist Rud̄er Bošković used term compensation
for the first time to describe the state of equilibrium. The general equation for equilibrium
condition reads:

H∫
−T

ρdz,

where T stands for the depth of compensation.
Observations performed later showed that topographic masses of the Earth are 85-90 %

isostatically compensated. In reality however, due to the strength of the Earth’s crust, com-
plete equilibrium is not possible for any topographic feature (Heiskanen and Vening Meinesz
1958).Two simple, and in large scope idealistic, hypothesis’ emerged almost simultaneously:
Pratt-Hayford (Pratt 1855, Hayford 1909) and Airy-Heiskanen (Airy 1855, Heiskanen 1931).
Models assume that topographic masses are divided in vertical columns, whereas each column is
independent unit from all other columns in surrounding (Heiskanen and Vening Meinesz 1958).

3.3.1 Pratt-Hayford topographic-isostatic model

According to the Pratt-Hayford model isostatic equilibrium exists because topography is com-
pensated on some constant compensation depth and topographic columns have variable densities
(figure 3.7). Thus isostatic condition for each topographic column is (Hofmann-Wellenhof and
Moritz 2005):

continent: (D+H)ρc = Dρ0,

ocean: (D−H
′
)ρc +H

′
ρw = Dρ0,

(3.19)

where D is the depth of compensation, ρc is crustal density of the column, ρ0 standard crustal
density in the absence of topography, ρw sea water density. Topographic masses in mountainous
have smaller densities, than masses on the ocean. Compensation depth D according to Hay-
ford (1909) is supposed to be 113.7 km for the territory of United States, but other values are
supposedly more suitable for different areas around the world.
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Figure 3.7: Pratt-Hayford topographic-isostatic model: constant depth of compensation D and variable column
density ρi (after Hofmann-Wellenhof and Moritz 2005).

Density contrast between actual crustal density of the column ρc and crustal density in ab-
sence of topography ρ0 is:

continent: ∆ρ = ρ0−ρc =
H

D+H
ρ0,

ocean: ∆ρ = ρ0−ρc =−
H ′

D−H ′
(ρ0−ρw) .

(3.20)

As (Heiskanen and Vening Meinesz, 1958, p. 166) stated: "the common opinion today is
that isostatic compensation seldom occurs according to the Pratt-Hayford assumption".

3.3.2 Pratt-Hayford reduction
The reduction in P-H model can be divided on two effects, a) effect of topographical masses
above geoid, b) effect of compensated masses below geoid down the depth of compensation:

δgP−H = δgtop
P−H −δgcomp

P−H = G
∫ ∫ H(x,y)∫

0

ρ(x,y,z)(HP− z)
l3 dxdydz−G

∫ ∫ −HP∫
−D−HP

∆ρ(x,y,z)(HP− z)
l3 dxdydz,

(3.21)

where ∆ρ comes from the eq. 3.20.
Pratt-Hayford topographic-isostatic gravity is given as:

gP−H = g+δgFA−δgP−H , (3.22)
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and finally anomaly:
∆gP−H = gP−H − γ0. (3.23)

3.3.3 Airy-Heiskanen topographic-isostatic model

For describing Airy-Heiskanen topographic-isostatic model (A-H), Earth’s crust floating on a
mantle layer can be compared to an iceberg on a sea. If there is a root (mountain) above the
geoid with the height H, there must be a corresponding anti-root sticking into the mantle with
the height t. Since crustal material is lighter than the mantle there will be an upward buoyant
force that balances the downward gravity force of the mountains. A similar mechanism will
take place underneath oceans. The lighter sea water will induce a negative root with height, i.e.
a thinner crust below the oceans (Banks 1968, Sneeuw 2006). The principle of A-H model is
shown in figure 3.8. A layer, with a normal thickness of the Earth’s crust T0 separates crust and
mantle. This layer is not involved in the isostatic condition.
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Figure 3.8: Airy-Heiskanen topographic-isostatic model (after Hofmann-Wellenhof and Moritz 2005).

From the explanation above it follows that isostatic equilibrium exists (Hofmann-Wellenhof
and Moritz 2005):

continent: t(ρm−ρc) = Hρc,

ocean: t ′(ρm−ρc) = H
′
(ρc−ρw),

(3.24)
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where t is thickness of the root, t ′ is the thickness of the anti-root. The Earth’s crustal thickness
T is equal to (Heiskanen and Vening Meinesz 1958, p. 137):

continent: T = T0 +H + t,

ocean: T = T0−H ′− t ′.
(3.25)

where t and t ′ are thicknesses of the roots and anti-roots, and T0 normal thickness of the crust
(Moho depth).

After rearranging equation 3.24 expressions are obtained for roots t and anti-roots t
′
(Hofmann-

Wellenhof and Moritz 2005):

continent: t =
ρc

(ρm−ρc)
H,

ocean: t
′
=

(ρc−ρw)

(ρm−ρc)
H
′
,

(3.26)

where ρm is mantle density, H and H ′ are topographic height and depth. Both roots and anti-roots
are linearly dependent on the height and depth of topography.

Usually standard values are used for parameters in equations: T0= 30 km, ρc = 2670 kgm−3,
ρm = 3270 kgm−3, ρw = 1030 kgm−3. The density of ρc= 2670 kgm−3 for the Earth’s crust is
an arithmetic mean of six estimates that were made between 1811 and 1882 (Harkness 1891,
Hayford and Bowie 1912, Hinze 2003).

3.3.4 Airy-Heiskanen reduction
The reduction in A-H model consists from two effects: a) effect of topographical masses above
geoid, b) effect of compensated masses below geoid down to the depth of compensation:

δgA−H = δgtop
A−H −δgcomp

A−H = G
∫ ∫ H(x,y)∫

0

ρ(x,y,z)(HP− z)
l3 dxdydz−G

∫ ∫ −T0−HP∫
−T0−t−HP

∆ρ(x,y,z)(HP− z)
l3 dxdydz,

(3.27)

Pratt-Hayford topographic-isostatic gravity is:

gA−H = g+δgFA−δgA−H , (3.28)

and anomaly:
∆gA−H = gA−H − γ0. (3.29)

In terms of computation of topographic effects, Airy-Heiskanen topographic-isostatic re-
duction is nearly similar to Pratt-Hayford. The difference is in the depth of compensation which
causes z limits in the integral slightly change; in Pratt-Hayford compensation depth is D with
values around 100 km, while in Airy-Heiskanen compensation depth is T0 with values around
30 km corresponding to the crustal thickness of the Earth (Moho depths).

If isostatic models were completely true, isostatic reduction would result in perfectly regu-
larized homogeneous earth’s crust. However, isostatic models are simplification of reality in the
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Figure 3.9: Geometry of the RTM reduction.

Earth’s interior so isostatic gravity anomalies are not zero. Positive or negative anomalies mean
that topography is or is not compensated at assumed compensation depth. Anyway, if correct
parameters for depth of compensation and crustal density are used topographic-isostatic gravity
anomalies are smooth. If used values of compensation depths and densities are different from
true values errors in derivation of anomalies emerge. Probably the largest error in the corrections
is due to the assumed density structure of the isostatic concepts used (Banks 1968).

3.4 Residual Terrain Model

RTM reduction is the most common terrain reduction method for quasi-geoid determination in
RCR approach. It was designed by R. Forsberg and C.C. Tscherning (Forsberg and Tschern-
ing 1981, Forsberg 1984). General methodology is to remove topographic masses above mean
(reference) elevation surface and fill space below it. The reference surface can be constructed
from DEM of finer resolution by averaging and low-pass filtering. The principle of the RTM
reduction is illustrated on fig. 3.9.

The RTM effect on gravity is given by equation:

δgRT M = G
∫ ∫ H∫

Hre f

ρ(x,y,z)(HP− z)
l3 dxdydz, (3.30)

where Hre f is the height of the mean (reference) elevation surface. Closed analytic expression
of the equation 3.30 is very similar as in computation of terrain correction, with different limits
in z direction.

Approximative equation of the RTM reduction, which can be used if mean elevation surface
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adequately approximates long-wavelengths is:

δgRT M = 2πGρ(HP−Hre f )−G
∫ ∫ H∫

Hre f

ρ(x,y,z)(HP− z)
l3 dxdydz, (3.31)

where the first term in 3.31 is the difference between two Bouguer plates with different thick-
nesses: the first one with the thickness equal to the height of the computation point HP, and
the second one with the thickness equal to the height of the reference surface Hre f (see, e.g.
Bajracharya 2004).

RTM gravity anomalies are then:

∆gRT M = g−δgRT M− γ0. (3.32)

Main advantages of the RTM gravity anomalies is in removing only short wavelengths of
the topographic masses are removed and residual anomalies are smoother than in other methods.
Reference mean elevation surface serves as the approximation of the long-wavelengths surface,
so they are not computed twice. Magnitude of the RTM effect decreases with increase of resolu-
tion of the mean reference surface. Resolution of the mean or reference elevation surface (hre f )
corresponds to the resolution of the maximum degree (nmax) of the global geopotential model
(Forsberg 1984).

Properties of the RTM gravity anomalies are: a) its non-physical meaning, and b) need for
computing corrections for the truncation bias (Sjöberg 2005) and harmonic correction (Tziavos
and Sideris 2013, p. 368).

3.5 Review

The main properties of topographic reductions are indirect effects, smoothness and geophysical
meaning (table 3.1). For gravity determination, topographic reductions are important for: 1)
point gravity anomalies gridding, 2) removal of all masses inside geoid as the boundary. For 1)
the most important property is that reduced gravity data are as smooth as possible. For 2) reduced
gravity field should not produce indirect effect on computed geoid undulations N. Therefore,
only two topographic reduction methods are useful: Faye and RTM. The summary of formulas
for obtaining gravity values, topographic reduction and anomalies are given in appendix E, table
9.4.
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Table 3.1: Properties of gravity anomalies for different topographic reduction schemes (after Bajracharya 2004)

Gravity anomaly Symbol
Indirect

effects on N
Smoothness

Geophysical
interpretation

Free-Air ∆gFA large very rough yes
Bouguer ∆gB very large smooth yes

Faye ∆gFaye very small rough no
Airy-Heiskanen ∆gA−H small smooth yes
Pratt-Hayford ∆gP−H small smooth yes

RTM ∆gRT M very small smooth no
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Chapter 4

Geoid Determination

“All models are wrong, but some are useful.”

George Box, 1919-2013

Theoretical foundations related to geoid determination are presented in this chapter. More
detailed information can be found in many available references, such as Denker (2013) and
Sansó and Sideris (2013).

4.1 Introduction

Along with Earth’s topographic surface and ellipsoid, the geoid is one of the three main surfaces
in geodesy; it is the main reference surface for physical heights. Geoid can be described in
different ways, so a large number of definitions have been given in the last two centuries. Some
of them are:
Gauss (1828). “What we call in the geometric sense the surface of the Earth is nothing else but

that surface which intersects the direction of gravity at right angles and from which the
surface of the world ocean is a part.”

Stokes (1849). Geoid is the... “surface of the Earth’s original fluidity...”
Listing (1873). “According to our opinion we have to determine numerically in the future the

derivations of the plumb line as long as they have visible origin, namely by a topographic
surface of the continental relief, by a geological determination of the mass density of
its constituents and by a systematic survey of the oceans according to well-established
method. We shall call the previously defined mathematical surface of the earth, of which
the ocean surface is a part, geoidal surface of the Earth or the geoid.”
Gauss-Listing geoid is... ”a best approximation of the mean sea level.”

Jensen (1950). “The equipotential surface, through a given point, chosen near MSL, that would
exist if only the rotation of the Earth and the Earth’s gravitational field affected the poten-
tial as a function of the position of the chosen point.”

Einstein (1950), Bjerhammar (1962). “In relativistic geodesy, the geoid is the surface nearest
to mean sea level on which precise clocks run with the same speed.”
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Heiskanen and Moritz (1967). “The geoid as a fundamental surface of physical geodesy is
defined as an equipotential surface that is closest to mean sea level; it is usually used as a
mathematical model to represent the physical feature of the Earth. (...) The surface of the
ocean, after some slight idealization is part of a certain level surface.”

Nakiboglu (1979). “Non-hydrostatic geoid is the shape that the Earth should have if gravity
and rotation were in equilibrium.”

Burkhard (1985). “The geoid, coincides with that surface to which the oceans would conform
over the entire earth if free to adjust to the combined effect of the Earth’s mass attraction
and the centrifugal force of the Earth’s rotation. As a result of the uneven distribution of
the Earth’s mass, the geoidal surface is irregular. (...) The geoid is a surface along which
the gravity potential is everywhere equal and to which the direction of gravity is always
perpendicular.”

Torge (1993). “About 2/3 of the Earth’s surface (oceans) approximately coincide with the geoid,
the rest (continents) can be easily referred to it by leveling and gravity measurements.
The geoid thus is a natural reference for describing the heights of the topography on land
(continental topography) as well as on sea (sea surface topography). ”

Vaníček and Martinec (1994). “One of the equipotential surfaces of W , the one that approx-
imates the mean sea level most closely, is given a special significance. We denote it by
W =W0 =Wconst and call it the geoid.”

Petit and Luzum (2010). “Geoid is equipotential surface of Earth’s gravity field with value
W0 = 62,636,856.0±0.5 m2s−2.”

Sansó and Sideris (2013). “The geoid, (...), is plainly an equipotential surface of the gravity
field of the earth, identified by a conventional value of the potential, such that it runs close
to the surface of the ocean, within meters, but then well inside the continental masses
specially in mountainous areas.”(...) “Geoid is a geometrical entity, usually described by
the height of its points over the earth ellipsoid, the so called geoid undulation.”

Vaníček and Krakiwsky (2015). “The geoid is defined as the equipotential surface of the Earth’s
attraction and rotation, which on the average coincides with mean sea level of the Earth in
the absence of external influences such as wind and ocean current.”

Sánchez et al. (2016). “Per definition, W0 is understood as the value of the gravity potential
of the real Earth on a particular equipotential surface called the geoid. Since the Earth’s
gravity potential field contains an infinite number of equipotential surfaces, the geoid is to
be defined arbitrarily by convention.”(...) Geoid is: “the potential value obtained for the
epoch 2010.0 (62,636,853.4 m2s−2) recommended as the present best estimate for the W0
value.”

Sjöberg and Bagherbandi (2017b) “The geoid is the equipotential surface (level surface) of
the Earth’s gravity field that most closely coincides with the undisturbed mean sea level
(and its continuation through the continents). Disturbances are caused by ocean tides,
streams, winds, variations in salinity and temperature, etc, of the order of ± 2 m.”

Geoid in its full meaning is a physical surface, and its best approximation is gravimetric geoid
model (usually referred as geoid model or simply geoid). Geoid models have many engineering
and scientific applications, such as:

• reference surface for leveling,
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• vertical datum for orthometric heights,
• transformation of ellipsoidal (geometrical) to orthometric (physically meaningful) heights,
• local and regional vertical datum unification,
• satellites orbits prediction,
• studies of the Earth interior and ocean,
• hydrographic surveying and marine navigation,
• finding deposits of ores, oil and gas.

One of the main usages of geoid models is in conversion of geometric ellipsoidal heights h,
obtained by Global Navigation Satellite System (GNSS), to physical orthometric heights H:

H ≈ h−N. (4.1)

Geoid undulations N may be geometrically interpreted as the differences between orthomet-
ric heights, measured along the real plumb line from the geoid, and ellipsoidal heights, measured
along the ellipsoidal normal (4.2). These differences are mainly caused by topographic masses
and density anomalies which can seize up to ±100 m in some areas in the world. Equation 4.1
can be used either for obtaining heights in absolute positioning or height differences in relative
positioning. Measurement method for obtaining height differences is known as GNSS/levelling,
which consists from measuring ellipsoidal heights h using GNSS and geoid undulation N from
geoid model. If these two quantities are known, height differences between a all pairs of points
are obtained in a straightforward manner as ∆H = (h1−N1)−(h2−N2). Therefore, if GNSS and
geoid model are sufficiently accurate they can replace classical levelling using two ropes. Due
to inaccuracies in GNSS (ellipsoidal) heights and geoid model GNSS/levelling cannot replace
classical levelling in transfer of the heights on short distances of up to few kilometers, although
on larger distances than 100 km GNSS/levelling can even give more accurate results. Another
advantage of of GNSS/levelling is when heights are needed to be transfered across long and
complex mountainous chains, where levelling is known to be inefficient and time-consuming.
Comprehensive information about heights and height systems may be found in Jekeli (2000) or
Meyer et al. (2007).

4.2 Stokes’ theorem

In 1849. Stokes found solution to the 3rd BVP which satisfies boundary condition, i.e. Laplace’s
equation:

∇
2V = 0. (4.2)

The equation 4.2 is an analytic harmonic function in a mass-free space having continuous deriva-
tives of any order. Stokes’ solution later became known as the Stokes’ theorem Stokes (1849). It
explains that if on a boundary surface S the value of a potential function V is known, there will
be at most one harmonic function V in the whole exterior space that satisfies boundary condition.

The integral equation of Stokes’ solution is known as the Pizzeti formula (Pizzetti 1911,
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Figure 4.1: Determination of heights and height differences using two methods: classical levelling and
GNSS/levelling (after Gerlach 2003)
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Figure 4.2: Geoid undulation depending on the mass distributions of the Earth’s crust (after Burkhard 1985)

Hofmann-Wellenhof and Moritz 2005, eq. 2-304):

T =
R

4π

x

σ

S(ψ)∆gdσ , (4.3)

where R is the mean radius of the Earth, ∆g are gravity anomalies on geoid, S(ψ) the Stokes
function (see, section 4.7.5), ψ the spherical distance (geocentric angle) between the computa-
tion and data point, dσ is an infinitesimal surface element of the unit integration sphere σ . The
above equation for disturbing potential T is a solution of the FEPG in the spatial domain (see,
table 4.1).
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Table 4.1: The relation between fundamental equation of physical geodesy (FEPR) and Stokes integral

FEPR Stokes

T → ∆g ∆g→ T

∆g =−
(

2
R + ∂

∂ r

)
T T = R

4π

s

σ

S(ψ)∆gdσ

The Stokes equation is in theoretical sense very elegant allowing computation of geoid sur-
face in spherical approximation from the measurements reduced from the Earth’s topographic
surface to geoid. In practice, Stokes’ equation is valid only under if (Jekeli 1981, Moritz 1989):

• The Earth is approximated with a sphere.
• Total masses, the centers of mass, and the constant surface potential of the ellipsoid and

geoid are identical.
• No masses exist outside of the geoid.
• Measurements are available all over the sphere.
• All gravity measurements have to be reduced from the Earth’s surface to the boundary

surface, geoid, which is unknown before evaluation of the Stokes integral.

4.2.1 Molodenskii’s theory

Practical computation of the geoid model using the Stokes’ integral has the problem related to the
unknown crustal structure between Earth’s topographic surface and geoid as a boundary surface.
As data have to be reduced through the crust down to the geoid, some approximations must be
included, limiting strict theoretical foundation of the Stokes integral. In 1945, Molodenskii pro-
posed modification and found new solution of the BVP. He introduced a quasi-geoid boundary
surface, instead of geoid surface in the classical approach. Molodenskii proved that the classical
approach had no solution for a non-spherical Earth and solved the BVP on the Earth’s surface
(Molodenskii 1962). His solution avoids reduction of the data from the Earth’s surface to the
geoid because no masses exist above Earth’s topography surface. Solution of the Molodenskii’s
integral results in derivation of quasi-geoid surface through calculation of normal-heights ζ :

ζ =
R

4πγ

x

σ

(∆gFA +g1)S (ψ)dσ , (4.4)

where the ∆gFA are Molodenskii’s free-air gravity anomalies referring to the Earth’s surface
(equation 3.5). The expression g1 is the first term in the Molodenskii series and for practical pur-
poses can be approximated with the terrain correction term g1 ≈ δgTC, where δgTC is obtained
by equation 3.10 in section 3.2.2 (Heiskanen and Moritz 1967).

Some authors detected theoretical and practical deficiencies in Molodenskii’s solution and
determination of quasi-geoid. According to Bjerhammar (1969) this approach is elegant but
very complicate. In Vaníček et al. (2012) it is emphasized that quasi-geoid determination has
a problem with the geometry of the Earth’s surface. Integrating gravity over the surface of the
Earth, which is much rougher then the geoid is not possible in certain areas, and in other areas
will result in unpredictable errors. Furthermore, it is written that vertical rock surfaces represent
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ellipsoid

Figure 4.3: Contribution of different data types in gravimetric geoid determination (after Schwarz et al. 1987).

locations of discontinuity, and there are other areas where the surface of the Earth cannot be
described as a mathematical function of horizontal positions. In such locations, the Molodenskii
approach will not give results. In their opinion, the geoid which is a fairly smooth and convex
surface, without any kinks, edges or other irregularities, is a better surface for integration.

In many cases in the past, when accuracy of developed geoid and quasi-geoid models was
larger than few centimeters, the differences between the Stokes’ and Molodenskii’s solution
were not so obvious, especially in the areas of simple and flat topography as the differences
were not visible in the full error budget of computed geoid or quasi-geoid model.

4.3 Data for gravimetric geoid determination

Data are integral part of the process of development of gravimetric geoid model. Several data
types are used for this purpose, including:

• Global geopotential models developed from satellite orbit, altimetry and terrestrial data,
and delivered in the form of spherical harmonic (SH) coefficients with corresponding
standard deviations.

• Gravity data obtained from the terrestrial, marine or airborne measurements. They are
usually distributed as the free-air gravity anomalies.

• Digital elevation and bathymetry models derived from photogrammetric, Light Detec-
tion and Ranging (LiDAR) or Synthetic Apertur Radar (SAR) measurements. They are
usually distributed in the gridded form with alternative spacings (1′′, 3′′, or 30′′). Mostly
used DEMs include different versions of SRTM, ASTER GDEM, GTOPO30 or ETOPO1.

• Crustal models derived from geodetic, geophysical, and geological data, and usually
distributed in the gridded form. At this moment, crustal models are rarely available and
used.

Figure 4.3 shows contributions of different data types in computation of the gravimetric
geoid. Spectral sensitivity of different data types is given in table 4.2. Geoid undulation NGGM

contribute to the long wavelength features which change smoothly on spatial scales of more
than 50 km. Geoid undulation N∆g obtained from gravity data contribute to regional part of the
geoid undulation with wavelengths between 20 and 200 km. Geoid undulation Nterr. eff. derived
from digital elevation and bathymetric models which contribut to local short-scale features of
the geoid undulation with wavelengths smaller than 20 km (Forsberg 1993).
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Table 4.2: Spectral sensitivity of the gravity field functionals (after Schwarz 1984, Kuhn 2000 and Kern 2003)

Spectral resolution Gravity field functional

Structure
Wavelength

[km]
degree (ni-n j) N [m] ∆g [mGal]

long wavelength
20000 - 4000 2 - 10 ± 29.72 95.6% ± 12.62 8.9%

4000-1100 11 - 36 ± 5.98 3.9% ± 15.82 13.9%

medium
wavelength

1100-220 37 - 180 ± 2.15 0.5% ± 22.50 28.2%

short
wavelength

220-20 181-2000 ± 0.47 0.02% ± 27.20 41.2%

ultra-short wavelength
220 2001 - 20000 ± 0.03 0.0% ± 11.80 7.76%

< 2 20001 - ∞ ± 0.02 0.0% ± 0.15 0.001%

total 20000 - 0 2 - ∞ ± 30.394 100% ± 42.37 100%

All data types have specific errors which propagate into the solutions of computed models.
Some of the errors can be safely ignored, some may be modeled using different algorithms and
approximations, and some are removed by filtering procedures.

4.4 Surface crustal density models

Due to the unknown structure of the Earth, especially Earth’s lithosphere, practical geoid deter-
mination is mostly performed by using constant globally-estimated crustal parameters. Crustal
density, density contrast between crust and mantle, and depth of compensation are arbitrarily
chosen in the reduction step, such as for computation of the terrain or topographic-isostatic cor-
rection. However, globally estimated crustal parameters may be different from real values for as
much as 10 or 20% in local and regional study areas.

Modelling of topographic and density effects may be improved using crustal models which
can be created from different types of data using inversion methods and procedures. Several
methods may be used for development of 2D (lateral, surface) or 3D (with horizons or layers)
crustal models, such as: 1) isostatic models, 2) Parasnis-Nettleton’s inversion method, 3) dig-
itizing existing geological maps (see, Vaníček 1976, Pagiatakis et al. 1999, Kuhn 2000, Rózsa
2002b, Kuhn 2003, Bajracharya 2004, Bagherbandi 2011, Tziavos and Sideris 2013).

In this thesis surface (2D) crustal density models are developed by inversion method’s ac-
cording to Pratt-Hayford, Airy-Heiskanen, and Parasnis-Nettleton. These method’s are not orig-
inally formulated for the purposes of development of crustal density. Thereafter, for implemen-
tation of these methods original formulations had to be slightly modified. Density values are
computed for all cells (nodes) of the defined grid shown in figure 4.4 left. As data are used for
larger area than Croatia (figure 4.4 right), actual borders of the computed density grids are wider
than shown in figure. The resolution (spacing between adjacent cells) of developed models is
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Table 4.3: Input parameters for development of surface crustal density models according to inversion by
Airy-Heiskanen, Pratt-Hayford and Parasnis-Nettleton’s topographic-isostatic models

Method Section Symbol Input value

Pratt-Hayford 4.4.1 ρ0 [kgm−3] 2300, 2400, . . . , 3000
D [km] 80, 90, . . . , 150

Airy-Heiskanen 4.4.2
ρm [kgm−3] 2700, 2800, . . . , 3400, 3500

T [km] from CRUST1.0 model

Parasnis-Nettleton 4.4.3 RS [◦] 0.05, 0.1, . . . , 2.0
nmax 0, 5, 10, . . . ,400, 500

5′ in both latitude and longitude directions. All input parameters for development of developed
models are given in table 4.3, and are explained in more details in the following three subsec-
tions.

4.4.1 Pratt-Hayford

Starting from equation 3.19, the surface crustal density is computed using:

ρ
P−H
c =

Dρ0

D+H
, (4.5)

for continent and:

ρ
P−H
c =

Dρ0−H ′ρw

D−H ′
(4.6)

for ocean, where D is compensation depth, ρ0 reference (mean) crustal density, H height and H ′

depth of topography taken from DEM/DBM. Compensation depths D and reference density ρ0
can be provisionally selected, estimated or fixed. Compensation depth D is equal to the sum of
crustal and upper mantle thickness which corresponds to the values around 100 km.

4.4.2 Airy-Heiskanen

In the A-H model crustal density ρc is known whereas crustal thickness t is unknown. The
value of ρc has to be chosen, e.g. 2670 kgm−3. Original formulation of the A-H model can be
modified in order to be able to calculate crustal density value for each column. This is possible
under assumption that input parameters crustal thickness t, mean (normal) crustal thickness T0,
height H, depth H ′ and mantle density ρm are assumed, fixed or taken from external models.
Surface crustal density according to modified A-H model is computed as:

ρ
A−H
c =−ρm(H−T +T0)

T −T0
, (4.7)

for continental areas and,

ρ
A−H
c =−H ′ρw−ρm(H ′+T −T0)

T −T0
, (4.8)
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Figure 4.4: Grid points of the developed lateral density models

for ocean areas, where: ρc crustal density, ρw water density, ρm density of the mantle, T Earth’s
crustal thickness, T0 normal Earth’s crustal thickness, H and H ′ heights and depths of topography
and bathymetry. Several values for ρm are chosen (ρm = 3000, ...,3500 kgm−3), T is taken from
model of Moho depths (such as CRUST1.0 or EPcrust), T0 is mean of the crustal thickness on
some area (mean value of Moho depths on some area), and H and H ′ are taken from digital
elevation models.

4.4.3 Parasnis-Nettleton

The idea in Parasnis-Nettleton’s inversion method (P-N) follows from the property that corre-
lation between Bouguer anomalies and elevation of topography is caused by density anomaly.
Therefore no correlation should exists between Bouguer anomalies and elevations (Nettleton
1939) in case ’correct’ crustal density value ρc is selected for computation in some area. Exam-
ples of the publications in which surface density models are created using Parasnis-Nettleton’s
(P-N) method are Mankhemthong et al. (2012) and Toushmalani and Rahmati (2014). Starting
from the equation for derivation of Bouguer anomalies from free-air anomalies:

∆gsB = ∆gFA−2πGρH = ∆gFA−0.04193ρH, (4.9)

it follows that crustal density ρc may be calculated by determination of the parameters of linear
regression a between free-air anomalies and elevations. Gradient of the regression line a is
obtained for n free-air anomalies (Rózsa 2002b, Rózsa 2002a):

a =
∑

n
i=1(Hi−H)(∆gi−∆g)

∑
n
i=1(Hi−H)2

, (4.10)
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Figure 4.5: Selected point gravity anomalies (blue dots) within the radius (black circle) of computing point (red
dota) as input data for determination of ρc.

where ∆gi are free-air anomalies, Hi orthometric heights, ∆g mean value of free-air anomalies
on computing area and ∆H mean value of orthometric heights on some computation area. From
the determined coefficient a, ρc is calculated as:

ρc =
a

0.04193
. (4.11)

Computation of the crustal density models starts by division of the wanted computation area in
cells, where cell sizes are defined by the wanted resolution of the model. Density value for each
cell is derived by selecting free-air anomalies within chosen radius around center of the cell (RS)
(figure 4.5), and utilizing equations 4.10 and 4.11 for computation of the density. Density values
are obtained for all cells of the defined grid (see fig. 4.4).

Free-air gravity anomalies are used as input data. In this case, when density is determined for
regional area, not global, it seems reasonable to filter long-wavelength (global) effects included
in input free-air anomalies. Therefore, input values ∆gi from the equation 4.10 are derived as:

∆g′i = ∆gi−∆gnmax
GGM, (4.12)

where ∆gnmax
GGM for some nmax values are computed and subtracted from each free-air gravity

anomaly ∆gi.

4.5 Geoid determination approaches and methods

Gravimetric geoid models are mostly determined using three approaches:
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• Remove-Compute-Restore (RCR),
• Least Squares Modification of Stokes’ formula with Additive corrections (LSMSA),
• Stokes-Helmert (UNB).
RCR approach is designed at the University of Copenhagen (Denmark), Least Squares Mod-

ification of Stokes’ formula with Additive corrections (LSMSA) approach at the Royal Institute
of Technology (KTH), and Stokes-Helmert at the University of New Brunswick.

Approaches share some similar steps and mostly use the same input data, but vary in compu-
tation steps. Minimally three obvious differences exist between them. First difference emerges
in the processing of point gravity data prior to geoid computation in terms of selection of the
topography reduction method. The next difference is in the way how three main types of data
(gravity data, GGM and DEM) are treated and combined. The last difference is in the method of
transformation from gravity data to geoid undulation which can be stochastic or deterministic.

There is no consensus which approach provides optimal results, as only few studies have
been conducted so far over same study area and using same input data (section 1.4). Sjöberg and
Bagherbandi (2017a) report KTH approach, compared with other approaches, provides better
agreement with control GNSS/levelling data. However, in many areas worldwide it was shown
that each approach can produce a 1 centimeter geoid. It is also possible that scientists from
three geoid modelling schools are biased and prefer only their’s approach. As gravimetric geoid
development is a complex process, consisting from many steps, it will probably not be possible
to finally converge and make conclusion about optimal approach in all cases.

Apart from the three major approaches, geoid computation method (GCM) has to be selected
in computation of gravimetric geoid starting from the input data. Traditionally, two main GCMs
are Stokes’ (analytic or spectral) method, and LSC. Some other attempts have been used most
recently such as spherical base functions (Schmidt et al. 2007), or RBFs (see, e.g. Ophaug and
Gerlach 2017).

4.5.1 Types of geoid models

The term geoid is commonly used for few different surfaces. In some applications differences
are not so important and do not have to be emphasized, but in more strict, theoretical, context,
they have to be distinguished. The main reference surfaces of physical geodesy are shown in
figure 4.6.

First, the difference between gravimetric and hybrid geoid model shall be addressed:
Gravimetric geoid is a surface derived in a global reference system from gravimetric data as

the solution of the 3rd BVP. It is purely related only to the gravimetric data and it has no
practical geodetic application in the MSL-based vertical reference system, as it does not
have connection with the local or national height networks (4.7). It may however have a
geophysical and oceanographic application and interpretation.

Hybrid geoid model is a gravimetric geoid model fitted (adjusted) to regional, national, or
local levelling network. As such it is used as transformation surface between ellipsoidal
and physical height and always relates to the specific vertical datum (W0) as the origin
point of the height reference systems, e.g. national local vertical datum (LVD) related to
the mean sea level (MSL) (Forsberg and Strykowski 2005).
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Procedure of gravimetric geoid model transformation to hybrid geoid models is shown in figure
4.8.

GNSS/levelling gravimetric geoid

hybrid geoid

transformation surface

(a) schematic

gravimetric geoid

GNSS/levelling

gridding of

transformation surface

apply transformation surface

hybrid geoid

transformation surface

hybrid geoid

transformation surface

(b) illustrative

Figure 4.8: Transformation of gravimetric to hybrid geoid model (after Arana et al. 2017)

Table 4.4: The main characteristics of the orthometric and normal heights (after Marti and Schlatter 2002)

characteristics H HN

rigorous svstem with dependency on the potential + +
system without a mass distribution hypothesis - +
easy computation - +
physical meaning of the reference surface + -
geometrical relationship with ellipsoidal heights + +

Second, the difference between quasi-geoid and geoid needs to be explained. Geoid is a
reference surface for orthometric heights, and quasi-geoid is a reference surface for normal
heights. The main characteristics of the orthometric and normal-orthometric heights are given
in table 4.4. Characteristics of other height types are given in appendix E, table E.1. Geoid
model is related to the Earth’s topographic surface via geoid undulations N, while quasi-geoid
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via height anomalies ζ . Both surfaces may be obtained with Bruns’ equation, however g is
computed at the geoid level (H = 0), while γ is evaluated at the Earth’s topographic surface. The
quasi-geoid is upward continued geoid to the terrain through the topographic masses (Forsberg
1993).

Inside topography disturbing potential T is not harmonic so N 6= ζ . Quasi-geoid to geoid
correction (separation) is (Heiskanen and Moritz 1967, section 8, Sansó and Sideris 2013, eq.
2.71):

ζ −N =
g− γ

γ
H =

2πGρ

γ0
H2− ∆gP

γ0
H, (4.13)

where mean gravity along the plumb line g and mean normal gravity γ are:

g≈ g−
(

1
2

∂γ

∂H
+2πGρ

)
H, (4.14)

γ ≈ γ−
(

1
2

∂γ

∂H

)
H. (4.15)

In practice the difference between height anomaly and geoid undulation ζ−N is computed using
simpler approximate expression:

ζ −N ≈−∆gBH
γ

, (4.16)

where ∆gB is the simple or complete Bouguer anomaly. In the ocean areas geoid and quasi-geoid
coincide.

Due to historical reasons and geoid accuracies of several centimeters, the difference between
geoid and quasi-geoid was not so rigorously computed nor specifically addressed in the past.
Nowadays however for achieving highest accuracies the ζ −N difference has to be properly
accounted for.

Indirect effect and co-geoid

Co-geoid is another term which has to be described more closely. By applying topographic
reduction on the gravity measurement performed on the Earth’s topography surface the station
is shifted down to the geoid surface. Shift induces indirect effect, as the equipotential surface
with potential W0 changes to some value W ′0. Therefore, co-geoid with potential W ′0 is obtained
instead of geoid with potential W0 as a result of geoid computation using topography-reduced
gravity measurements. Transformation from co-geoid with potential W ′0 to geoid with potential
W0 is performed by applying correction(Wichiencharoen 1982):

N(W0) = N(W ′0)+δNind, (4.17)

where δNind is indirect effect on N calculated by:

δNind =
δW

γ
=−πGρH2

P

γ
− GρR2

6γ

∫
σ

H2
Q−H2

P

l3 dσ , (4.18)
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where δW is the change of geoid potential caused by gravity reduction.
Indirect effect depends on the used gravity reduction method (table 3.1). Generally, reduc-

tion method shall aim to produce small indirect effect on geoid undulation, as reduction method
that causes larg indirect effect will also produce larger errors on the computed geoid (see, table
3.1 in section 3.5). In this context, the best reduction scheme for geoid determination is RTM
which is known to produce small indirect effect.
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4.6 KTH approach

Least Squares Modification of Stokes’ formula with Additive corrections (LSMSA) approach
(more often referred as KTH approach) has been developed from 2000s at the Royal Institute of
Technology (KTH), University in Stockholm, Sweden by professor Lars Erik Sjöberg. Through-
out the years it was additionally improved by several other scholars, mainly during their research
within doctoral studies.

In the KTH approach, terrestrial Molodenskii’s free-air gravity anomalies and global geopo-
tential model are used for calculation of approximate geoid undulation. Afterwards, all other
effects influencing geoid undulations are computed separately and added to the approximate
geoid undulation. The basic equation of the KTH approach is:

N = Ñ +δNcomb
top +δNDWC +δNatm +δNell, (4.19)

where Ñ represents the approximate geoid undulation, δNcomb
top combined topographic correction,

δNDWC downward continuation correction, δNatm atmospheric correction and δNell ellipsoidal
correction. The approximate geoid undulation Ñ is computed from Sjöberg’s modification of the
Stokes’ kernel (Sjöberg 2003b):

Ñ =
R

4γπ

x

σ0

SL(ψ)∆gσ +
R
2γ

M

∑
n=2

bn∆gGGM
n , (4.20)

where ∆g is Molodenskii’s free-air gravity anomaly, σ0 a cap with spherical radius ψ0 of in-
tegration around the computations point, SL modified Stokes’ kernel, ∆gGGM

n gravity anomaly
calculated from GGM using equation 4.55. Stochastic modification of the Stokes’ kernel SL as
a function of the integration radius ψ is (Heiskanen and Moritz 1967, eq. 2-169):

SL(ψ) = S(ψ)−
L

∑
n=2

2n+1
2

skPk cosψ, (4.21)

where sn are arbitrarily chosen modification parameters, n is the modification degree of the
Stokes function. The first term in equation 4.21 is unmodified spherical Stokes function (eq.
4.82, Heiskanen and Moritz 1967), and the second term is Sjöberg’s modification with maximal
degree n < L. Arbitrarily selected upper limit L is generally not equal to the maximal degree of
expansion of the selected GGM nmax. Solution of the equation 4.20 is obtained after obtaining
the parameters bn from (Sjöberg 1991, Sjöberg 2003d):

bn = (QL
n + s∗n)

cn

cn +dcn
, (4.22)

for 2 6 n 6 M.
The Molodenskii’s truncation coefficients QL

n is given as (Sjöberg 1991):

QL
n = Qn−

∞

∑
n=2

2k+1
2

skenk, (4.23)



CHAPTER 4. GEOID DETERMINATION 53

and the Qn from (Heiskanen and Moritz 1967):

Qn =
∫

π

ψ0

S(ψ)Pn cosψ sinψdψ, (4.24)

where enk are Paul’s coefficients (Paul 1973):

enk (ψ0) =
∫

π

ψ0

Pn cosψPk cosψ sinψdψ. (4.25)

4.6.1 Approximate geoid undulation

Approximate geoid undulation Ñ, given by equation 4.20, written in the spectral form is (Sjöberg
2003b, eq. 2.7):

Ñ = c
∞

∑
n=2

(
2

n−1
−QL

n− s∗n

)(
∆gn + ε

T
n
)
+ c

M

∑
n=2

(
QL

n + s∗n
)(

∆gGGM
n + ε

S
n
)
, (4.26)

where c = R
2γ

. The above equation includes error estimates of the input gravity ∆gn and GGM
∆gGGM

n data; terms εT
n , and εS

n are predicted spectral errors of terrestrial and GGM gravity
anomalies in spectral form. The modification parameters sn are defined as:

s∗n =
{

sn, is 2≤ n≤ L,
0, otherwise,

(4.27)

where the sn parameters should minimize errors of truncation, gravity anomaly data and GGM
in the least square sense (Sjöberg 1991, Sjöberg 2003a). The expected global Mean Square
Error can be written in general form where E represents the statistical expectation estimator
(Hofmann-Wellenhof and Moritz 2005):

m2
Ñ = E

{
1

4π

x

σ

(
Ñ−N

)2
dσ

}
. (4.28)

By combining the estimated geoid undulation from equation 4.26 and geoid undulation N in
the spectral form defined as (Heiskanen and Moritz 1967, p. 97):

N = c
∞

∑
n=2

2∆gn

n−1
, (4.29)

with the expression 4.28, the expected Global Mean Square Error (GMSE) of the Ñ takes the
form (Sjöberg 2003d):

m2
Ñ = c2

M

∑
n=2

b2
ndcn + c2

∞

∑
n=2

[(
b∗n−QL

n− s∗n
)2

cn +

(
2

n−1
−QL

n− s∗n

)2

σ
2
n

]
, (4.30)

and consists from the GGM, terrestrial data and truncation errors. The modification parameters
b∗n are:

b∗n =
{

bn, is 2≤ n≤M,
0, otherwise,

(4.31)

while cn are gravity anomaly degree variances, σ2
n and dcn are error degree variances of point

gravity (∆gFA) and GGM (∆gGGM) anomalies.
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4.6.2 Signal and error (noise) degree variances

Errors of the terrestrial and GGM gravity anomalies in spectral form are described through
variances. Gravity anomaly signal degree variances cn are computed by (Sjöberg 2003d, eq. 12,
11a, 12b):

cn =
1

4π

x

σ

∆g2
ndσ , (4.32)

error degree variances of terrestrial gravity anomalies:

σ
2
n = E

{
1

4π

x

σ

(
ε

T
n
)2

dσ

}
, (4.33)

whereas error degree variances computed from GGMs dcn are computed by:

dcn = E

{
1

4π

x

σ

(εS
n )

2dσ

}
. (4.34)

Values cn and dcn i are calculated from spherical harmonic coefficients Cnm and Snm of the GGM
model after equations 4.61 and 4.70.

4.6.3 Terrestrial data error degree variances

Gravity measurements should be known and measured at every point on the Earth’s topography
surface in order to determinate the global covariance function. Apparently this is not the case,
so local covariance model and empirical covariance functions is estimated from the available
terrestrial data for particular study area. The covariance function C(ψ) is completely described
with two parameters: error variance C(0) and correlation length ψ0. In order to define local
covariance model, these two parameters have to be assumed and chosen. The error variance is
the value of covariance function for ψ = 0, while the correlation length ψ0 is a value where C(ψ)
achieves half of the value C(ψ0) = 0.5 ·C(0). Elements of the covariance function are shown in
figure 4.10.

Error degree variances of the terrestrial data σ2
n may be obtained from the reciprocal distance

covariance model (Sjöberg 1986, section 7):

σ
2
n = cT (1−µ)µn,0 < µ < 1, (4.35)

for which parameters ct and µ are unknowns.
First, a value of parameter µ is found using the isotropic covariance function C(ψ) according

to Moritz (1978) and (Sjöberg, 1986, eq. 7.2):

C (ψ) = cT

{
1−µ√

1−2µ cosψ +µ2
− (1−µ)− (1−µ)µ cosψ

}
. (4.36)

After calculation of µ , and C(ψ) for ψ = 0 from the equation 4.36, parameters of the covariance
function are (Ellmann 2004, Ellmann 2005b):

C(0) = cT µ
2, (4.37)
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Figure 4.10: Elements of the covariance function

and correlation length C(ψ1/2):

C(ψ1/2) =
1
2

C(0). (4.38)

After C0 and C(ψ1/2) are known, terrestrial gravity anomaly degree variances σ2
n can be com-

puted using equation 4.35.

4.6.4 Least-squares modification parameters

Modification parameters sn and bn have to be determined for evaluation of equation 4.30. This
is done by the solution of the linear system of equations (Sjöberg 1991, Ellmann 2004):

L

∑
r=2

akrsr = hk,k = 2,3, ...,L, (4.39)

where akr and hk are modification coefficients. Three possible solutions of the equation 4.39
are biased, unbiased and optimum. The difference between solutions is due to the choice of the
parameter bn. Optimum and biased solutions are ill-conditioned and can produce unexpected
results. The issue may be overcomed by using Singular Value Decomposition (SVD) method
(Press et al. 1992).

Table 4.5: Parameters of the stochastic and deterministic modifications of the Stokes’ kernel

parameter
stochastic modifications deterministic modifications

biased optimum unbiased no modification WG VK

sn ∑
L
n=2 aknsn = hk,k = 2,3, ,L 0 2

n−1
2

n−1 + tn
bn sn

QL
n−sn

cn+dcn
QL

n + sn Qn QL
n + sn
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As given in table 4.5, the choice of the parameters in the KTH approach influences sn mod-
ification parameters, unlike in deterministic approaches where the sn coefficients have to be
apriori defined. More detailed info about determination of modification parameters may be
found in Ågren (2004) and Ellmann (2004).

4.6.5 Additive Corrections

Computation of approximate geoid undulation Ñ represents a first term in the basic equation (eq.
4.19) of the KTH approach. Apart from this term, final gravimetric geoid model is obtained only
after topographic, downward continuation, atmospheric, ellipsoidal effects are accounted for.

4.6.5.1 Topographic correction

Combined topographic correction account for the effect of topographic masses between Earth’s
topography surface and geoid which have to be removed to satisfy the ’mass-free’ condition
of the Stokes integral. It consists from direct and indirect effect which are computed through
(Sjöberg 1977, Sjöberg 2007):

δNcomb
top = δNdir +δNind

top =−2πGρ

γ

(
H2 +

2H3

3R

)
. (4.40)

Equation 4.40 includes also the zero- and the first- degree order effect. The topographic correc-
tion has the biggest contribution of all additive corrections in the KTH approach. It can reach up
to several meters value in the mountainous areas. Topographic correction is independent of any
topographic reduction method (Sjöberg and Hunegnaw 2000).

4.6.5.2 Downward Continuation correction

When topographic masses are filtered in topographic correction (eq. 4.40), effect caused by
downward continuation of gravity anomaly to the geoid surface still remains. A downward con-
tinuation effect is the sort of a buffer to the topographic effect due to its counteracted influence.
DWC effect may be computed for either gravity anomalies as in RCR approach, or for geoid
undulations as in KTH approach. Few methods exist for calculation of the Downward Continua-
tion (DWC) effect on gravity anomalies (see, e.g. Martinec (1996) and Hofmann-Wellenhof and
Moritz (2005)). The correction for DWC effect on geoid undulation consists from three parts
(Sjöberg 2003c, Ågren 2004, sec. 5.4):

δNDWC = δN(1)
DWC +δNL1,Far

DWC +δNL2
DWC, (4.41)

where

δN(1)
DWC = HP

(
∆g
γ

+3
N0

P
rP
− 1

2γ

∂∆g
∂ r

∣∣∣∣
P
HP

)
, (4.42)

δNL1,Far
DWC = c

M

∑
n=2

(s∗n +QL
n)

[(
R
rP

)n+2

−1

]
∆gn, (4.43)
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δNL2
DWC =

c
2π

x

σ0

SL(ψ)

(
∂∆g
∂ r

∣∣∣∣
P

)
(HP−HQ)dσQ, (4.44)

where rP = R+HP, σ0 spherical cap with radius of integration ψ centered in P, and ∂∆g
∂ r is

gravity gradient in point P that can be computed by (Heiskanen and Moritz 1967):

∂∆g
∂ r

∣∣∣∣
P
=

R2

2π

x

σ0

∆gQ−∆gP

l3
0

dσ0−
2
R

∆g, (4.45)

where l0 = 2Rsin ψPQ
2 .

4.6.5.3 Atmospheric Correction

The effect of the atmospheric masses existing outside of the geoid is accounted for by applying
atmospheric correction (Sjöberg and Nahavandchi 2000, Sjöberg 2001):

δNatm =−2πRρ0

γ
∑
n=2

M
(

2
n−1

− sn−QL
n

)
Hn−

2πRρ0

γ

∞

∑
n=M+1

(
2

n−1
− n+2

2n+1
QL

n

)
Hn,

(4.46)

where ρ0 is the density of the atmosphere at the sea level, Hn is the Laplace harmonic of degree
n for the topographic height. The elevation H of the arbitrary power v can be computed to any
surface point with latitude and longitude as (e.g. Kiamehr 2006a):

Hv =
∞

∑
m=0

n

∑
m=−n

Hv
nmYnm, (4.47)

where Hnm
v are the normalized spherical harmonic coefficients of degree n and order m that can

be determined by the spherical harmonic analysis:

Hv
nm =

1
4π

x

σ

HvYnmdσ . (4.48)

4.6.5.4 Ellipsoidal correction

First studies of the ellipsoidal correction occurred in 1962 (see, Molodenskii 1962), followed
by the studies of other authors, such as Martinec and Grafarend (1997), Fei and Sideris (2000),
and Heck and Seitz (2003). Ellipsoidal correction on geoid undulation is computed as (Sjöberg
2004a):

δNell ≈ ψ0
[
(0.12−0.38cos2

θ)∆g+0.17Ñ sin2
θ
]
. (4.49)

Simplified equation may also be used (Ellmann and Sjöberg 2004):

δNell ≈ ψ0
[
(0.0036−0.0109sin2

ϕ)∆g+0.0050Ñ cos2
ϕ
]

QL
0 , (4.50)

where QL
0 is the Molodenskii truncation coefficient.
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4.7 Remove-compute-restore approach

Remove-Compute-Restore (RCR) approach has been developed at The National Survey and
Cadastre of Denmark (KMS) and the Geophysics Department of the Neils Bohr Institute of Uni-
versity of Copenhagen by professors Carl Christian Tscherning (1942-2014) and René Forsberg.
Geoid is obtained in three steps:
Remove long and short wavelength contributions from the gravity data and obtain residual grav-

ity anomaly:
∆gFA−GGM−RT M = ∆gFA−∆gGGM−∆gterr. eff., (4.51)

where ∆gFA is the free-air anomaly, ∆gGGM is obtained from the spherical harmonic coef-
ficients of the GGM by eq. 4.55 and ∆gterr. eff. is computed from digital elevation models.

Compute residual geoid height N∆g either by Stokes’ integral or LSC using residual gravity
anomalies obtained in remove step.

Restore long and short wavelength contributions and add them to computed residual geoid
heights:

N = NGGM +N∆g +Nterr. eff.(+δNind), (4.52)

NGGM is computed using eq. 4.56 from GGM, N∆g is residual geoid height obtained in
compute step, Nterr. eff. is restore terrain effect, and δNind is indirect effect. The magnitudes
of NGGM are typically a few dozens of meters, N∆g decimeters, and Nterr. eff. centimeters
(Schwarz et al. 1987, Forsberg 1984). Quasi-geoid with height anomalies ζ are obtained
if Molodenskii’s integral is used instead of the Stokes integral:

ζ = ζGGM +ζ∆g +ζterr. eff.. (4.53)

In the latter case geoid to quasi-geoid correction ζ −N has to be applied in order to
compute geoid from the computed quasi-geoid (see equation 4.16).

The flowchart of geoid determination by RCR approach is given in appendix A, figure A.2.

4.7.1 ’Pure RTM’ variation

Different variations of the RCR approach exist, as one can choose between several topographic
reduction methods. Input data may be Faye or RTM anomalies, and gridding may be done
before or after remove step. In this thesis the pure RTM method is used which consists from the
following steps (Omang and Forsberg 2000):

1. Start from gravity observations on the Earth’s surface ∆gFA.
2. Compute long-wavelength contribution to the gravity ∆gGGM.
3. Compute RTM terrain effect on gravity ∆gterr. eff. = ∆gRT M.
4. Obtain residual gravity anomalies ∆g = ∆gFA−GGM−RT M = ∆gFA−∆gGGM−∆gRT M.
5. Interpolate (grid) residual gravity anomalies ∆gFA−GGM−RT M.
6. Compute residual quasi-geoid; height anomalies ζ∆g.
7. Compute restore height anomaly contributions ζGGM and ζRT M.
8. Obtain gravimetric quasi-geoid by summing up all contributions ζ = ζGGM +ζ∆g +ζRT M.
9. Obtain gravimetric geoid N = ζ+ quasi-geoid to geoid correction.
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More details about possible variations in geoid computation by RCR approach may be found
in (Sansó and Sideris, 2013, section 8.4.5).

4.7.2 Global geopotential models

Global geopotential models (GGM) represent the solution of the boundary value problem for the
global approach. In regional gravity field modelling, GGMs are used for computation of global,
long-wavelength, contributions of different functionals of the disturbing potential T using (e.g.
Barthelmes 2009, Bucha and Janák 2013, Barthelmes 2014):

T (ϕ,λ ,r) =
GM

r

nmax

∑
n=nmin

(
R
r

)n n

∑
m=0

(
Cnm cosmλ +Snm sinmλ

)
Pnm(sinϕ), (4.54)

where: Cnm and Snm are fully normalized geopotential coefficients of the anomalous potential,
Pnm are fully normalized Legendre functions, nmax is the maximum degree of expansion, r =
R+H, and R is the mean radius of the Earth.
Gravity anomalies are computed using the equation:

∆gGGM(ϕ,λ ,r) =
GM
r2

nmax

∑
n=nmin

(
R
r

)n

(n−1)
n

∑
m=0

(
Cnm cosmλ +Snm sinmλ

)
Pnm(sinϕ). (4.55)

Geoid undulation is obtained by:

NGGM(ϕ,λ ) =
T −2πGρH2

γ
, (4.56)

and:

H(ϕ,λ ) =
nmax

∑
n=0

n

∑
m=0

(
HCnm cosmλ +HSnm sinmλ

)
Pnm(sinϕ), (4.57)

where HCnm and HSnm are the coefficients of the expansion of topography taken from the SH
DTM, such as DTM2006.0 (see, Pavlis et al. 2007 and GFZ 2017b).

In a similar manner height anomaly is obtained as:

ζGGM =
T −∆gGGMh

γ
, (4.58)

Additional measures may also be computed from spherical harmonic coefficients and their
error estimates, such as degree variances or commission errors. They provide additional infor-
mation about stochastic behavior of GGMs for all wavelengths. This is important in many cases,
e.g when GGM and nmax has to be selected in gravimetric geoid determination, or in definition
of the stochastic model between terrestrial gravity data and GGM.

Fundamental statistical measures of GGMs are signal degree variances or power spectrum,
and error degree variances or error of the power spectrum. The signal degree variances denote
the amount of the signal, while the error degree variances denote the error of the GGM up to a
specific degree (Rapp 1982, Tsoulis and Patlakis 2013, eq. 19):

cn = σ
2
n =

n

∑
m=0

(C2
nm +S2

nm), (4.59)
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are dimensionless and describe total signal power of a degree n. Estimation of the accuracy of
the SH coefficients is obtained as:

ε
2
σn

=
n

∑
m=0

(σ2
Cnm

+σ
2
Snm

), (4.60)

σ2
Cnm

and σ2
Snm

being standard deviations of the SH coefficients.
Usually degree variance and error degree variance are calculated for particular functional,

then (e.g. Vergos et al. 2006):

cn = σ
2
n = α

n

∑
m=0

(
C∗2nm +S∗2nm

)
, (4.61)

dcn = ε
2
σn

= α

n

∑
m=0

(
ε

2
C∗nm

+ ε
2
S∗nm

)
, (4.62)

where auxiliary parameter α depends on the computed functional:
• disturbing potential

α =

(
GM

a

)2( a2

R2

)n+1

, (4.63)

• gravity anomaly

α =

(
GM

a

)2( a2

R2

)n+1

(n−1)2 , (4.64)

• geoid undulation

α =

(
GM
aγ

)2( a2

R2

)n+1

. (4.65)

When the spectrum of the gravity field functionals has to be known beyond the maximal
SH harmonic degree nmax of the used GGM, degree and error-degree variances can be extended
synthetically using existing global analytic covariance models, such as Kaula (Kaula 1966),
Rapp (Rapp 1972), Tscherning-Rapp (Tscherning and Rapp 1974), or Jekeli and Moritz (Jekeli
1978). Degree variances for several models are given in table 4.6. Example of the degree
variances for different gravity field functionals is given on figure 4.11. For specific study areas,
such global covariance models may provide rather questionable results for high-degrees n. The
solution is in fitting of the analytic covariance models to the available data (see, e.g. Ellmann
2005a).

According to the simplest Kaula’s model, degree variance of degree n and order m is (Rapp
1973, Kaula 2013):

σn =
2n+1

n4 10−10 ≈ 1
n2 10−5, (4.66)

and for gravity anomaly degree variances:

σ
2
n (∆g) = γ

2(n−1)2(2n+1)σ2
Cnm,Snm

. (4.67)
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Table 4.6: Global analytic empirical degree-variance models for gravity anomalies (after Wenzel 1985, p. 147 and
Kern 2003)

Reference cn(∆g) [mGal2]

Kaula (1966) (9.7983 ·105)2(n−1)2 1.6·10−10

n3

Rapp (1972) 251.6468(n−1)
(n−2)(n+12.9287+0.000715n2)

Tscherning and Rapp (1974) 425.28(n−1)
(n−2)(n+24)0.999617n+2

Jekeli (1978) 18.3906(n−1)
n+100 0.9943667n+2 + 658.6132(n−1)

(n−2)(n+20) 0.9048949n+2

Rapp (1979) 3.404(n−1)
n+1 0.998006n+2 + 140.03(n−1)

(n−2)(n+2) 0.914232n+2

Flury (2006) 6.8·107

n+0.5
3.09

Rexer and Hirt (2015) 1.79·10−7·0.9999995n

(n−1)(n−2)(n+4)(n+17)

Rapp’s model is:

σ
2
n (∆g) =

A
n+1.5

, (4.68)

and Tscherning-Meissl’s:

σ
2
n (∆g) =

C(n−1)
(n−2)(l +D+ εl2)

, (4.69)

with A,B,C,D,ε are numerical constants defining the model.
Tscherning and Rapp’s degree variance model is most often used for obtaining degree vari-

ances for larger n (Tscherning and Rapp 1974):

cn = A
(n−1)

(n−2)(n+B)

(
RB

R

)2n+2

, (4.70)

RB is the radius of the Bjerhammar sphere, A is a constant in units [m/s4], B an integer. Param-
eters A and RB have to be computed from empirical covariance function using measurement on
the area of integration. If a spherical harmonic series expansion is used, B is typically put equal
to a small number like 4, while in the original work it was put equal to 24, so that the low-degree
degree-variances could be modeled appropriately.

Crucial parameter when computing any GGM-related quantity is maximal spherical har-
monic degree of expansion nmax. It determines upper limit of summation and is always nmax <∞.
With increasing nmax number of coefficients Cnm and Snm exponentially increases (subfigure a,
figure 4.12), and is also related to the spatial resolution of the functional at the Earth’s sur-
face. In other words, nmax of each GGM determines spatial resolution (level of detailedness) of
gravity field (subfigure b, figure 4.12). Spatial resolution is spherical distance derived by using
expression (Barthelmes 2009, p. 20, eq. 114):

ψmin(nmax) = 4arcsin
(

1
nmax +1

)
, (4.71)
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Figure 4.11: Degree variances for EIGEN-6s4 and several analytic covariance models (Kaula, T-R, TM, Rapp)
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Figure 4.12: Number of SH coefficients and spatial resolution of the GGMs as a function of the maximal SH degree
of expansion nmax

where ψmin(nmax) is given in degrees [◦]. E.g. for nmax = 50 functionals are computed with the
spatial resolution of around 4◦, while for nmax = 360 it is 0.5◦ ≈ 60 km.

4.7.3 Compute

In RCR approach compute step follows after remove step in which residual gravity field is ob-
tained by subtraction of global and local gravity effects. Input data in the compute step are
residual gravity field data; usually the data are gravity anomalies. There are mainly two methods
for conversion of residual gravity data to residual geoid, and thesea are:

• Least squares collocation,
• Stokes integration.

4.7.4 Least Squares Collocation

In the broadest sense, collocation is a method for prediction of the unknown variables by least-
squares adjustment. It has different formulations (Krarup 1969, Moritz 1978, Moritz 1989):

• A mathematical method for solving ordinary and partial differential equations.
• A combination technique of least squares adjustment and prediction. The solution is the

minimum mean square error with the used data on the specific area.
• The solution of a geophysical inverse problem.
• Analytic approximation of the Earth’s potential with harmonic functions.
• A form of linear regression - estimating output stochastic quantities from other input

stochastic quantities by using their statistical correlations.

In geodesy, LSC is most often used for geoid determination, interpolation, and spherical
harmonic coefficients determination. The main advantage of LSC is possibility to combine
different input data types, and to obtain error predictions for the resulting quantities. Its main
limitation is that there has to be solved as many equations as the number of data, which can
be problematic if there are larger number of input data. Some methods, such as Fast Spherical
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Collocation (FSC), have been proposed to address the problem, but can only be used under some
conditions and approximations (see, e.g. Bottoni and Barzaghi 1993, Sansò and Tscherning
2003).

Mathematical formulation of the the LSC is given in table 4.7. l is a set of observed quantities
(e.g. gravity data), x is a vector of predicted quantities (e.g. geoid height at wanted locations).
Css, Cls, Cll are cross- and autocovariance matrices of prediction signals and observations ac-
cording to selected covariance model.

Table 4.7: Summary of least-squares collocation (after Moritz 1989 and Kern 2003)

Name Formulas

Model l = Ax+s+n
l observation vector
A design matrix
x parameter vector
s signal vector
s′ signals to be predicted
n noise vector
t = (s,s′)T

Covariance
functions

Css = Ē
(
ssT

)
Cnn = Ē

(
nnT

)
Cls = CT

sl = Ē
(
lsT
)

Cll = Ē
(
llT
)
=Css +Cnn

Assumptions Ē (s) = Ē (n) = Ē
(
snT

)
= Ē

(
tnT

)
= 0

Ē (l) = Ax

Minimum principle tTC−1
tt t+n

TC−1
nn n= min

Solutions x̂ =
(
ATC−1

ll A
)−1

ATC−1
ll l

ŝ = CssC
−1
ll (l−Ax̂)

ŝ′ = Cs′sC
−1
ll (l−Ax̂)

n̂ = CnnC
−1
ll (l−Ax̂)

Error covariances Ex̂x̂ =
(
ATC−1

ll A
)−1

Eŝŝ = Css−CssC
−1
ll

(
I−A

(
ATC−1

ll A
)−1

ATC−1
ll

)
Css

Eŝ′ ŝ′ = Cs′s′−Cs′sC
−1
ll

(
I−A

(
ATC−1

ll A
)−1

ATC−1
ll

)
Css′

Input data in geoid determination by LSC should be isotropic (have random behavior in
all directions) and non-biased, which beens they shall have small standard deviation and mean
value. In RCR approach this is achieved in the remove step where input data are filtered for
GGM and RTM contributions. Residual height anomalies are then obtained from residual data
using:
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ζ̃P =
{

CNg
P1

,CNg
P2

, ...,CNg
Pn

}


C11 C12 . C1n
C21 . . .
. . . .

Cn1 . . Cnn

+


v11 v12 . v1n
v21 . . .
. . . .

vn1 . . vnn



−1

·


L1
L2
...
Ln

 , (4.72)

where L1,L2,Ln can be heterogeneous data if they are functionals of the disturbing potential T
(e.g. gravity anomalies, gravity gradients or deflections of the vertical), where variance cross-
covariance matrices CNg, Cnn are calculated from equation 4.75.

A basic prerequisite in using LSC is cross-covariance matrix CNg
i j between input and output

data, which can be obtained by determination of covariance function using covariance propaga-
tion (Moritz 1989, p. 87, Sansó and Sideris 2013, ch. 5, pp. 217).

If some functional of disturbing potential is T then global covariance function is equal to:

C(P,Q) =
1

8π2

2π∫
0

π/2∫
−π/2

2π∫
0

T (P)T (Q)dα cosϕdϕdλ , (4.73)

where α is azimuth between points each points P and Q.
The global integral from 4.73 may be rewritten in spectral form, i.e. as a Legendre series.

The covariance between anomalous potential T in the points P(ϕ,λ ) and Q(ϕ ′,λ ′) becomes
(Andersen 2013, pp. 423):

C(P,Q) =
∞

∑
n=2

cT
n Pn(cosψ), (4.74)

where cT T
n are degree variances and ψ is spherical distance between points P and Q, Pn are the

Legendre polynomials. This kernel is homogeneous and isotropic which means it depends only
on the distance of the points, not location or azimuth. Mutual relationship between geoid height
and gravity anomalies follow from covariance propagation on C(P,Q):

CNN =
∞

∑
n=2

(
1
γ

)2

cT
n Pn(cosψ),

C∆g∆g =
∞

∑
n=2

(
n−1

r

)2

cT
n Pn(cosψ),

CN∆g =
∞

∑
n=2

(
n−1

γr

)2

cT
n Pn(cosψ).

(4.75)

where cn are signal degree variance computed from SH coefficients of the GGM up to nmax and
extended with selected analytic empirical degree-variance model (see equations from 4.59 to
4.70).

Determination of the above matrices from equations 4.75 fully determines LS adjustment
process. Practically, empirical local covariances are determined from the input data, then fitted
to the global covariance model, such as Tscherning-Rapp model. Therefore complete covariance
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models is (Tscherning 2013, pp. 323, eq. 7.17):

C(ψ,r,r′) = α

N

∑
n=2

(σ err
n )2

(
R2

rr′

)n+1

Pn(cosψ)

+
∞

∑
n=N+1

A
(n−1)(n−2)(n+4)

(
R2

B

rr′

)n+1

Pn(cosψ).

(4.76)

Parameters α , A and RB are obtained from fitting of the empirically determined covariance
function.

4.7.4.1 Planar logarithmic covariance model

The planar logarithmic covariance model is the approximation of the Tscherning-Rapp spherical
covariance model (Tscherning and Rapp 1974) which was firstly described and used by prof. R.
Forsberg (Forsberg 1987). It closely approximates Kaula’s rule, and describes spatial correla-
tion between all disturbing (anomalous) potential functionals. Covariance function is defined
by three parameters: empirical variance of data C0, and high and low frequency attenuation fac-
tors D and T . Parameter C0 is used for description of the gravity field variability. Parameter D
corresponds to double (twice) value of Bjerhammar depth in harmonic downward continuation.
Parameter T is used for obtaining finite values for gravity and geoid variances while modelling
the singularity of the planar logarithmic model. Attenuation of long-wavelengths in the covari-
ance model is generally needed as GGM is used in RCR approach. All parameters characterize
the correlation and power of gravity anomalies in a study area.

Covariance between gravity anomalies at heights H1 and H2 is (Forsberg 1987):

C(∆gH1,∆gH2) =− f
3

∑
k=0

αk ln
[

Dk +
[
s2 +(Dk +H1 +H2)

2
] 1

2
]
, (4.77)

where αk is a weight factor with values α0 = 1, α1 =−3, α2 = 3, and α3 =−1, s is the horizontal
distance between points, Dk is:

Dk = D+ kT, (4.78)

scale factor f from equation 4.77 is:

f =
C0

lnD3
1D3

D0D3
2

. (4.79)

Closed expressions for covariances between gravity anomalies and geoid undulations are:

C(NH1,∆gH2) =−0.00102 f ∑k = 03αk [r− z ln(z+ r)] , (4.80)

for z = (Dk +H1 +H2), r = (s2 + z2)
1
2 .
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4.7.5 Stokes integration

The main method for calculation of geoid undulations in RCR approach is Stokes integration.
Stokes’ integral, the central equation of physical geodesy, is a result of combination of Pizzetti’s
(eq. 4.3) and Bruns’ equation (eq. 2.17) (Heiskanen and Moritz 1967, p. 94, Hofmann-
Wellenhof and Moritz 2005, p. 104, eq. 2-307):

N =
R

4πγ

x
S(ψ)∆gdσ , (4.81)

where ∆g are gravity anomalies on the geoid surface, S(ψ) is a Stokes’ kernel, γ is Earth’s mean
gravity, R is Earth’s mean radius. Stokes’ integral (equation 4.81) can be rewritten in spherical
(ψ , α) or geodetic coordinates (θ or ϕ , λ ):

geodetic: N =
R

4πγ

2π∫
λ=0

π∫
θ=0

S(ψPQ)∆gQ sinθdθdλ ,

spherical: N =
R

4πγ

2π∫
α=0

π∫
ψ=0

S(ψPQ)∆gQ sinψdψdα,

where P is computation point, Q is integration point on the unit sphere σ . In practical com-
putations, gravity anomalies ∆g are integrated within a limited area or spherical cap (figure 4.14).
The area of integration is often a rectangular area around the country. Figure 4.13 demonstrates
the principle of integration.

In Stokes’ integration, geoid heights are obtained by:
• reduction of all input data (gravimetric measurements) on the geoid as boundary surface,
• calculation of the spherical distance ψPQ between computational point P and surrounding

points Qi within the chosen spherical cap ψ0,
• multiplication of the ∆gQ with the Stokes function, and
• integrate over the spherical cap.

4.7.5.1 Original ’analytic’ Stokes kernel

In the Stokes integration each gravity anomaly ∆g from the grid within the integration radius is
multiplied with the Stokes’ function S(ψ). Stokes’ integral can be computed spectrally (using
Legendre polynomial series) or analytically (using closed expressions) according to (Heiskanen
and Moritz 1967):

spectral : S(ψ) =
∞

∑
n=2

2n+1
n−1

Pn cosψ, (4.82)

closed : S(ψ) =
1
s
−6s+1−5cosψ−3cosψ ln(s+ s2),s = sin

1
2

ψ, (4.83)

where n is degree of expansion, s = sin ψ

2 , Pn are Legendre polynomials. Legendre polynomials
for different values of n are shown in figure 4.15. The ψ is the central angle between computation
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Figure 4.13: Stokes integration using: a) geographic θ , λ (left) and, b) spherical ψ , α (right) coordinates (after
Kuhn 2000).

point P and integration point Q:

cosψ = cosθP cosθQ + sinθP sinθQ cos∆λPQ. (4.84)

Stokes kernel may also be written in planar form (Heiskanen and Moritz 1967):

S(ψ)≈ 1
sin ψ

2
≈ 2

ψ
≈ 2R

l
(4.85)

where x and y are planar coordinates in local reference system, l(x,y) =
√
(x− xP)2 +(y− yP)2.

4.7.5.2 Kernel modifications

By its definition Stokes integral should be computed by continuous integration of gravity anoma-
lies over the whole sphere. Gravity anomalies are not available for integration over the whole
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geoid computation point
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P

Figure 4.14: Stokes’ integration of point gravity data within spherical cap size ψ0 around computation point P.
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Figure 4.15: Legendre polynomials for n = 1,2,3,5,10,20,30 as an argument of t = cos(ψ).

sphere, especially in regional gravity field modelling. Therefore, the integration cannot be per-
formed over the entire sphere (σ ), but only inside the limited area defined by spherical cap
(σ0). Information is lost in the remote zone where data are not integrated (σ −σ0), inducing
long-wavelength truncation errors, as ’local’ gravity data are known to have errors in long-
wavelengths. Therefore, long-wavelength errors from gravity measurements propagate into re-
sulting geoid undulations. Molodenskii showed that the truncation error of the remote zone can
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be reduced by using modified Stokes’ kernel (function), which combines the terrestrial gravity
measurements and the long wavelength contribution in the form of low-degree coefficients (up
to degree L) from satellite-derived GGMs (Molodenskii 1958, Molodenskii 1962). Apart from
this, Stokes’ kernel modifications modify decay rate of the far-zone contribution, filter the kernel
function, and smooth the error kernel so outside of the integration cap σ0, gravity anomaly ∆g is
small and rapidly diminishes (Vaníček and Featherstone 1998, Kern 2003).

Modified Stokes’ kernels SL have general form (e.g. Heck and Grüninger 1987, Ellmann
2005a):

SL (ψ) =
∞

∑
n=2

2n+1
n−1

Pn(cosψ)−
L

∑
n=2

2n+1
2

snPn (cosψ) , (4.86)

where first term is unmodified Stokes function S(ψ) (as in eq. 4.82, figure 4.16), L is a mod-
ification limit, Legendre polynomials Pn(cosψ). The modification coefficients sn,n = 2, ...,L
and modification degree limit L are chosen by various criteria. The main idea is to modify low-
degree Legendre polynomials (2 6 n 6 L) so

∥∥SL(ψ)
∥∥ < ‖S(ψ)‖. In that way Stokes’ kernel

tappers off faster for increasing values of radiuses of integration σ0 compared to unmodified
Stokes’ function (figure 4.16), so contribution of distant gravity anomalies is smaller.

Various modifications of the Stokes’ integral have been proposed in many references, includ-
ing: Molodenskii (1962), Wong and Gore (1969), Meissl (1971), Vincent and Marsh (1974),
Wenzel (1981), Wenzel (1982), Vaníček and Kleusberg (1987), Heck and Grüninger (1987),
Vaníček and Sjöberg (1991), Sjöberg (1991), Featherstone et al. (1998), Sjöberg and Hunegnaw
(2000), Sjöberg (2003b), Ellmann (2004), Ågren (2004), Sjöberg and Joud (2017). Modifi-
cations can be divided in few groups: deterministic, stochastic, combined and band-limited.
Deterministic modifications change Stokes function by removing the low degree terms (i.e. the
long-wavelength part) of Stokes’ kernel and high-pass filtering of gravity anomalies (e.g. Wong
and Gore 1969, Kiamehr 2006a). Their’s disadvantage is that errors of GGM and terrestrial data
are not accounted for (Ellmann 2005b). The problem is partially solved in stochastic modifi-
cations where predictions of errors of GGMs and terrestrial data are used to minimize GMSE.
More details may be found in cited references, here only main equations are given for kernel
modifications, which are latter used in Part II of the thesis.

Wong and Gore (1969) removed low degree Legendre polynomials from the unmodified
Stokes’ function:

SWG(ψ) = S(ψ)−
L

∑
n=2

2n+1
n−1

Pn cos(ψ) , (4.87)

where n is the modification degree which has to be smaller than maximal degree of expansion
nmax of the GGM (2 6 n 6 nmax). When n = nmax, the kernel is called spheroidal Stokes kernel.
The size of the evaluation area σ0 is chosen to be compatible with nmax.

Meissl (1971) modified kernel by subtraction of the value of the Stokes’ kernel at the trunca-
tion radius S(ψ0) from the unmodified kernel S(ψ):

SM(ψ) =

{
S(cosψ)−S(cosψ0), 0 6 ψ 6 ψ0,

0, ψ0 < ψ 6 π,
(4.88)



CHAPTER 4. GEOID DETERMINATION 71

so that truncation error series diminishes to zero when values n are increased.

Heck and Grüninger (1987) modified Meissl’s kernel by combining Wong-Gore’s and Meissl’s
modifications. The spheroidal kernel at the truncation radius is subtracted from the spheroidal
Stokes kernel inside the truncation radius:

SHG(ψ) =

{
SWG(cosψ)−SWG(cosψ0), 0 6 ψ 6 ψ0,

0, ψ0 < ψ 6 π.
(4.89)

Vaníček and Kleusberg (1987) modification is:

SV K(ψ) =

{
SWG(cosψ)−∑

L
n=2

2n+1
2 tn(ψ)Pn(cosψ), 0 6 ψ 6 ψ0,

0, ψ0 < ψ 6 π,
(4.90)

where tn are the modification coefficients. In order to minimize the upper bound of the trun-
cation error in a least squares sense a series of modifying coefficients are subtracted from the
Molodenskii’s spheroidal integration kernel (eq. 4.87).

Featherstone et al. (1998) combined Meissl’s and Vaníček-Kleusbeurg’s solutions to obtain:

SFEO(ψ) =

{
SV K(cosψ)−SV K(cosψ0), 0 6 ψ 6 ψ0,

0, ψ0 < ψ 6 π.
(4.91)

In such way the upper bound is modified to decrease the truncation error while the function
shall converge faster to zero. Comparison of the properties of the deterministic modifications of
Stokes’ kernel are given in table 4.8.
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Figure 4.16: Stokes’ kernel S(ψ) modifications as a function of the spherical distance ψ .
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Table 4.8: Comparison of deterministic modifications of the Stokes’ integral according to Kern (2003) (small #;
medium G#; large  )

Name Computation time
Implementation

complexity
Far-zone

contribution
Inclusion of

inconsistencies

Heiskanen and Moritz (1967) # # G#  
Molodenskii (1962)   #  
Wong and Gore (1969) # G# # #
Meissl (1971) # # #  
Heck and Grüninger (1987) # G# G# #
Vaníček and Kleusberg (1987)   # #
Featherstone et al. (1998)   # #

4.7.6 Spectral methods

Analytic Stokes integration is time-consuming and inefficient for large number of data and com-
putation points, as is the case when geoid is computed for the continental areas or larger coun-
tries. This problem can be addressed with FFT methods, which have been used in physical
geodesy since the beginning of the 1990s for computation of the regional and continental geoid
models (see, e.g. Forsberg 1991, Forsberg 1985). Some examples of geoid models computed
using FFT methods are European Gravimetric Quasigeoid (EGG) (Denker and Torge 1998) in
Europe, Germany (Liebsch et al. 2006), USA(Wang et al. 2012), Canada (Huang and Véronneau
2013). The main advantage of using FFT is their’s speed and efficiency, whereas drawbacks are
the requirement to interpolate (grid) point data, unpredictable periodicity effects, and flat-earth
approximation (Forsberg and Sideris 1993).

Several spectral methods for the Stokes’ integral evaluation have been developed in the last
few decades including:

• planar FFT,
• spherical FFT,
• spherical multi-band FFT,
• spherical 1D FFT.

4.7.6.1 Planar FFT

Stokes integral (equation 4.81) in planar approximation may be rewritten into the two-dimensional
convolution integral for computation of geoid height NP (Kearsley et al. 1985, Schwarz et al.
1990, Sideris 2013):

NP(xp,yp) =
1

2πγ

x

σ

∆g(x,y)√
(xp− x)2 +(yp− y)2

dxdy =
1
γ

∆g(xP,yP)∗ lN(xp,yp), (4.92)

where symbol ∗ stands for convolution operation, lN is the planar distance of the Stokes’ kernel
function:

lN(x,y) = (2π)−1(x2 + y2)− 1
2 , (4.93)

γ is mean gravity on computation area, σ is the area of integration.
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In the spectral domain, convolution integral from eq. 4.92 is computed using two direct
and one inverse Fourier transform with spectral functions ∆G(u,v) and LN(u,v) according to
(Schwarz et al. 1987, Haagmans et al. 1993):

N∆g(x,y) =
1

2πγ
{F{∆g(x,y)}F{lN(x,y)}}=

1
2πγ

F−1 {∆G(u,v)LN(u,v)} , (4.94)

where F is inverse direct or continuous Fourier transform, u and v are frequencies of the x and
y and LN(u,v) is 1√

u2+v2 . ∆G and LN are computed using discrete Fourier transform (DFT) and
continuous Fourier transform (CFT).

4.7.6.2 Spherical FFT

Planar approximation may create unwanted errors for computation areas larger than few hundred
kilometers, which can be avoided if spherical Stokes integral is implemented (Sideris 2013):

N(ϕP,λP) =
R

4πγ

x

σ

∆g(ϕ,λ )S (ϕP,λP,ϕ,λ )cosϕdϕdλ , (4.95)

or in another form using gridded gravity anomalies:

N(ϕl,λk) =
R

4πγ

N−1

∑
j=0

M−1

∑
i=0

∆g(ϕ j,λi)cosϕ jS (ϕl,λk,ϕ j,λi)∆ϕ∆λ . (4.96)

Convolution form of the above equation is (Van Hees 1991):

N(ϕl,λk) =
R

4πγ

N−1

∑
j=0

M−1

∑
i=0

∆g(ϕ j,λi)cosϕ jS (ϕl−ϕ j,λk−λi,ϕ)∆ϕ∆λ =

R
4πγ

[∆g(ϕl,λk)cosϕl]∗S(ϕl,λk,ϕ),

(4.97)

which can be computed using one or two dimensional DFT (Sideris 2013):

N(ϕl,λk) =
R

4πγ
F−1 {F{∆g(ϕl,λk)cosϕl}F{S (ϕl,λk,ϕ)}} . (4.98)

4.7.6.3 Spherical multi-band FFT

Errors in spherical kernel increase when moving from the centre towards the north and south
edges of the computation area. Forsberg and Sideris (1993) proposed to split computation area
in several zones by adopting mean reference latitudes ϕi. The principle is shown in figure 4.17.
Reference latitudes divide computation area in several areas along parallels. Geoid undulations
are computed for v number of reference latitudes ϕi while unified solution is obtained by inter-
polation between neighboring latitudes ϕi and ϕi+1 (Sideris 2013):

N(ϕ) =
ϕ−ϕi+1

ϕ i−ϕ i+1
Ni +

ϕi−ϕ

ϕ i−ϕ i+1
Ni+1. (4.99)
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P

Figure 4.17: Reference latitude bands for spherical multi-band kernel (after Forsberg and Sideris 1993)

4.7.6.4 Spherical 1D FFT

Inconvenience of the above 2D FFT solutions was solved by Haagmans et al. 1993 using the
spherical 1D FFT (SP1D) method. Geoid is computed for all the computation points along each
latitude without planar approximation. Therefore the results of analytical numerical integration
and 1D FFT shall be the same. Advantage is also that the zero padding has to be applied only
to the parallels, which allows speeding up computations. Geoid undulation using this method is
obtained:

N(ϕl,λk) =
R

4πγ
F−1

1

{
N−1

∑
j=0

F1{∆g(ϕ j,λk)cosϕ j}F1{S(ϕl,ϕ j,λk)}

}
, (4.100)

for ϕl = ϕ1,ϕ2, ...,ϕN , where F1 and F−1
1 are 1D Fourier transform operator and its reverse.

4.7.7 Restore

Restore step follows after residual geoid N∆g or quasi-geoid ζ∆g is obtained in the compute step.
GGM and RTM contributions on the height anomalies ζGGM and ζRT M are computed using the
same input parameters that were used in remove step for computation of ∆gGGM and ∆gRT M

contributions on gravity anomalies. ζGGM and ζRT M are added to the computed residual geoid
undulation N∆g.

The RTM terrain effect on the quasi-geoid is computed by using equation:

ζterr. eff. = ζRT M =
Gρ

γ

x h∫
hre f

1
r

dxdydz, (4.101)

where r =
[
(xP− x)2 +(yP− y)2 +(HP− z)2

] 1
2
, which can be obtained by numerical integration

(Forsberg 1984) or FFT (Forsberg 1985).



CHAPTER 4. GEOID DETERMINATION 75

Figure 4.18: Interpolation of Ni
geoid from the geoid model for each GNSS/levelling point.

4.8 Accuracy validation and fitting of geoid models

Accuracy validation is a final stage of gravimetric geoid model development. Usually a num-
ber of different models will be computed and only one has to be selected as the geoid. The
selected model shall be the one which is the most accurate and has the best agreement with the
control data. Reference data for validation of geoid models are GNSS/levelling points as they
are obtained using independent measurement methods. GNSS/levelling point is the point with
the known geoid undulation N computed as the difference between ellipsoidal h and orthometric
height H: N = h−H. Although, GNSS/levelling points are not error-free data, they are supposed
to have at least one magnitude higher accuracy than computed and validated geoid model, and
are taken as reference or true. Such presumption can be problematic if quality of either levelling
or GNSS measurements is unknown.

The main quantity used in validation are geoid undulation differences, also called residuals,
derived by subtraction of the geoid undulations from reference GNSS/levelling points and those
interpolated from the validated geoid model:

δNi
GNSS/lev.-geoid = Ni

GNSS/lev.−Ni
geoid, (4.102)

where i is the index of control GNSS/levelling point. After this, statistical measures, such as
mean and standard deviation, are computed for all the geoid undulation difference δNi

GNSS/lev.−geoid .
Mean values provide information about the offset (shift) between geoid based on MSL- GNSS/lev-
elling and validated gravimetric geoid model, whereas standard deviation indicates accuracy.

Different errors are coherent in residuals computed by equation 4.102. Some of the main
error sources are: a) random and systematic errors in derived heights h, H, and N, b) datum
inconsistencies, c) theoretical and empirical approximations made in processing observed data,
d) movement of the vertical reference frame due to geodynamical, and e) other effects (Fotopou-
los 2005). Modelling of these errors is performed by fitting differences to parametric models in
a least squares adjustment (Kotsakis and Sideris 1999, Kiamehr and Sjoberg 2005, Fotopoulos
2013). Initial no-fit parametric model is based on equation:

δN i
GNSS/lev.-geoid =N

i
GNSS/lev.−N i

geoid =A
T
i x+vi, (4.103)

where i is the index of GNSS/levelling points, x is the nx1 vector of unknown adjusting param-
eters,A is the nx1 vector of known coefficients, and vi are residuals as random noise term.
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Possible fitting parametric modelsATi are (Kotsakis and Sideris 1999, Daho et al. 2006):

Polynomial model

ATi x=
P

∑
r=0

P−r

∑
q=0
xrq∆ϕ

r∆λq (4.104)

where P is the order or degree of the polynomial, xrq the coefficients of the polynomial. ∆ϕ and
∆λ are scaled coordinates which can be obtained for each point as (Bilker-Koivula 2010):

∆ϕ= 2ϕi−(ϕmax+ϕmin)
ϕmax−ϕmin

∆λ= 2λi−(λmax+λmin)
λmax−λmin

(4.105)

or simply (Daho et al. 2006):

∆ϕ=ϕi−ϕ0 ∆λ= λi−λ0, (4.106)

ϕ0, λ0 being the mean values of the coordinate vectors.

Three-parameteric model

ATi x= cosϕi cosλix1+ cosϕi sinλix2+ sinϕix3, (4.107)

Four-parameteric model

ATi x= cosϕi cosλix1+ cosϕi sinλix2+ sinϕix3+x4, (4.108)

Five-parameteric model

ATi x= cosϕi cosλix1+ cosϕi sinλix2+ sinϕix3+ sin2ϕix4+x5, (4.109)

Seven-parameteric model

ATi x= cosϕi cosλix1+ cosϕi sinλix2+ sinϕix3+

cosϕi sinϕi cosλi
Wi

x4+
cosϕi sinϕi sinλi

Wi
x5+

sin2ϕi
Wi

x6+x7,
(4.110)

where ϕi and λi are geodetic coordinates of control points, e is the eccentricity of reference
ellipsoid andWi =

√
1− e2 sin2ϕi. Vector of unknown parameters x is determined in the least

squares adjustment of the geoid undulation differences ∆Ni.

Validation procedure
1. define initial GNSS/levelling dataset (latitude, longitude, ellipsoidal height, orthometric

height or geoid undulation),
2. split initial GNSS/levelling dataset on two subsets:

(a) subset for determination of unknown parameters x,
(b) subset for independent control,
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Figure 4.19: Flowchart of geoid model accuracy validation.

3. interpolate geoid undulations from geoid model,
4. perform least squares adjustment of differences with selected parametric model; determine

vector of unknowns x,
5. use points of control dataset and corresponding undulations interpolated from geoid model

to fit differences: v j = Ax−L j, where L j = NGNSS/levelling−Ngeoid , and j are all control
points that have not been included in determination of parameters,

6. statistical measures of the fitted differences indicate external accuracy of gravimetric geoid
model,

7. fitting of the gravimetric geoid model and obtaining hybrid geoid model.

Criterion for selection of the most accurate geoid between all computed candidate solutions
is the best fit between the GNSS/levelling points and fitted undulations from gravimetric geoid.
Mostly used statistical measures for comparison of the geoid model accuracy are standard devi-
ation and mean, or root mean square, along with minimum, maximum (definitions given in table
E.3).
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Figure 4.20: The principle of relative geoid accuracy validation between two points A and B.

4.8.1 Relative geoid accuracy validation

Validation of relative accuracy is performed to assess the potential of geoid models for transfer
of the heights over some distance. In absolute geoid accuracy validation the goal is to determine
how accurate will be orthometric height H, if ellipsoidal height h is measured, and geoid un-
dulation N is taken from the hybrid geoid model. In relative geoid accuracy validation the goal
is to determine accuracy for the differences between orthometric and ellipsoidal heights from
one side, and geoid undulation differences from geoid models on another side. The advantage of
such procedure is that some errors, such as vertical datum biases, which affect absolute measures
of accuracy will cancel out in the differences as they are the same on each side of the baseline
(Kearsley 1988). The principle of relative geoid accuracy validations is shown in figure 4.20.

Initial data for validation are differences between ellipsoidal and orthometric heights from
GNSS/levelling, and geoid undulations for each pair of points A,B (e.g. Fotopoulos et al. 2003,
eq. 2-4):

∆hAB = hA−hB,

∆HAB = HA−HB,

∆NAB = NA−NB,

(4.111)

where A and B are pairs of available GNSS/levelling points over the distance sAB.

Number of baselines for n points is N = n(n−1)/2. The baseline distance (length) sAB may
be calculated from the geodetic latitudes and longitudes for each pair of points using formulas
of Vincenty (1975). These distances are given along the geodesic, which is the shortest distance
between two points on the reference ellipsoid.

In theoretical error-free case, for all baselines si between each pair of points A or B stands
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(e.g., Featherstone 2001):
hA−HA−NA = 0,

hB−HB−NB = 0,

∆NAB = NA−NB,

(4.112)

and:
∆hAB−∆HAB−∆NAB = 0, (4.113)

where i is the index of baseline. In practice, the above condition (equation 4.113) is not fulfilled,
so misclosure values li for each baseline are:

li = ∆hAB−∆HAB−∆NAB. (4.114)

Mean relative accuracy ar is obtained (e.g. Schwarz et al. 1987):

ar =
1
N

N

∑
i=1

δ li
si

, (4.115)

where si is the distance between each pair of points in ppm units.

4.9 Gridding and interpolation

Before performing Stokes integration scattered point gravity data have to be either gridded or
averaged. Therefore interpolation has to be performed. One should typically choose the method
which gives the best predicted values at the needed locations of grid nodes. If the data are equally
distributed on the interpolation area, without gross or biased errors and gapes, choosing of the
interpolation method is not so demanding. Usually however, data are non-randomly distributed
with containing unknown errors so interpolation procedure has to be properly taken care of.

Traditionally, least squares collocation was mostly used in gridding as it gives reasonable
results under assumption that input data are isotropic and non-biased, and especially if stochastic
properties of the input data are known. Other possible interpolation methods are (Surfer 2016,
Grgić et al. 2015):
Inverse Distance to a Power. Weighted average interpolator that can be either an exact or a

smoothing interpolator. Data is weighted during interpolation such that the influence of
one point relative to another declines with distance from the grid node. It does not extrap-
olate elevation values beyond those found in the source data (Franke 1982).

Kriging. A method for constructing a minimum-error-variance manifestation. It attempts to
express trends suggested in the data that can be fitted to any dataset by specifying the
appropriate variogram model and anisotropy (Cressie 1990, Journel and Huijbregts 1978).

Minimum Curvature. A method that fits linear elastic plate through the data values with a
minimum amount of bending. It produces the smooth surface and consequently, source
data is not always treated exactly; each pass over the grid applying method equation is
counted as a single iteration (Smith and Wessel 1990).
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Modified Shepard’s Method. A method that uses an inverse distance weighted least squares
method and it can be either an exact or a smoothing interpolator. It computes a local
least squares fit of a quadratic surface around each observation (Shepard 1968, Franke
and Nielson 1980).

Natural Neighbour. A method estimates grid values by finding the closest subset of input data
points to a grid node and then applying heightening to each. The method does not extrap-
olate grid values beyond the range of data and it does not generate nodes in areas without
data (Sibson 1981).

Nearest Neighbour. An exact interpolator where the interpolated value of each grid node is a
value of the nearest original data point. It does not take anisotropy into account. Polyno-
mials of different orders allow fit the data using weighted least squares.

Polynomial Regression. A method used to define large-scale trends and patterns in source data
and is not an interpolator. The method may extrapolate elevation values beyond the range
of the source data (Draper and Smith 2014).

Radial Basis Function. An exact interpolator where the real-value specified function depends
on the distance to the origin. It is similar to Kriging in terms off flexibility and usually
produces a smooth grid (Powell 1992, Carlson and Foley 1991).

Triangulation with Linear Interpolation. A method that draws lines between data points to
create triangles, none of the triangle edges are intersected by other triangles. It does not
extrapolate outside source data range (Lee and Schachter 1980).

Moving Average. A method that assigns values to grid nodes by arithmetic averaging the data
within the grid node’s search ellipse (the identified neighboring data). It does not extrap-
olate outside the source data range.

Local Polynomial. A method that assigns values to grid nodes by using a weighted least squares
fit with data within the grid node’s search ellipse (Fan and Gijbels 1996).

Validation of gridding methods may be done efficiently by performing cross-validation. The
process starts by removing a random point from some location in a validated dataset. Then
an interpolation with gridding method in a location of the removed points is performed. Af-
terward, interpolated value is compared with the measurement value of removed point. Er-
ror of interpolation is considered as difference (residual) between these two values (error(ε) =
measurement value of removed point− interpolated value).

The process is repeated for previously defined number of random points for each gridding
methods. Statistical measures are computed from error(ε), such as Root Mean Square Error
(RMSE) or R2.
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Chapter 5

Data, study area, and software

“The ultimate purpose of geodetic
measurements can be expressed in this way:
We want to compute the coordinates of all
points of the physical surface of the earth in a
universal system, the origin of which is the
center of gravity of the earth and the principal
axis of which is the rotational axis. ”

Reino Antero Hirvonen (1908-1989)

In this chapter data used in the thesis are described with their main characteristics and refer-
ences. Data used in computations are:

• gravity anomalies,
• GNSS/levelling points,
• global geopotential models,
• digital elevation models,
• crustal density models.

5.1 Terrestrial and marine gravity anomalies

The main dataset used for all computations is a database of free-air gravity anomalies ∆gFA

covering the study area. The database consists from approximately 16500 terrestrial free-air
anomalies. The database was already used in computations of geoid models over Croatia in
the past, such as HRG2000 (Bašić and Hećimović 2006), HRG2009 (Bašić 2009, Bašić and
Bjelotomić 2014) and HRG2015 (Bjelotomić 2015).

Most of the data were collected from 1970s to 1995 across the territory of the Socialist Fed-
eral Republic of Yugoslavia (SFRJ). Positional coordinates are given in the Croatian Terrestrial
Reference System 1996 (HTRS96) which is a realization of the European Terrestrial Reference
System 1989 (ETRS89) and refers to the GRS80 ellipsoid. Heights of the points in the database
are normal-orthometric in the Croatian Height Reference System 1971.5 (HVRS71) (Rožić and
Feil 2001, Tir et al. 2013). Gravity data refer to the International Gravity Standardization Net-
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work 1971 (IGSN71). There are no reliable information about the external accuracy of these
data neither for position, height, or gravity values. Estimated accuracy of the data are: posi-
tional from 0.1 m to 3 m, vertical from 0.1 to 0.5 m and gravimetric from 1 to 5 mGal.

Spatial distribution of the points in gravity database is shown on figure 5.1a. The data are
more-or-less equally distributed across wider territory of Croatia. On the continental part of
Croatia data are denser, whereas in mountainous areas and on islands data are sparser. As it will
be shown later, the biggest issue in computations will be in the coastal and near-coastal areas for
which no new and reliable shipborne gravimetric measurements exists.

Filling gaps in the original gravity anomaly database

Data gaps exist in few regions over the study area so the existing database was filled with grav-
ity anomalies from other sources. Database was filled for land areas using gravity anomalies
computed from global geopotential model EGM2008 (Pavlis et al. 2008), while sea areas are
filled with gravity anomalies from global gravity field model DTU15 created from the satellite
altimetry data (Andersen and Knudsen 2016).

The principle of filling the existing database with data from other sources is shown in figure
5.2. Red circles are existing points in the database. Grey and blue points are obtained from the
filling grid which was created from the data of other sources. Such ’filling’ grid is overlaid with
the points from the existing database. Grey points are candidates for filling, but have existing
points inside the circle within the radius ψ therefore have not been selected for filling. Blue
points are grid nodes that have been included in the database because they do not have any point
within the radius ψ . Points were added in all areas where there was neither one point data inside
the radius of ψ = 0.01◦. Filled data used are shown in figure 5.1b.

Most of the points were added in the Hungarian area at the north-eastern part of the study
area and in areas near the coastline were no data exist. The area along the coastline is known
to be the most problematic area for geoid determination if there are no terrestrial data exist on
islands, whereas satellite altimetry data near the coastline are not reliable. Besides filling holes
in the data, additional data were included outside of the borders of available terrestrial data. In
such way data coverage area is extended in order to minimize geoid computation errors which
emerge on the borders of computation area.

Advantage of filling the database in the areas where no data exist is to increase accuracy
in computations as it cannot be expected that any predicted or modeled quantity in computa-
tions will be reliably determined in the blank-data areas. Disadvantage of filling is that possible
unknown and undocumented errors between different datasets, such as differences between ref-
erence systems or systematic biases, are possibly included. In this case, filled data from other
sources are used without investigation of the consistency and discrepancies between data from
different sources. This issue will be investigated more closely in the future.

Filtering and outliers detection

Prior to geoid computation, filled gravity database was visually and statistically analysed in order
to find and eliminate suspected outliers, systematic biases and co-linear points. After performing
filtering procedure, filtered gravity database is created.
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Gravity database before filtering is shown in figure 5.4a, having 24471 points in total.
Schematic diagram of creating the filtered gravity database is shown in figure 5.3. Initial in-
put data are free-air gravity anomalies ∆gFA which are converted to residual gravity anomalies
∆gFA−GGM−RT M, that were smooth and non-biased (small st. dev. and mean value), which are
wanted properties for outliers detection. ∆gFA−GGM−RT M by subtraction of GGM ∆gGGM and
RTM ∆gRT M contributions from the ∆gFA. ∆gGGM are computed using EGM2008 until maximal
degree (nmax = 2190), while ∆gRT M are computed with SRTM 3′′global digital elevation model
(global DEM) and ’default’ TC input parameters: r1 = 20 km, r2 = 20 km, ρc = 2670 kgm−3.
After subtraction long and short contributions from the ∆gFA, under assumption that no errors
exist in the database, residual gravity anomalies ∆gFA−GGM−RT M should have smooth changes
without spikes. Spikes are values of residual anomalies that are different than surrounding points
by more than few mGal. On the other hand, areas where errors exist should be detectable on the
map of residual gravity anomalies or filtered using some statistical normality test.

Map of gridded residual anomalies ∆gFA−GGM−RT M before and after filtering is shown in
figure 5.5. First, suspected outliers were eliminated visually by finding spikes and evident large
discrepancies from all surrounding areas. On subfigure a values with values larger than 100
mGal are easily detectable outliers. They are mostly located in the Alpine region. Some other
problematic areas are along the Dinarides mountains (SE part of the study area). After visual
filtering, Grubbs’ test for outliers (Grubbs 1969) was performed with the significance level α =
0.05. Grubbs’ test is a statistical test for outliers detection in a univariate sample which should
be normally distributed. Test was performed in n iterations where in each iteration value that is
either highest or lowest from the sample mean is removed from the sample. The procedure is
repeated until all suspected outliers are filtered from the database.

From the filled database having 24471 points, in total 498 points were filtered, which is 2%.
Spatial distribution of the filtered points is shown in figure 5.4b.

On the subfigure b of figure 5.5 it seems that residual gravity anomalies are smoother, more
equally distributed around the mean and not having local outliers over the problematic moun-
tainous areas of the test areas. Statistics of four types of gravity anomalies before and after
filtering of the database is shown in table 5.1. Overall statistics are given for free-air, simple
and complete Bouguer, and residual gravity anomalies. Concerning free-air anomalies there is
no change of any statistical measure. The effect of filtering is better seen in simple and com-
plete Bouguer gravity anomalies where standard deviation is smaller by 1 mGal. As outliers are
more evident in ∆gFA−GGM−RT M where minimum, maximum and range are smaller in the filtered
gravity database, for example range is reduced from 238.8 mGal. Mean is almost the same -0.7
before filtering compared to 0.9 mGal after filtering, while standard deviation is reduced from
7.4 to 6.5 mGal.
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Table 5.1: Statistics of different types of gravity anomalies before and after filtering/outlier detection of the
database. Units: [mgal].

∆gFA ∆gsB ∆gcB ∆gFA−GGM−RT M

before after before after before after before after

min -131 -131 -232 -207 -203 -177 -52.2 -32.2
max 217 217 109 109 111 111 186.5 30.1
range 347 347 341 316 314 288 238.8 62.2
mean 10 10 -28 -28 -25 -25 -0.7 -0.9

st. dev. 35 35 39 38 36 35 7.4 6.5
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existing (original) points in the database
fill points, not having any existing point within the radius
fill-point-candidates, having point(s) within the radius
circle around fill-point-candidates with the radius 0.01° 

Figure 5.2: The principle for filling gaps in the gravity database
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Figure 5.3: Schematic diagram of the procedure for detection and filtering of outliers from the database
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(a) Gravity database before filtering and outliers detection

(b) Filtered points
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(a) before

(b) after

Figure 5.5: Map of residual anomalies ∆gFA−GGM−RT M before and after filtering
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5.2 Validation of gridding methods using different types of gravity
anomaly

Geoid computation usually requires gravity anomalies in a gridded form (figure 5.6). As most of
the data are not measured in ’gridded’ way, some gridding method has to applied for interpola-
tion in grid nodes. This is a required and unavoidable step for all geoid computation approaches
and methods, except for LSC in some cases when number of data does not exceed few thou-
sand points. Accuracy of the measured point gravity data may be superior, but gridding as a
mathematical procedure of calculation of the unknown value at some location, can always be
done with limited accuracy. It is preferable that in this step as much as possible of raw accuracy
is preserved after gridding. One wants to interpolate with best possible gridding method. The
problem is even more serious because there is no way to model or filter gridding induced errors,
they will simply modify and affect all afterward results and final geoid solutions.

output gridded points
input gravity points for gridding

minimum errors

Figure 5.6: Transformation of point gravity to the gravity grid

General objectives of this section are to:
• find best possible gridding methods,
• investigate gridding accuracy of different types of anomalies.
Input data for gridding are different types of point gravity anomalies: free-air ∆gFA, simple

Bouguer ∆gsB, complete Bouguer ∆gcB and residual ∆gFA−∆gGGM−∆gRT M. It is known that
some types of anomalies have fast, and some slow fluctuations in the space. If gravity anomalies
are changing fast, as it is the case with free-air gravity anomalies which depend of the topog-
raphy, they will be more demanding for interpolation. Generally, it is preferable to interpolate
input data which is smooth as it will probably result in the smaller errors.

Methodology of validation and gridding methods are briefly described in section 4.9. Schematic
diagram of the complete process is shown in figure 5.7. Selected gridding methods for valida-
tion are: Inverse Distance to a Power (IDW), Kriging, Minimum Curvature, Modified Shepard’s,
Natural Neighbour, Nearest Neighbour, Polynomial Regression, Radial Basis Function (RBF),
Triangulation with Linear Interpolation (TIN), Moving Average, Local Polynomial. Each grid-
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ANOMALY

Free-air anomaly a) RTM reduction GGM anomaly

1) free-air anomaly:

2) simple Bouguer anomaly:

3) complete Bouguer anomaly:

4) residual gravity anomaly:

b) terrain correction

Cross-validation and gridding of anomalies 

for 12 interpolation methods

statistical analysis of errors of interpolation

Figure 5.7: Schematic diagram of gridding methods validation

ding method has specific parameters which have to be selected for gridding. A list of input
parameters for each gridding method is given in table 5.2. Results may significantly differ de-
pending of the selected parameters, e.g. in Kriging method variogram model can be defined in
several dozens ways. As for each gridding method many several solutions are obtained for each
gridding method using many different parameters.

The main criteria of the accuracy of gridding method is statistical parameter RMS de-
rived from the differences (residuals) between original (true) and interpolated (gridded) gravity
anomaly value.

in tables 5.3 and 5.4 statistics of the accuracy of different gridding methods for different
types of anomalies is given. Generally, there are differences of more than 10 mGal for free-air,
2 mGal for ∆gFA−GGM−RT M, 20 mGal for Bouguer anomalies between best and worse gridding
method. For example, Kriging of ∆gFA resulted in 7.8 mGal RMS, whereas for Moving Average
is 28.8 mGal. Kriging is the best possible method for all types of gravity anomalies. The
selection of variogram model is crucial for this method. For variograms that do not describe
trend of data, its accuracy can be degraded by several mGal. Minimum Curvature, Radial Basis
Function and Inverse Distance to a Power are worse by around 1 mGal compared to Kriging.
These three methods gave very similar results for gridding of all gravity anomaly types. The
differences between them are less than 1 mGal for all gravity anomaly types. Another property
of Kriging and these three gridding methods is that they do not interpolate gravity anomalies
with bias, except for gridding of free-air gravity anomalies. Biased gravity anomalies are known
to cause long to medium wavelengths errors in compute geoid models.

Gridding methods which largest RMS are Moving Average, Polynomial Regression and
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Table 5.2: List of input parameters for different gridding methods (GS Surfer software).

Gridding method Input parameter

All

Longitude and Latitude Spacing
Number of Random Points

Anisotropy Ratio
Anisotropy Angle

IDW
Smoothing

Power

Kriging
Drift Type

Type
Variogram

Minimum Curvature
Internal Tension

Boundary Tension
Relaxation Factor

Radial Basis Function Basis Type

Polynomial Regression
MaxXOrder
MaxYorder

Max Total Order

Local Polynomial
Order
Power

Table 5.3: Interpolation accuracy of different gridding methods for free-air ∆gFA (left) and residual gravity
anomalies ∆gFA−∆gGGM−∆gRT M (right). Sorted by RMS, units: [mGal].

Gridding method min max mean st.dev. rms

Kriging -34.3 21.8 1.6 7.7 7.8
Minimum Curvature -36.1 34.1 -0.1 10.0 10.0

Inverse Distance to a Power -25.9 28.7 1.6 10.5 10.6
Radial Basis Function -60.7 25.9 0.1 10.8 10.8

Nearest Neighbour -38.2 56.4 -0.5 11.2 11.2
Modified Shepard’s -33.5 33.9 1.1 11.3 11.3
Natural Neighbour -45.6 48.6 2.7 11.3 11.6
Local Polynomial -52.7 50.3 1.5 11.7 11.8

TIN -69.9 40.5 1.2 12.0 12.0
Polynomial Regression -83.9 92.1 2.5 22.9 22.9

Moving Average -94.0 76.5 2.5 28.9 28.8

Gridding method min max mean st.dev. rms

Kriging -5.9 9.4 0.1 3.3 3.3
Minimum Curvature -11.2 10.9 -0.3 3.7 3.6

Radial Basis Function -9.3 15.5 0.2 3.7 3.7
Inverse Distance to a Power -11.3 11.5 -0.1 3.8 3.8

TIN -19.0 17.0 0.2 4.4 4.4
Natural Neighbour -17.0 24.6 -0.2 4.8 4.8
Local Polynomial -14.1 12.8 -0.0 4.8 4.8

Polynomial Regression -14.9 12.9 -0.1 4.9 4.8
Nearest Neighbour -19.8 17.1 0.3 5.0 5.0
Modified Shepard’s -14.1 24.7 0.5 5.3 5.3

Moving Average -22.2 14.0 -1.2 5.7 5.8

Modified Shepard’s; these gridding methods should not be used in interpolation of gravity
anomalies. The results indicate that differences between accuracy of interpolation of different
types of anomalies are smaller when anomalies are smoother; for free-air gravity anomaly differ-
ence between Kriging and Minimum Curvature as first and second best methods for gridding is
2.2 m Gals, whereas for residual gravity anomalies ∆gFA−∆gGGM−∆gRT M the difference is 0.3
mGal. This mean that if smooth anomalies, such as complete Bouguer anomalies are selected
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Table 5.4: Interpolation accuracy of different gridding methods for simple ∆gsBoug (left) and complete Bouguer
anomalies ∆gcBoug (right). Sorted by RMS, units: [mGal].

Gridding method min max mean st.dev. rms

Kriging -5.8 8.8 0.0 2.3 2.3
Radial Basis Function -7.0 8.1 -0.1 2.4 2.4

Natural Neighbour -6.2 7.0 0.2 2.4 2.4
TIN -8.5 8.0 -0.4 2.8 2.8

Minimum Curvature -11.2 11.7 -0.0 3.1 3.1
Inverse Distance to a Power -10.4 11.4 0.2 3.3 3.3

Local Polynomial -7.9 11.4 0.6 3.6 3.6
Nearest Neighbour -16.3 14.5 -0.5 4.6 4.6
Modified Shepard’s -18.3 20.7 0.2 7.8 7.8

Polynomial Regression -37.5 59.2 0.9 21.2 21.1
Moving Average -94.9 102.0 -4.5 32.0 32.1

Gridding method min max mean st.dev. rms

Kriging -6.3 8.4 0.0 2.1 2.1
Inverse Distance to a Power -13.7 6.5 -0.2 2.8 2.8

Radial Basis Function -10.0 8.0 0.5 2.8 2.8
TIN -11.2 6.4 -0.1 2.9 2.9

Minimum Curvature -6.7 9.8 0.3 3.1 3.1
Natural Neighbour -13.7 11.6 0.2 3.1 3.1
Nearest Neighbour -11.3 10.7 0.5 3.4 3.4
Local Polynomial -10.9 10.2 0.3 3.5 3.5

Modified Shepard’s -22.0 31.0 0.2 7.1 7.1
Polynomial Regression -57.0 46.5 -3.4 19.0 19.2

Moving Average -48.2 84.8 1.6 32.4 32.3

for gridding the importance of the selection of gridding method is important but not crucial.

Table 5.5: Comparison of the best interpolation methods for different types of gravity anomalies. Sorted by RMS.
Units: [mGal].

Gravity anomaly Symbol Interpol.method. min max mean st.dev. rms

complete Bouguer ∆gcB Kriging -6.3 8.4 0.0 2.1 2.1
simple Bouguer ∆gsB Kriging -5.8 8.8 0.0 2.3 2.3

residual ∆gFA−∆gGGM−∆gRT M Kriging -5.9 9.4 0.1 3.3 3.3
free-air ∆gFA Kriging -34.3 21.8 1.6 7.7 7.8

From the previous tables solutions which resulted in the smallest RMS are selected and
written in table 5.5. Here, statistics for different gravity anomalies are compared. Free-air
anomalies are not suitable for interpolation; they can be interpolated with 7.8 mGal. Residual
gravity anomalies which are used as input data in geoid determination by RCR approach can
be interpolated with accuracy of 3.3 mGal. The best type of anomalies for interpolation are
complete Bouguer with RMS of 2.1 mGal. The difference between interpolation with simple
and complete Bouguer anomalies is 0.2 mGal. Therefore, simple Bouguer anomalies may be
selected for gridding if accuracy of gravity observations is larger than 1 mGal, which is mostly
the case, terrain is not mountainous and data are dense.
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5.3 GNSS/levelling dataset

GNSS/levelling points are independent data used for validation and fitting of gravimetric geoid
and global geopotential models. Available dataset consists from 495 points distributed across the
Croatian territory. This dataset originates from the 2009 year when major GNSS campaign was
conducted prior to calculation of the latest official geoid solution HRG2009 (Bašić and Bjelo-
tomić 2014). Measurements were done on eccenters in the vicinity of the benchmarks of the
Croatian Height Reference Frame (II.NVT) with dual-frequency instruments, Real Time Kine-
matic (RTK) or static method and 15′′interval registration. The observed network was adjusted
with fixed points of the CROatian POsitioning System (CROPOS) network, precise satellite
ephemerides in ETRS89, epoch 1989.0. Adjusted measurement were transformed to the terres-
trial reference frame HTRS96 (ITRF96 for epoch 1995.55). A posteriori accuracy of ellipsoidal
heights is 0.7 mm (Grgić et al. 2010). Spatial distribution of the points is shown in figure 5.8.
Average density of points is approximately 10 points/km2.
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Figure 5.8: GNSS/levelling dataset

5.4 Global geopotential models

GGMs are used as the data source for modelling of the long-wavelengths of gravity potential.
GGMs are models of the geopotential from which all other gravity-related quantities (function-
als) are computed, such as gravity anomalies, height anomalies, deflections of vertical etc. Grav-
ity anomalies, geoid heights, and second radial derivative, obtained from EGM2008 for nmax are
presented in figure 5.9. These data are usually as the data source for modelling of the grav-
ity potential of the long-wavelength spatial features of the gravity field. Three types of GGMs
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exist, depending on the type of data used for GGM development: satellite-only, combination
satellite-terrestrial and tailored.

GGMs are developed since 1960s and first satellite missions, although their renaissance
started with the beginning of the 21st century after satellite gravity mission CHAMP had started.
Afterwards, (GRACE and GOCE) missions started which allowed scientists to collect, process
and model huge amount of data about Earth’s gravity field. As the result of these mission more
than 80 GGMs have been published from the 2000. Distribution of GGMs goes through the
website of the International Centre for Global Earth Models (ICGEM)).

GGMs have two major roles in this thesis:
1. validation of the gravity database and GNSS/levelling dataset,
2. geoid determination.
The objective of 1) is acquiring information about the accuracy of GGMs over the selected

study-area by validation using the gravity database and GNSS/levelling dataset. The objective of
2) is to calculate and use gravity anomalies and geoid undulations from GGMs in the gravimetric
geoid determination. There are two main uses of functional computed from GGMs in geoid de-
termination. In RCR approach, gravity anomalies ∆gGGM and ∆NGGM are computed for wanted
degree of expansion n. contributions are computed before and after residual geoid computation,
whereas in KTH approach approximate geoid undulation is computed from GGMs.
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(a) gravity anomaly ∆g

(b) geoid height N

(c) second radial derivative Trr

Figure 5.9: Gravity anomalies, geoid heights, and gravity gradients from EGM2008 for nmax = 360
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5.4.1 Validation of global geopotential models

Global geopotential models have increased their quality in the past two decades, and are cur-
rently used in large number of applications. Validation step and mutual GGM comparison is
therefore needed for obtaining information about the accuracy which they represent geopotential
of the Earth. Validation results is important in geoid determination for: finding the most opti-
mal GGM for the study area, selection of the most appropriate maximal degree of expansion,
and for quality analysis, cross-checking, detection of outliers and systematic errors in gravity or
GNSS/levelling datasets.

In this section GGMs are validated on available GNSS/levelling and gravity datasets. Val-
idation of GGMs on GNSS/levelling is done in numerous studies in many different part of the
world. In such studies GNSS/levelling and gravity data are used as reference (true) data and are
considered to have higher order of accuracy than GGM. Data used for validation are described
in chapter 5, sections 5.1 and 5.3.

Two functionals of gravity field potential, geoid undulation NGGM and free-air gravity anoma-
lies ∆gGGM, are computed from spherical harmonic coefficients for each GGM using equations
4.55 and 4.56 given in section 4.7.2. More detailed info about calculation of other functionals
may be found in many references, such as Barthelmes (2009) and Bucha and Janák (2013). After
computation of functionals, validation is done following procedure in section 4.8. Validation of
GGMs and gravimetric geoid models coincide. Input data for analysis are differences (residuals)
between gravimetric or GNSS/levelling points as control (reference) and functionals NGGM and
∆gGGM that are computed using simple relations:

δN = δNGNSS/lev.-GGM = NGNSS/lev.−NGGM,

δg = δggrav. point-GGM = ∆ggrav. point−∆gGGM,
(5.1)

for all available points. Note that δ symbol stands for difference between two datasets, whereas
∆ symbol usually for gravity anomaly.

A list of selected GGMs for validation is shown in table 5.6. They are selected by three
criteria:

1. recently published (not older than 15-20 years),
2. satellite-only (e.g. GOCE, GRACE) and combination satellite-terrestrial-altimetry data

GGMs (e.g. EGM2008),
3. have the best agreement on GNSS/levelling data on several areas of the world according

to the GFZ 2017a validation.
Models are downloaded from the website of ICGEM (GFZ 2017a). More details about develop-
ment of selected models may be found in the references given in table 5.6.

In the following subsections, validation is done in several steps:
• statistical analysis of the differences δN and δg computed with maximal degree of expan-

sion nmax without and with using fitting parametric models,
• graphical analysis of the differences δN and δg computed with maximal degree of ex-

pansion nmax as a function of different variables (e.g. geodetic latitude or simple Bouguer
anomaly),

• graphical analysis of δN and δg RMS as a function of the maximal degree of expansion
nmax, where nmax values are provisionally selected values from 50, 100, ..., 2190.
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Table 5.6: A list of the validated GGMs. Sorted descending by the publishing year (source: GFZ 2017a).

no. Model Year nmax Data source Reference

1 XGM2016 2017 719 S, G, A Pail et al. 2016
2 Tongji-Grace02s 2017 180 S Chen et al. (2016)
3 NULP-02s 2017 250 S Marchenko et al. (2017)
4 HUST-Grace2016s 2017 160 S Zhou et al. (2016)
5 ITU-GRACE16 2016 180 S Akyilmaz et al. (2016b)
6 eigen-6s4 2016 300 S Förste et al. (2015)
7 ITU-GGC16 2016 280 S Akyilmaz et al. (2016a)
8 goco05c 2016 720 S, G, A Fecher et al. (2015)
9 goco05s 2015 280 S Mayer-Guerr (2015)
10 GECO 2015 2190 S, G, A Gilardoni et al. (2016)
11 ggm05c 2015 360 S, G, A Ries et al. (2016)
12 eigen-6c4 2014 2190 S, G, A Förste et al. (2014)
13 itsg-grace2014s 2014 200 S Mayer-Gürr et al. (2014)
14 go-cons-gcf-2-tim-r5 2014 280 S Brockmann et al. (2014)
15 gif48 2011 360 S, G, A Ries et al. (2011)
16 egm2008 2008 2190 S, G, A Pavlis et al. (2008), Pavlis et al. (2012)
17 egm96 1996 360 S, G, A Lemoine et al. (1998)

S: satellite, G: gravity, A: altimetry data

It should be emphasized here that solutions with the smallest RMS are selected for each
tested GGM in tables 5.7 and 5.9. Therefore nmax column in these tables does not necessar-
ily correspond to the actual maximal degree of expansion of GGM. For example, in table 5.7
smallest RMS for EGM2008 was found for nmax = 1900 and not for 2190 which is its maximal
degree.

5.4.1.1 Validation on GNSS/levelling points

Statistical comparison of the differences between GNSS/levelling points and undulations com-
puted from GGM is given in table 5.7. EGM2008 resulted in the smallest RMS, followed by
EIGEN-6C4, GECO and XGM2016. These are all GGMs created from combined-data. For
the no-fit solution of the EGM2008 standard deviation of 4.8 cm, which is even comparable
to regional geoid model solutions in some parts of the world. Mean error of 4.9 cm indi-
cates existence of bias between GGM and GNSS/levelling. Mean error is eliminated in the
fitting procedure 5.7, right. When third (3rd) polynomial fitting parametric model is used the
bias is completely eliminated whereas standard deviation is decreased; EGM2008 agrees with
the GNSS/levelling without mean value and with standard deviation of 4.3 cm. Except for
EGM2008, in all other GGMs, the mean error is almost eliminated (less than 1 cm), and stan-
dard deviation decreases for more than 3 centimeters.

From satellite-only GGMs models, ITU-GGC16 results in the best agreement by RMS of
24.4 cm, followed by go-cons-gcf-2-tim-r5 with RMS of 24.8 cm. The difference between the
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Table 5.7: Statistics of geoid undulation differences δNGNSS/lev.−GGM for validated GGMs. Fitting parametric
model: no fit (left) and 3rdpoly (right), sorted by RMS, units: [cm].

GGM nmax min max range mean st. dev. rms

egm2008 1900 -12.5 23.6 36.1 4.9 4.8 6.9
eigen-6c4 1700 -8.6 29.7 38.3 6.6 4.7 8.1

geco 2100 -6.4 22.0 28.4 6.7 5.1 8.4
XGM2016 650 -20.8 41.5 62.3 6.6 8.8 10.9
goco05c 700 -20.2 41.1 61.3 7.1 8.4 11.0

gif48 360 -39.8 63.4 103.2 6.1 17.1 18.2
ggm05c 350 -32.6 62.0 94.6 7.0 17.7 19.0

ITU-GGC16 260 -61.0 77.6 138.6 6.4 23.6 24.4
go-cons-gcf-2-tim-r5 260 -62.2 76.1 138.3 5.7 24.1 24.8

goco05s 260 -61.6 78.5 140.1 6.8 24.4 25.3
NULP-02s 220 -75.5 84.8 160.3 6.5 24.9 25.7

eigen-6s4-v2 270 -60.3 77.5 137.8 7.0 25.0 26.0
egm96 360 -92.3 99.8 192.1 -23.2 24.9 34.0

Tongji-Grace02s 170 -99.7 96.5 196.2 3.0 35.4 35.5
ITSG-Grace2014s 180 -101.1 112.4 213.5 -2.8 36.9 37.0
HUST-Grace2016s 160 -112.4 140.0 252.4 11.0 37.1 38.7

ITU-GRACE16 150 -123.5 168.8 292.3 2.0 44.9 45.0

GGM nmax min max range mean st. dev. rms

egm2008 1900 -16.8 17.5 34.3 -0.1 4.3 4.3
eigen-6c4 1700 -18.5 20.1 38.6 0.1 4.4 4.4

geco 2100 -14.8 18.5 33.3 -0.4 4.9 4.9
XGM2016 650 -28.4 37.2 65.5 -0.4 8.8 8.8
goco05c 700 -28.2 33.9 62.1 0.2 8.4 8.4

gif48 360 -45.8 58.7 104.5 -0.1 15.5 15.5
ggm05c 350 -45.4 63.8 109.2 0.3 16.6 16.6

ITU-GGC16 260 -53.9 75.8 129.7 -0.5 21.0 21.0
go-cons-gcf-2-tim-r5 260 -52.5 74.3 126.8 0.5 21.7 21.7

goco05s 260 -53.9 73.1 127.0 -0.4 21.8 21.8
NULP-02s 220 -92.6 78.1 170.7 -0.8 23.0 23.0

eigen-6s4-v2 270 -55.8 77.2 133.0 -0.7 22.7 22.7
egm96 360 -54.9 77.3 132.1 -0.2 17.6 17.6

Tongji-Grace02s 170 -94.5 69.0 163.4 -0.4 22.3 22.3
ITSG-Grace2014s 180 -93.1 74.9 168.0 -0.5 22.7 22.7
HUST-Grace2016s 160 -90.5 75.5 166.0 1.0 24.7 24.7

ITU-GRACE16 150 -81.1 108.7 189.7 -0.7 28.8 28.7

best satellite-only solution ITU-GGC16 and best combined data solution EGM2008 is almost 20
cm. This is an omission error of the much smaller nmax for the satellite-only GGM. Satellite-only
models derived from GOCE and GRACE missions or those computed only from GOCE satellite
mission agree more closely with terrestrial data than GRACE-only GGMs.
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(a) orthometric height H (b) geoid undulation N

(c) geodetic latitude ϕ (d) geodetic longitude λ

(e) quasi-geoid to geoid correction (ζ to N) (f) free-air anomaly (∆gFA)

(g) simple Bouguer anomaly (∆gBA)

Figure 5.10: Geoid undulation differences (δN = NGNSS/lev.−NGGM) as a function of different variables.
EGM2008, nmax = 2190



102 5.4. GLOBAL GEOPOTENTIAL MODELS

Figure 5.11: Gridded geoid undulation differences δN = NGNSS/lev.−NGGM , EGM2008, no fit, nmax = 2190

Geoid undulation differences δN as a function of different variables are shown in figure
5.10. On the subfigure a differences δN start to increase for points when orthometric height
is larger 300 m. There are very few GNSS/levelling points which are situated in mountainous
areas; only around 40 points from the original dataset of 495 points have elevations higher than
300 m making it harder to make reliable validation of GGMs (and gravimetric geoid models)
in mountainous. The dispersion of differences for elevations from 0 to 30 m which are situated
along the coast, suggest discrepancies in quality of GGM in the near-coastal zones. If geoid un-
dulation differences δN are analysed as a function of N in subfigure b, it is seen that differences
have large negative values of around -10 cm for N around 41 m. For increasing N, differences
∆N start to increase values and change sign to positive. The reason is that probably geoid surface
computed from GGM is inclined (tilted) in some direction. Several areas can be detected with
larger differences than points in surrounding from the subfigures c and d. E.g. few points with
latitude and longitude ϕ ≈ 42.5◦ and λ ≈ 18◦. Subfigure e shows no evident correlation be-
tween quasi-geoid to geoid correction with differences δN. Subfigures f and g show that larger
differences may be expected in the areas where larger free-air and Bouguer anomalies exist.

Gridded geoid undulation differences δN over the territory of Croatia are shown in figure
5.11. Only 495 point values were used which are not homogeneously distributed over the study
are, so reliability is questionable in some areas where only few points are used for gridding. Few
areas exist where systematic bias exists between EGM2008, especially in the continental central
area of the Croatia where positive differences are larger than 10 cm. Other than this, near-coastal
area in the northern Adriatic have negative values less than -10 cm.

Statistics of the differences δN computed using different fitting parametric models are shown
in table 5.8 for egm2008 with nmax = 1900 which is the solution that resulted in the smallest
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Table 5.8: Statistics of differences δNGNSS/lev.−GGM using different fitting parametric models. Units: [cm].

fit model min max range mean st. dev.

nofit -12.5 23.6 36.1 4.9 4.8
bias -17.5 18.7 36.3 -0.2 4.9

linear -17.7 17.1 34.8 -0.1 4.4
2ndpoly -18.3 18.1 36.4 -0.2 4.3
3rdpoly -16.8 17.5 34.3 -0.1 4.3

3pfit -17.7 17.1 34.8 -0.1 4.4
4pfit -17.9 18.3 36.3 -0.2 4.3
5pfit -18.3 18.0 36.3 -0.2 4.3
7pfit -17.4 17.9 35.3 -0.2 4.3

RMS compared to gravity points (see, table 5.7). Differences δN have mean error of 4.9 cm for
no-fitting. The bias between GNSS/levelling and GGM is removed even with the simplest para-
metric models, such as with bias or linear fitting parametric model. More complex parametric
models do not improve agreement more than few centimeters by means of standard deviation.
For example 3rd polynomial fitting model results in standard deviation of 4.0 cm, while bias
parametric model is 4.5 cm.

5.4.1.2 Validation on gravity points

Statistical comparison of the differences between point gravity anomalies and gravity anomalies
computed from GGM is given in tables 5.9. Sorted by the RMS, the order of GGMs is nearly
similar as in comparison of GNSS/levelling data with GGMs in table 5.7; GGMs which agree
the best with GNSS/levelling, mostly agree the best with gravity data.

Table 5.9: Statistics of gravity anomaly differences δg = ∆ggravim.point −∆gGGM for validated GGMs. Fitting
parametric model: nofit and 3rdpoly, sorted by RMS, units: [mGal].

GGM nmax min max range mean st. dev. rms

eigen-6c4 2190 -150.9 76.1 227.0 -5.8 18.2 19.1
geco 2190 -138.7 73.1 211.8 -6.2 18.2 19.2

egm2008 2050 -151.9 72.8 224.7 -5.9 18.7 19.6
XGM2016 650 -187.8 134.7 322.5 -7.3 24.4 25.4
goco05c 700 -186.7 139.0 325.6 -7.0 24.7 25.7
egm96 340 -149.9 136.0 285.9 -8.5 26.5 27.8
gif48 350 -165.5 104.0 269.5 -7.5 27.0 28.0

ggm05c 360 -167.8 154.2 322.0 -7.9 27.3 28.4
ITU-GGC16 230 -168.0 112.8 280.8 -7.3 28.4 29.4

go-cons-gcf-2-tim-r5 260 -179.1 169.8 348.9 -7.9 28.4 29.4
NULP-02s 230 -169.8 110.2 280.1 -7.9 28.6 29.6
goco05s 280 -183.5 112.9 296.4 -7.1 28.8 29.7

eigen-6s4-v2 210 -166.2 167.6 333.8 -7.4 28.9 29.9
HUST-Grace2016s 160 -143.5 127.8 271.4 -6.0 29.3 29.9
ITSG-Grace2014s 170 -146.8 119.6 266.4 -7.0 29.2 30.1
ITU-GRACE16 150 -141.7 121.8 263.5 -5.9 30.0 30.6
Tongji-Grace02s 160 -143.3 115.5 258.9 -5.8 30.0 30.6

GGM nmax min max range mean st. dev. rms

eigen-6c4 2190 -131.5 114.3 245.8 0.3 16.5 16.5
geco 2190 -110.5 107.7 218.2 -0.3 16.3 16.3

egm2008 2050 -133.2 104.2 237.4 0.1 16.7 16.7
XGM2016 650 -135.6 145.2 280.8 0.1 22.4 22.4
goco05c 700 -136.0 140.3 276.2 0.3 22.6 22.6
egm96 340 -140.1 146.2 286.3 0.2 25.4 25.4
gif48 350 -153.6 154.2 307.8 0.0 25.2 25.2

ggm05c 360 -130.7 156.8 287.5 -0.4 25.4 25.4
ITU-GGC16 230 -127.6 152.0 279.6 0.5 26.9 26.9

go-cons-gcf-2-tim-r5 260 -123.0 172.8 295.7 -0.1 26.5 26.5
NULP-02s 230 -137.7 134.3 272.0 -0.5 26.9 26.9
goco05s 280 -132.0 140.7 272.8 0.5 27.1 27.1

eigen-6s4-v2 210 -138.7 169.6 308.3 -0.1 27.0 27.0
HUST-Grace2016s 160 -132.5 142.7 275.2 0.3 28.2 28.2
ITSG-Grace2014s 170 -136.6 155.4 292.0 -0.7 27.7 27.7
ITU-GRACE16 150 -129.7 131.0 260.7 0.5 28.9 28.9
Tongji-Grace02s 160 -134.6 124.7 259.3 0.2 28.8 28.8

EIGEN-6c4 agrees the best with point gravimetric data with standard deviation of 18.2 and
mean -5.8 mGal. GECO and EGM2008 are almost the same to EIGEN-6c4. The best satellite-
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only GGM are ITU-GGC16 and go-cons-gcf-2-tim-r5 being almost the same with RMS of 29.4
mGal. In all models mean error has negative values, which means GGM models systematically
overestimate real gravity values. This is an error of long-wavelength character.

After using 3rd polynomial fitting parametric model mean error is completely removed from
differences. Standard deviation is reduced for around 2 mGal, which is only 10% of the com-
plete gravity anomaly value. Otherwise, a drawback of this comparison is that high-frequency
signal contained in gravity anomaly is ignored; free-air anomalies contain topographic signal
and masks real differences between gravimetric dataset and GGM.

Gravity anomaly differences δg as a function of different variables are shown in figure 5.12.
Differences δg increase visible with increase of orthometric height (subfigure a). Most of the
points are located below height of 1000 m, so these areas should be densified with increase reli-
ability. From subfigure b it can be seen that differences are starting to increase with increase of
N above 46 m. For the geoid undulations of 50 m differences have highest values. Dependency
of differences from latitude and longitude (subfigures c and d) reveal larger discrepancies in the
areas around ϕ ≈ 47◦ and λ ≈ 13◦ with values of more than -50 mGal. From subfigures e, f, g,
h as a general rule it follows that if gravity anomaly is larger, the differences or disagreement
of the gravimetric point data with GGM will increase. Large gravity anomalies are found in the
mountainous areas of the Alps at the north-western part and Dinarides at the south-central part
of the study area. In these areas δg values are also larger than in low terrain areas.

Gridded gravity anomaly differences δg over the territory of Croatia are shown in figure
5.13. Over the continental part of Croatia differences are rarely larger than 20 mGal. How-
ever, for the Alpian area, and mountainous areas in Bosnia and Herzegovina differences have
strong negative values of more than -30 mGal. If there were GNSS/levelling data for these ar-
eas, such differences would probably show up also in gridded geoid undulation differences, if
we had points for testing. This can be explained with the lack of reliable the data in the moun-
tainous areas and not inclusion of terrain and RTM effects in computation of ∆gGGM. Over the
whole Adriatic sea area, differences are smaller compared to the continental area with values
of few mGal. It has to be noted that Croatian gravity database was included in 5′× 5′ gravity
anomaly grid used for creation of EGM2008 (and EIGEN-6c4), so good agreement in terms of
δg differences are probably due to the equality in input data.

Statistics of the differences δg computed using different fitting parametric models are shown
in table 5.10 for eigen-6c4 with nmax = 2190 which is the solution that resulted in the smallest
RMS compared to gravity points (see, table 5.9). Such analysis not standard in a literature but
can provide insights in propagation of errors. Mean error is -6.2 mGal with standard deviation
of 18.2 mGal for no fitting. After elimination of the bias in all parametric models standard
deviation decreases for around 2 mGal.

5.4.1.3 Validation with varying maximal degree of expansion

Here graphical analysis of the statistics of the differences between gravity anomaly and GNSS/lev-
elling as reference data and GGM as validated data is performed. Input data for this analysis
are differences computed by equation 5.1, where NGGM and ∆gGGM are computed for different
nmax=5, 10, 15, ..., 100, 150, 200, ..., 500, 2000, 2190. Mean and standard deviations are com-
puted and visualized with all point differences for each computed nmax. As GGMs based on
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Table 5.10: Statistics of differences δggrav. point−GGM using different fitting parametric models. Model: GECO.
Units: [mGal].

fit model min max range mean st. dev.

nofit -138.7 73.1 211.8 -6.2 18.2
bias -132.8 79.0 211.8 -0.2 18.2

linear -125.9 78.3 204.2 -0.2 17.9
2ndpoly -115.4 89.6 205.0 -0.4 16.9
3rdpoly -110.5 107.7 218.2 -0.3 16.3

3pfit -126.2 78.2 204.4 -0.2 17.9
4pfit -120.9 81.5 202.4 -0.3 17.8
5pfit -121.1 81.8 202.9 -0.3 17.8
7pfit -112.6 96.2 208.8 -0.3 16.7

satellite-only data (e.g. GOCO05s) and those from combined data (e.g. EGM2008) might have
large differences the figures are done separately for satellite-only and combined GGMs. Except
this, not all GGMs are visualized but only those that showed better agreement with GNSS/lev-
elling and gravity data according to the results in tables 5.7 and 5.9.

Statistical measures mean and standard deviation derived from the differences for satellite-
only GGMs are shown in figures 5.14. EGM2008 is also included in figure as a reference
solution. In terms of geoid undulation differences, all GGMs show similar trends with changing
nmax. Generally, there is no GGM which gives consistently lower mean and standard deviation
for all computed maximal degrees nmax.

Mean of δN for nmax from 30 to 100 show fluctuations from almost -60 cm to 60 cm. For
nmax > 150 mean error for all GGMs stabilizes around values from 5 to 10 cm. It is smallest
for nmax = 175. Generally, NULP-02s have smallest mean error. Standard deviation of δN, as
opposite to mean value, decreases for increasing maximal degree. For maximal degree around
250 standard deviation is smallest compared to all other degrees and has values of around 20 to
22 cm.

Mean of δg for nmax from 30 to 100 changes from around -11 to -6 mGal. For nmax > 200
mean values has values of around -7.5 mGal. Standard deviation of differences δg decreases
with increasing nmax.

It is interesting that for both mean and standard deviation and differences δN and δg and all
GGMs for different nmax have similar trend.
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(a) Mean of δN = NGNSS/lev.−NGGM
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(b) St. dev. of δN = NGNSS/lev.−NGGM
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(c) Mean of δg = ∆ggrav.point −∆gGGM
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(d) St. dev. of δg = ∆ggrav.point −∆gGGM

Figure 5.14: Statistics of the differences between gravity and GNSS/levelling data, and GGM models as a function
of maximal degree of expansion. For 30 < nmax < 300. Fitting parametric model: nofit.

Statistical measures mean and standard deviation derived from the differences for combined
GGMs are shown in figures 5.15. Results are given only for nmax 200 to 2190, as this part of the
spectrum comes from the non-satellite data. Some differences between combined GGMs are in
satellite-part of the spectrum, from nmax 200 to 360. Considering mean value of geoid undulation
differences δN, EGM2008 has the smallest values. However, it is unexpected that mean value
is larger for increase of nmax. For example, mean values for EGM2008 nmax = 250 mean value
is around 2.3 cm, while for 2190 it is more than 5 cm. This means that systematic bias between
GNSS/levelling and GGMs increase after nmax=360 as terrestrial gravimetric data for computa-
tion of the GGM. Contrary to mean value, standard deviation of δN decreases with increasing
maximal degree of expansion. EIGEN-6C4 has consistently smallest standard deviation of all
GGMs and nmax. For nmax = 2190 standard deviation of EIGEN-6C4 is 4.3 cm.

For statistical measures of the gravity anomaly differences δg, with increasing maximal
degree both mean and standard deviation decrease. EIGEN-6C4, EGM2008 and GECO are for
the most part of the spectrum very similar in terms of gravity anomalies. From nmax 300 to 2190
mean value is decreased from around -8 to -6 mGal, whereas standard deviation from 28 to less
than 19 mGal.
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(a) Mean of δN = NGNSS/lev.−NGGM
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(b) St. dev. of δN = NGNSS/lev.−NGGM
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(c) Mean of δg = ∆ggrav.point −∆gGGM
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(d) St. dev. of δg = ∆ggrav.point −∆gGGM

Figure 5.15: Statistics of the differences (residuals) between gravity and GNSS/levelling data, and GGM models as
a function of maximal degree of expansion. For 200 < nmax < 2190. Fitting parametric model: nofit.

5.4.1.4 Review

Based on the obtained results following conclusion may be drawn: EGM2008 and eigen-6c4
for the combined GGMs, and ITU-GGC16 and go-cons-gcf-2-tim-r5 for satellite-only GGMs
should be used for Croatian area. EGM2008 shows better agreement for geoid undulations,
whereas eigen-6c4 for gravity data.
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(a) orthometric height H (b) geoid undulation (N)

(c) geodetic latitude ϕ (d) geodetic longitude λ

(e) free-air gravity anomaly (∆gFA) (f) terrain correction (TC)

(g) simple Bouguer anomaly (∆gBAs ) (h) complete Bouguer anomaly (∆gBAc )

Figure 5.12: Gravity anomaly differences (δg = ∆ggrav.point −∆gGGM) as a function of different variables.
EGM2008, nmax = 2190.
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Figure 5.13: Gravity (free-air) anomaly differences δg = ∆ggrav.point −∆gGGM , EGM2008, no fit, nmax = 2190
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5.5 Digital elevation models

DEMs describe Earth’s topography surface and may be either: I) digital terrain model (DTM)
which represent surface with vegetation, land cover and built features, or II) digital surface model
(DSM) that represent bare Earth’s surface without any objects (see, figure 5.16). Although both
types of models are applied in geosciences, DSMs are mostly available and used, as the process
of DTMs development is much more complex.

digital suface model (DSM)

digital terrain model (DTM)

Figure 5.16: Digital elevation model (DEM) can be either digital surface model (DSM) or digital terrain model
(DTM) (after LINK)
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Figure 5.17: DEM referenced to planar (left) and geographic coordinate (right) systems (after Kuhn 2000)

DEMs are created from different types of data, such as photogrammetric, interferometric,
ground and laser surveying, and other types of data. DEMs can be distributed in either vector
(TIN) or raster (grid) format. Grid may be planar- referenced in map projection, or geographic-
referenced to sphere (figure 5.17). DEMs coverage can seize from local or national areas to
global. If no DEM exist for a country, as it is the case in Croatia, one of the options is to use
available global DEMs. They are represented in the form of georeferenced grid with equally
spaced points. Major breakthrough in both detailedness and accuracy of the global DEMs came
as a result of SRTM and ASTER missions back in years 2000 and 2011 (Yamaguchi et al. 1998,
Farr et al. 2007, Abrams et al. 2015). They are nowadays freely available in resolution up to
1′′, which means that elevation in our areas is available for every 30 m. Example of topography

https://commons.wikimedia.org/w/index.php?curid=44279694
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worldwide according to the ETOPO1 GDEM is vizualised in figure 5.18a, and over the Croatian
territory according to the SRTM15 GDEM in figure 5.18b.

(a) ETOPO1 GDEM worldwide

(b) SRTM15 GDEM over the wider territory of the Republic of Croatia

Figure 5.18: Earth’s topography surface represented by two GDEMs

Evaluation of the accuracy of global DEMs is an on-going research topic with many pub-
lished studies in the past few years. Each GDEM needs to be evaluated for a particular study
area as accuracy may vary by more than 10 m compared to global estimates of the DEMs ac-
curacy (Farr et al. 2007). The most recent analysis’ of the vertical accuracy of GDEMs over
Croatian area is in Bašić and Buble (2007), Varga and Bašić (2013),Varga and Bašić (2015)
and Bjelotomić (2015). Most oftenly used GDEMs were used in these studies, including dif-
ferent versions of SRTM GDEMs (SRTM1, SRTM3, SRTM15, SRTM30), ASTER GDEM,
GTOPO30, ETOPO1, ACE2, GMTED2010, etc. Bašić and Buble (2007) tested SRTM GDEM
version 2 over Croatia with the benchmark set and found a standard deviation of 27.5 m. Varga
and Bašić (2013) inspected grid differences between DEMs and found the best agreement be-
tween the ASTER, SRTM (CGIAR-CSI, version 4.1), ACE2, and GMTED2010 models, where
the smallest percentage of absolute values of differences is over 20 m, indicating the lower pres-
ence of major errors in those models. However, differences between the global DEMs indicated
the obvious and potentially significant presence of outliers in all models. According to Varga
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Table 5.11: Basic characteristics of global digital elevation models selected for geoid modelling

Model Institutions Reference Web
page

Download DSM,
DTM

Coverage Resolution Datum

ETOPO1 NOAA Amante
and Eakins
(2009)

[4] [2] DSM World,
bathymetry

1′ WGS84,
MSL

GTOPO30 USGS [5] [2] DTM World,
bathymetry

30′′ WGS84,
MSL

SRTM1 Arc-Second Global NASA,
NGA, JPL

[6] [2] DSM World 1′′

WGS84, EGM96
SRTM Void Filled NASA,

NGA, JPL
[7] [2] DSM World 3′′

SRTM15 JPL Smith and
Sandwell
(1997)

[8] DSM World 15′′

SRTM30+ JPL Becker et al.
(2009)

[9] DSM World 30′′

ASTER NASA,
NGA, METI

JPL (2017) [10] [2] DSM World 1′′ WGS84,
MSL

[1] Amante and Eakins (2009), [2] USGS (2017a) , [3] Farr et al. (2007), [4] NOAA (2017), [5] USGS (2017b), [6] USGS

(2017c), [7] USGS (2017d), [8] USGS (2017e), [9] UCSD (2017), [10] JPL (2017)

and Bašić 2015, mean values and standard deviation of the differences between levelling bench-
marks as reference data and heights interpolated from evaluated DEMS, high-resolution model
SRTM3 showed to be the most accurate with 0.2±3.8 m, followed by ACE2 0.4±4.5 m, ASTER
-1.7±7.1 m (table 5.12). All DEMs have worse accuracy in the mountainous and forest areas,
whereas in flat and bare-lands SRTM and ASTER GDEMs are usually accurate within 3 m.

Basic characteristics of the GDEMs used in this thesis are shown in table 5.11. For more
information, readers should check references and links given in table.

From the perspective of application of DEMs in geoid determinations, they represent a data
source for modelling of the high frequencies (short wavelength) of the gravity signal and are
used in all equations related to the computation of the topographic effects in gravity reductions
for both RCR and KTH geoid determination approaches. Only one DEM is used in computations
by KTH approach, whereas in RCR approach three different models have to be prepared from
the initial DEM: fine, coarse and reference. Fine DEM is used for calculation of effects in the
nearest surrounding of the point (up to 20 km), coarse for far terrain effects (up to around 200
km), while reference (mean) DEM is used in calculation of RTM effects, as the approximation
of long-wavelength gravity field after subtraction of GGM effects. Geographic limits of these
DEMs are shown in figure 5.19.

5.6 Crustal density models

Gravity data (terrestrial, shipborne, airborne), global geopotential models and digital elevation
models have been standard data in regional gravity field modelling and geoid determination.
Three parameters, including crustal density (ρc), mantle density (ρm) and Moho depths T , are
relevant. More specifically, these three parameters are used in the RCR and KTH approaches for
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initial DEM
fine DEM
coarse DEM
reference DEM

Figure 5.19: Geographic limits of the fine, coarse, and reference DEMs in the RCR approach geoid determination

gravity reduction and topographic effects on gravity anomalies and geoid undulations.
Traditionally, constant values have been used for all of these three parameters. However,

constant values are somewhat rough approximation of reality therefore crustal models are pos-
sibly used in modelling. Crustal models may be two (2D) or three (3D) dimensional. For each
location on some study area, two dimensional crustal models provide one value, while three
dimensional crustal models provide several values, depending on the number of layers. Two-
dimensional crustal models are also known as surface or lateral models, usually given as a list
or grid with three quantities; two positional (ϕ,λ ) and one parameter (e.g. crustal density). 2D
crustal models have only one- surface - layer in vertical dimension, while 3D crustal model have
multiple layers. Each layer corresponds to particular part of the crustal structure. For example,
EPcrust model for each location provides values for three layers: sediments, upper crust and
lower crust.

There are two possibilities regarding the selection of the crustal models. One can choose
between using existing crustal models or creating new models from available data. Several
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Table 5.12: Vertical accuracy of GDEMs across Croatia (Varga and Bašić 2015). Units: [m].

GDEM min max mean rms

ETOPO1 -95 105 9.7 27.6
GTOPO30 -82 83 3.7 21.6
SRTM30+ -82 84 6.3 21.3

GMTED2010 -29 31 1.2 7.4
ACE2 -17 18 0.4 4.5
SRTM -17 17 0.2 3.8

ASTER -26 27 -1.7 7.1

Table 5.13: The main properties of used 3D crustal models

model parameter layers coverage
resolu-
tion

reference

CRUST1.0
Moho,Vs,
Vp, ρ

water, ice, upper sedim, middle
sedim, lower sedim, upper
crust, middle crust, lower crust

world 1◦ Laske et al. (2013b),
Laske et al. (2013a)

EPcrust Vs, Vp, ρ
sediments, upper crust, lower
crust

Europe 30′
Molinari and Morelli
(2011a), Molinari and
Morelli (2011b)

existing global or regional crustal models are available, although their coarse resolution is a
major drawback in its implementation in geoid determination. Except this, if user does not
have geophysical data for validation, which is usually a case, reliability of these models are not
verified. The second possibility is to create a model based on from the available data by using
some inversion algorithm or hypothesis’ with constraining parameters. Development of the 3D
crustal model is complex and demanding both from theoretical and practical point of views.
First, many types of data, such as geological, geophysical and geodetic, have to be collected
and combined together. Second, inversion procedures by itself are known to be ill-conditioned
resulting in unreal and uninterpretable values. Although 2D crustal models are not as realistic
as 3D, their development is simpler (as in section 4.4).

Two existing 3D models, and three types of newly-created 2D models are used in this thesis.
Global 3D models CRUST1.0 and EPcrust are used for calculation in this thesis. Their main
properties are listed in table 5.13 and shown in figures 5.20 and 5.21.

Global crustal model CRUST1.0 was developed in 2013 from different seismic databases
(surface waves, free oscillation, body wave travel times). It consists from the eight layers: water,
ice, 3-layer sediment cover and upper, middle and lower crystalline crust (see, Tenzer et al.
2015). In addition with these eight layers sediment and crustal thickness is available. Shear wave
velocity (Vs), pressure wave velocity (Vp) and density (ρ) is given for each layer. It is distributed
in 1◦resolution. In each 1-degree cell, boundary depth, compressional and shear velocity as well
as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower
crystalline crust. The principal crustal types are adopted from CRUST5.1 (Mooney et al. 1996)
and CRUST2.0 (Bassin 2000, Naliboff et al. 2012, Bagherbandi and Sjöberg 2012, Reguzzoni
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(a) density ρ

(b) thickness (Moho depths)

Figure 5.20: Density and thickness models according to CRUST1

et al. 2013).
EPcrust is a crustal model for the European continent in the 0.5◦resolution. It was compiled

in 2011 from different data sources such as CRUST2.0 (Bassin 2000), EuCRUST-07 (Tesauro
et al. 2008), ESC Moho (Grad et al. 2009), ETOPO1 (Amante and Eakins 2009), etc. The
crust is described by three layers, sediments, upper crust and lower crust, with three parameters,
isotropic P- and S- wave velocities and crustal density (more in Molinari and Morelli 2011a).

5.6.1 Development of the crustal density models

Two-dimensional crustal density models are developed using three inversion methods: Airy-
Heiskanen, Pratt-Hayford and Parasnis-Nettleton. Theoretical background of the methods are
described in section 4.4. Input parameters used for development of the methods for all three
inversion methods are given in table 5.14. The values of parameters are selected in order to
obtain various solutions and to observe how the density values is affected by using different
parameters. General objective is to find and select the most realistic crustal density model for the
study area. The main criteria for finding and selection of one solution for each inversion method
from the variety of computed solutions is based on the analysis of statistics obtained from:
a. residual gravity anomalies ∆gFA−GGM−RT M (section 6), and b. developed gravimetric geoid
models using RCR and KTH approaches. The assumption is that the most realistic models results
in the smallest standard deviation and mean value of residual gravity anomalies ∆gFA−GGM−RT M
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(a) density ρ (b) thickness (Moho depths)

Figure 5.21: Crustal model CRUST1: Croatia

Table 5.14: Input parameters for calculation of crustal density models using three inversion methods

Inversion method Equations in section Parameter symbol Input values

Pratt-Hayford 4.4.1
ρ0 2300, 2400, 2500, 2670, 2800, 2900, 3000
D 80, 90, 100, 110, 120, 130, 150

Airy-Heiskanen 4.4.2 ρm 2700, 2800, 2900, 3000, 3100, 3200, 3270, 3400, 3500
T from CRUST1 model

Parasnis-Nettleton 4.4.3 RS 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 2.0
nmax 0, 5, 10, 30, 50, 100, 200, 500

for case a. and differences between GNSS/levelling and geoid undulations δNGNSS/lev.−geoid for
case b. Approximately one hundred crustal density models are developed for the area between
41.0◦N−47.7◦N and 11.9◦E−20.5◦E in 0.083◦(≈ 5′) resolution. Schematic representation of
developed grids of crustal density models grid is shown in figure 5.22. One node (blue circle)
corresponds to the density value ρc of one cell.

In the Airy-Heiskanen inversion method input parameters are mantle density ρm and com-
pensation depth T used in equations 4.7 and 4.8 from section 4.4.2. Different variations models
were developed using ρm values from 2600 to 3500 kgm−3. Values for T were taken from the
crustal thickness layer of the CRUST1 model. In the Pratt-Hayford’s inversion method input pa-
rameters are reference crustal density ρ0 and compensation depth D used in equations 4.5 and 4.6
given in section from 4.4.1. For ρ0 values from 2000 to 3100 kgm−3 and compensation depths
from 80 to 120 km were used. In Parasnis-Nettleton’s inversion method input parameters are
radius search RS and nmax. Radius search RS is a parameter which determines radius in degrees
for selection of the gravity anomalies within each computation cell. Therefore for each cell in a
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centroid of the density cell

Figure 5.22: Schematic representation of the crustal density grid

grid of density model, all point gravity anomalies ∆gFA are selected inside radius RS. Parameter
nmax is a maximal degree of the EGM2008 model where ∆gnmax

GGM term is computed to eliminate
long-wavelength effects from the selected gravity anomalies ∆gFA. These anomalies for each
cell of the density grid model are used in equation 4.10 from section 4.4.3 for computation of
the density ρc.

Developed crustal density models are shown in figure 5.23. Model developed by Pratt-
Hayford’s method indicated small variation in density across the study area; most of the values
are around 2300 kgm−3. Smaller values are shown in the areas of higher mountains (south-
east part). Model developed by Airy-Heiskanen’s method shows larger variability; at the sea
area (south-west part) and lowlands (north-east) crustal density values have values around 3000
kgm−3. In some areas there are evident artificial and granulated density values. In most parts
of the study area, density varies with topography, having smaller values in higher mountains.
Compared to Pratt-Hayford’s model it seems to be much more realistic. Model developed by
Parasnis-Nettleton’s method indicates greatest reliability. It is smoother than P-H and A-H meth-
ods, and has larger range of densities from 1500 to 3500 kgm−3. Its reliability is questionable
over the sea area due to the unknown quality of the satellite-altimetry gravity data.

Differences between models are visualized in figure 5.24, and statistics of the differences
are given in table 5.15. A-H model is largely different from the P-H and P-N models. Mean
difference between P-H and P-N models is -45 kgm−3 which is much smaller than differences
between other two combinations of models. From subfigure c, figure 5.24, differences between
P-H and P-N models are largest in the south central area with values larger than 1500 kgm−3,
and smallest in the low-lands (north-east part).

Overall, Parasnis-Nettleton’s model was selected as the optimal model for the study area,
although the most realistic model would be developed using other geophysical and geological
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Table 5.15: Statistics and differences between developed crustal density models. Units: [kgm−3].

Density min max range mean st. dev.

ρP−H
c 2220 2300 84 2290 13

ρA−H
c 1800 3200 1400 2900 309

ρP−N
c 1090 3640 2540 2330 613

ρP−H
c -ρA−H

c -925 494 1420 -617 300
ρP−H

c -ρP−N
c -1350 1200 2550 -45 610

ρA−H
c -ρP−N

c -835 2010 2840 571 581

data.

5.7 Study area

Study area is the wider territory of the Republic of Croatia shown in figure 5.25. Croatia is
situated in Central to South-East Europe, at the northwestern part of the Balkan Peninsula, and
covers 56.594 km2. It has borders with Slovenia, Hungary, Serbia, Bosnia and Herzegovina and
Montenegro in continent and Italy on the sea.

Geographic borders of the geoid computation are 42.0◦N− 46.5◦N and 13.0◦E − 19.5◦E.
Green line shows borders of the area which cover point gravity anomaly data (described in
section 5.1), red line shows borders of the anomalies grid, and black line shows borders of
computed geoid solutions. Gravity anomalies cover largest area, while grids of anomalies is
slightly smaller to minimize effects of anomaly gridding prior to geoid computations. Geoid
computation area is approximately 1◦smaller than grids of anomalies. Borders shown in figure
are fixed in all computations of geoid models.



CHAPTER 5. DATA, STUDY AREA, AND SOFTWARE 119

(a) Pratt-Hayford ρP−H
c

(b) Airy-Heiskanen ρA−H
c

(c) Parasnis- Nettleton ρP−N
c

Figure 5.23: Crustal density models for the Republic of Croatia
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(a) ρP−H
c -ρA−H

c

(b) ρP−H
c -ρP−N

c

(c) ρA−H
c -ρP−N

c

Figure 5.24: Differences between crustal density models (ρgrid1
c -ρgrid2

c )
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Figure 5.25: Study area
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5.8 Software

Results in this thesis are obtained by using more than two hundred different software routines
written mainly in Fortran, Matlab, and C++. One of the goals of this thesis was to maximally
automatize geoid determination process for both RCR and KTH approaches. Gravsoft, as a well-
known geoid determination package, has Graphical User Interface (GUI) and batchin options,
but it does not allow computation of the geoid in one step starting from input data and models
until the final geoid model along with the evaluated accuracy. Users have to manually define
input data and parameters for each programming routine. Single geoid solution may be obtained
using several different unconnected routines which means that efforts and time are needed. An-
other option is to exploit benefits of batch programming, although one has to manually define
parameters and then start and run several scripts. Anyway, Gravsoft is not suitable in the cases
where large number of geoid solutions have to be computed, or when input models and parame-
ters have to be changed and tested in order to find optimal geoid model solution.

For this purpose, variousconnective scripts have been programmed for modelling, compu-
tational, statistical and visualization tasks. The scripts allow seamless determination of large
number of solutions by combining different input parameters and models. The complete proce-
dure of geoid computation has mean automatized, with all steps from the beginning until end
have been connected through scripts, starting from selection of input models and parameters,
then outliers detection, gridding, geoid computation, accuracy validation and fitting, until vi-
sualization and advanced statistical analysis of solutions. The result is the ability to find the
best possible geoid model on the study area based on available data with minimal or almost no
manual work. A list of all developed routines is given in appendix D in table D.1.

The routines that were the starting point for computations are listed in table 5.16. Global
geopotential model functionals, such as gravity anomalies and geoid undulations, are computed
using Harmsynth and Graflab routines. GRAVSOFT and LSMSSOFT packages were used geoid
determination. Terrain reduction is done with Fortran script TC provided by R. Forsberg and
TC3 routines provided by Mario Brkić. Routines for DWC were used from Huang (2002) and
Goli and Najafi-Alamdari (2011). Stokes’ integration for unmodified and modified kernels is
performed using scripts made by Featherstone (2003) and Ellmann (2005a). Fitting of the gravi-
metric solutions is based on Featherstone (2001) and Daho et al. (2006) routines.

Commercial software, MATLAB and GS Surfer, are ownership of the University of Zagreb.
All other software routines were received from their authors, usually scientists which developed
and published them as part of their own research.
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Table 5.16: A list of the existing software packages and routines used in computations

Software name Authors Reference

Global geopotential model analysis

Harmsynth Holmes S. A., Pavlis, N. K. Holmes et al. 2006
Graflab Bucha, B., Janák, J. Bucha and Janák 2013

Geoid modelling

GRAVSOFT Forsberg, R., Tscherning, C. C. Forsberg and Tscherning 2008
LSMSSOFT Abbak, R. A., Ustun, A. Abbak and Ustun 2015

Analytic Stokes’ integration

Stokes’ kernel modifications Ellmann, A. Ellmann 2005a
Stokes’ kernel modifications Featherstone, W.E. Featherstone 2003

Terrain effects on gravimetric quantities

TC (3D) Brkić, M. Brkić 1994b
DWC Huang, J. Huang 2002
DWC Goli, M., Najafi-Alamdari, M. Goli and Najafi-Alamdari 2011

Gravimetric geoid fitting

ADJGLG Daho, B. Daho et al. 2006
GEOID_TESTER Featherstone, W.E. Featherstone 2001

other (gridding, visualization, statistics)

MATLAB MathWorks MATLAB 2016
Surfer Golden Software Surfer 2016
GGM Bezděk, A., Sebera, J. Bezděk and Sebera 2013
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Chapter 6

Residual gravity field modeling

Gravity measurements contain gravity signal of all spectral wavelengths, from long to short.
Residual gravity field modelling is a procedure when gravity reduction scheme is applied in order
to reduce effects of long or short wavelengths from the gravity measurements. After gravity is
reduced for such effects, it is said that only residual gravity field signal is left. Reduction may
apply to all types of measurement, such as deflections of vertical or geoid undulations, although
gravity anomalies are used most often.

Residual gravity field functionals are used in many tasks, such as: a) input data in RCR
approach, b) interpolation and gridding, c) elimination of outliers and systematic errors from the
dataset, d) derivation of anomaly maps, for example Bouguer or topographic-isostatic anoma-
lies maps. In this chapter, the objective is to remove GGM and RTM contributions and obtain
residual gravity anomalies ∆gFA−GGM−RT M prior to geoid determination. As ∆gFA−GGM−RT M

are used as input data in RCR approach, it is crucial that after reduction they are smooth and
unbiased. Mean value indicate potential biases in data, whereas standard deviation indicates
smoothness or dispersion of the data around the mean value. It is preferable that residual gravity
field quantities have both standard deviation and mean error close to zero. The problem is to find
the best combination of available input data and parameters as there are many different possi-
bilities for their selection. It is not clear which combination of input data and parameters should
be used to obtain residual gravity anomalies which would be used in further computations. For
example, one has to select one GGM among all published GGMs, or decide which resolution of
the reference DEM to use to match maximal degree of expansion nmax of the GGM.

Initial data for residual gravity field modelling are free-air anomalies ∆gFA described in
section 5.1. All other input data are described in chapter 5. List of all tested input data and
parameters for GGM and RTM contribution are given in table 6.1 and table 6.2. ∆gGGM contri-
bution is computed for selected global geopotential models and maximal degrees of expansion.
∆gRT M contribution is computed using digital elevation and crustal models with varying values
of input parameters: crustal density value, resolution of fine, coarse and reference DEM, radius
of integration and DEM gridding method.

More than five thousand solutions of residual gravity anomalies ∆gFA−GGM−RT M are obtained
using variety of combinations of input models and parameters. Results provide detailed insight
on the significance of each model and parameter in modelling of residual gravity field.
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Table 6.1: Input data and parameters for computation of ∆gGGM contribution

Name Acronym Values

Data

Global
geopotential model

GGM

Tongji Grace02s, NULP 02s, HUST Grace2016s,
ITSG Grace2014s, ITU GRACE16, goco05s,

egm96, gif48, geco, goco05c, XGM2016, ggm05c,
EGM2008, eigen 6c4

Parameters

Maximal degree of
expansion

nmax 100, 150, . . . , 700, 2100

Table 6.2: Input data and parameters for computation of ∆gRT M contribution

Name Acronym Values

Data

digital elevation model DEM
SRTM3, SRTM30, GTOPO30,

ETOPO1

digital density model 2D DDM2
Airy-Heiskanen, Pratt-Hayford,

Parasnis-Nettleton, CRUST1 (2D)
digital density model 3D DDM3 CRUST1, EPcrust

Parameters

radius of inner zone
integration

r1 1, 2, 5, 10, 20 [km]

radius of outer zone
integration

r2 0, 10, . . . , 100, 150, 200 [km]

crustal density dimension ρdim constant , 2D or 3D
constant crustal density ρc 2000, 2100, . . . , 3000, 3100 [kgm−3]

resolution of the detailed
DEM DMR f ineres

3, 5, 10, 15, 20 [′′]

resolution of the coarse
DEM DMRcoarseres

10, 20, . . . , 60 [′′]

low-pass filter of the
coarse DEM DMRcoarseLPF

0, 10, . . . , 50 [′′]

resolution of the
reference DEM DMRre fre f

30, 40, . . . , 200, 300, . . . , 3600 [′′]

low-pass filter of the
coarse DEM DMRre fLPF

0, 10, 20, . . . , 200, 300, 400 [′′]
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Figure 6.2: Mean and st. dev. of ∆gFA−GGM−RT M as a function of maximum degree nmax for EGM2008

6.1 Residual gravity anomalies as a function of different parame-
ters or models

Mean value and standard deviation of residual anomalies ∆gFA−GGM−RT M using different global
geopotential models is shown in figure 6.1. Maximum degree nmax is 180 for all selected GGMs.
The differences in residual anomalies are almost the same depending on the used GGM, except
for TongjiGrace02s and EGM96, suggesting that differences between new-generation GGMs
are very small for the selected nmax. Very similar result is obtained in GGM comparison and
validation, see section 5.4.1.2, figures 5.14.
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Figure 6.1: Mean and st. dev. of ∆gFA−GGM−RT M as a function of GGM up to nmax = 250

Mean value and standard deviation of ∆gFA−GGM−RT M using different maximal degrees of
GGM is shown in figure 6.2. EGM2008 was used in this case, with fixed reference DEM res-
olution of approximately 1′. It can be seen that for low degrees of GGM both mean value and
standard deviation have high values. When nmax is increased mean value and standard deviation
of anomalies decrease. In other words, anomalies become smoother and have smaller bias with
larger nmax. For satellite-only part of the GGM (up to nmax = 250) residual anomalies are still
rough (st. dev. 25 mGal) with significant mean value around -3 mGal. Along with the resolution
of the reference DEM (figure 6.5), proper selection of this parameter seem to be one of the most
important in residual gravity field modelling.
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Figure 6.3: Mean and st. dev. of ∆gFA−GGM−RT M as a function of digital elevation model (DEM)
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Figure 6.4: Mean and st. dev. of ∆gFA−GGM−RT M as a function of constant crustal density (ρc)

Mean value and standard deviation of ∆gFA−GGM−RT M using different digital elevation mod-
els is shown in figure 6.3. SRTM3, SRTM15, SRTM30, GTOPO30 and ETOPO1 are used in this
case, while all other input parameters are fixed: EGM2008, nmax = 2190, fine DEM resolution
5′′, reference DEM resolution 30′′, LPF resolution 80′′, ρc=2200 kgm−3. The differences using
different digital elevation models seem to be in the range of 1 mGgal for both mean and standard
deviations. This indicates that differences between digital elevation models when modelling to-
pographic effects are not huge. However, SRTM30 model provides anomalies with smallest
standard deviation.

Mean value and standard deviation of ∆gFA−GGM−RT M using different constant crustal den-
sity values ρc is shown in figure 6.4. Values ρc from 2000 to 3000 kgm−3 are used. Here
mean values of residual anomalies are smallest for ρc = 2650 kgm−3, while standard deviation
is smallest for ρc = 2200 kgm−3. Mean values have linear trend and are increasing when ρc

increases. In both standard deviation and mean values RMS changes around 3 mGal, indicating
the importance of using the most realistic crustal density for the particular study area.

Mean value and standard deviation of ∆gFA−GGM−RT M using different fine DEM resolution
is shown in figure 6.5. Fine DEM is a DEM used for modelling of the nearest (inner) zone effects
of topographic masses. For all tested values from 5′′to 40′′, mean values change between -1.4
and -2.8 mGal, while standard deviation changes between 8.0 and 10.5 mGal. Mean value has
non-expected trend, from 5′′to 20′′it increases their values, than from 30′′to 40′′has completely
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Figure 6.5: Mean and st. dev. of ∆gFA−GGM−RT M as a function of resolution of the fine DEM (res fine DEM)
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Figure 6.6: Mean and st. dev. of ∆gFA−GGM−RT M as a function of resolution of the coarse DEM (res coarse DEM)

another trend. The reason may be in that resolution of the fine DEM should match (fit) with
the resolution of the coarse and reference DEMs. Standard deviation decreases with increase of
DEM fine resolution. Until around 15′′it is very similar around 8.2 mGal, while for resolution
larger than 15′′it starts to increase its values, e.g. for the resolution of 40′′its values is 10.5 mGal.
In any case, the finest resolution of 5′′produces smallest values for both mean and standard
deviation, which means that high-resolution DEM should be used whenever possible.

Mean value and standard deviation of ∆gFA−GGM−RT M using different resolution of the
coarse DEM is shown in figure 6.6. Several values of the resolution of coarse DEM from 5′′to
130′′have been used. The results show both mean and standard deviation are not changing for
more than 0.01 mGal depending on the resolution. Therefore, residual gravity anomalies are not
sensitive to the resolution of the coarse DEM in opposite to their higher change and sensitivity
on the resolution of the fine and reference DEMs (see figures 6.5 and 6.7). Resolution of the
coarse DEM may be chosen arbitrarily in range from 15′′to 60′′and will not affect results. The
reason is that topographic effects in the near zone, represented by the fine DEM, are known to
have much larger impact on residual anomalies than far-zone effects, represented by the coarse
DEM.

Mean value and standard deviation of ∆gFA−GGM−RT M using different resolution of the ref-
erence DEM is shown in figure 6.7. Reference DEM resolution shall match to the resolution
of the used nmax of GGM. Maximal spherical harmonic degree of expansion nmax of the GGM
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Figure 6.7: Mean and st. dev. of ∆gFA−GGM−RT M as a function of resolution of the reference DEM (res ref DEM)
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Figure 6.8: Mean and st. dev. of ∆gFA−GGM−RT M as a function of low pass filter of the reference DEM (LPFref
DEM)

corresponds to the spatial resolution at the Earth’s surface (according to the equation 4.71). It
can be seen that resolution of the reference DEM affects to both mean value and standard devi-
ation for up to 10 mGal. Mean values exponentially decrease, when reference DEM resolution
is increased. Standard deviation of anomalies seem to be smallest for resolution of the reference
DEM around 300′′. This is also related to the nmax of GGM which is 2190 in this case. Finally,
mean and standard deviation of residual anomalies seem to be not related at all, but both have
large changes depending on the resolution of the reference DEM.

Mean value and standard deviation of ∆gFA−GGM−RT M using different resolution of the ref-
erence DEM by low pass filtering is shown in figure 6.8. Modifying resolution of DEM by
low pass filter has the same effect as changing resolution of the reference DEM. Mean values
are changing up to 4 mGal, while standard deviation changes up to 8 mGal for selected values.
Mean values of anomalies are exponentially increasing with increase of the resolution; for val-
ues that are higher than 200′′mean value is less than 1 mGal. Standard deviation seem to be
around 8 mGal for resolution of the reference DEM of 100′′. By increasing resolution standard
deviation also increases.

Mean value and standard deviation of ∆gFA−GGM−RT M using different radiuses of integration
of the inner (near) zone is shown in figure 6.9. Values from 0 to 20 km were selected. It is seen
that both mean values and standard deviation do not change more than 0.1 mGal depending on
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Figure 6.9: Mean and st. dev. of ∆gFA−GGM−RT M as a function of radius of inner zone r1 (r1)
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Figure 6.10: Mean and st. dev. of ∆gFA−GGM−RT M as a function of radius of outer zone r2 (r2)

the radius r1, although probably values less than 5 km should not been selected.
Mean value and standard deviation of ∆gFA−GGM−RT M using different integration radiuses of

the outer (far) zone is shown in figure 6.10. Values from 8 to 80 km were selected. Figures look
the same as for the radius r1. For standard deviation of anomalies it is irrelevant which radius is
chosen, but in case of mean value increase of radius decreases mean value. It seems reasonable
to select values between 10 and 30 km for r2.

Mean value and standard deviation of ∆gFA−GGM−RT M using different gridding methods of
DEMs is shown in figure 6.11. Nearest neighbor, bilinear, bicubic and moving average with
different box sizes are used. Nearest neighbor, bilinear and bicubic method give reasonable
mean value and standard deviation whereas Moving average with box size 3x3 results in smallest
standard deviation.

6.2 Residual gravity anomalies as a function of two different pa-
rameters

Statistical parameters, mean and standard deviation, of residual gravity anomalies as a function
of one parameter are analysed in the previous section. In the same way, statistical parameters
may be analysed as a function of two (or even more) different parameters, as it is the case here.
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Figure 6.11: Mean and st. dev. of ∆gFA−GGM−RT M as a function of gridding method of the digital elevation model
(DEM grid meth)

Figure 6.12: Mean and st. dev. of ∆gFA−GGM−RT M as a function of reference DEM resolution (res ref DEM and
reference DEM low pass filtering (LPF ref DEM). EGM2008, with nmax = 2190. Units: [mGal].

All input parameters are fixed, whereas two input parameters change values. With each pair of
values of two input parameters, residual gravity anomalies are calculated.

From the practical perspective, this is a more realistic case, because in real calculations, two
or more parameters can depend on each other. For example, it is well known that nmax of the
GGM and resolution of the reference DEM have to be changed simultaneously to achieve small
residual anomalies.

Mean and st. dev. of ∆gFA−GGM−RT M as a function of reference DEM resolution (res ref
DEM) and reference DEM low pass filtering (LPF ref DEM) are shown in figure 6.12. Reference
DEM resolution and LPF are reciprocal. If reference DEM resolution is increased reference
DEM LPF has to be decreased in order to have smaller mean and standard deviation. Smallest
residual gravity anomalies are achieved for res. ref. of 400′′and LPF 30′′.

Mean and st. dev. of ∆gFA−GGM−RT M as a function of maximum degree of GGM (nmax)
and reference DEM resolution (res ref DEM) are shown in figure 6.13. The situation is more
complex, because mean and standard deviation have different trends and are not having smallest
values for the same nmax. For increasing nmax resolution of the reference DEM should be around
400′′.

Mean and st. dev. of ∆gFA−GGM−RT M as a function of inner zone radius (r1) and outer zone
radius (r2) are shown in figure 6.14.
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Figure 6.13: Mean and st. dev. of ∆gFA−GGM−RT M as a function of maximum degree of GGM (nmax) and reference
DEM resolution (res ref DEM). Units: [mGal].

Figure 6.14: Mean and st. dev. of ∆gFA−GGM−RT M as a function of inner zone radius (r1) and outer zone radius (r2).
Units: [mGal].
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6.3 Review

The combination of input models and parameters which will provide smallest standard deviation
and mean value is important task prior to geoid determination. These statistical measures largely
depend on several factors: study area, number and quality of gravity anomalies, availability
of the DEMs and crustal models, etc. Up to some point, computation of the most suitable
residual gravity anomalies ∆gFA−GGM−RT M for particular area seems to be trial-error type of
work. However, results in the previous section allow making few generalizations.

The influence of input parameters (from tables 6.1 and 6.2) on residual gravity anomalies
may be divided into general categories. Categories are defined provisionally depending on the
change of mean value and standard deviation as: 1) strong influence: parameter influences mean
value or standard deviation more than 3 mGal; 2) moderate influence: parameter influences
mean value or standard deviation between 1 and 3 mGal; 3) low influence: parameter influences
mean value or standard deviation less than 1 mGal.

Based on the above defined categories it follows that following parameters have:
1. strong influence:

• maximum degree of expansion of GGM,
• resolution of fine DEM,
• resolution of reference DEM,
• low pass filtering of reference DEM,
• crustal density ρc,

2. moderate influence:
• global geopotential model,
• digital elevation model,
• gridding method of digital elevation model,

3. low influence:
• inner zone radius r1,
• outer zone radius r2,
• resolution of coarse DEM.

From the above results few recommendations can be drawn for easier selection of parameters
and models in residual gravity field modelling:

• global geopotential model: satellite only GGM based on GOCE satellite mission for geoid
determination, and EGM2008 for gravity anomaly maps or outlier detection,

• nmax: satellite only GGM from 200 to 250 for geoid determination, combined GGM with
maximal degree (e.g. EGM2008 up to 2190),

• digital elevation model: SRTM3 or SRTM30,
• crustal density ρc: depending of study area; for this study area ρc=2200 kgm−3,
• fine DEM resolution: smaller than 10′′,
• coarse DEM resolution: any value from 10′′to 60′′; lower resolution will increase speed

of computations and will not affect results,
• reference DEM resolution and low pass filtering: depends on the parameter nmax; e.g. for

nmax = 2000 resolution of reference DEM around 300′′. One can choose either to change
resolution or to low pass filter,
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• inner r1 and outer r2 zone: for r1 5 to 10 km, for r2 = 20 km; smaller value r2 decreases
computation time.

• DEM gridding method: moving average with smaller box size (e.g. 3x3), nearest neigh-
bor, bilinear, bicubic.
It must be emphasized that this is a numerical experiment on one study area, and results
may be much different in other areas and input data. However, results are indicative and
can point towards proper treatment of each input model or parameter.
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Chapter 7

KTH geoid

Results of geoid determination over Croatia using KTH approach are presented in this chapter.
The theory of KTH approach is comprehensively explained in section 4.6.
The main objectives of this chapter are the following:

1. Computation of gravimetric and hybrid geoid models using KTH approach.
2. Investigation of geoid model accuracy depending of different constant crustal density val-

ues ρc and surface crustal density models.
3. Investigation of geoid model accuracy all input data, models and parameters.

Table 7.1: Input data and parameters for geoid model determiantion using KTH approach

Data and parameter name Acronym Input values

free air gravity anomalies ∆gFA *gridded gravity database, see section: 5.1

global geopotential model GGM
ITU GRACE16, goco05s,
ITUGGC16, goconsgcf2timr5
egm2008, eigen 6c4

digital elevation model DEM
SRTM3, SRTM15, SRTM30,
GTOPO30, ETOPO1

constant crustal density (1D) ρc 2000, 2100, . . . , 3000 [kgm−3]
density model (2D) DDM2 Airy-Heiskanen, Pratt-Hayford, Parasnis-Nettleton, CRUST1 (2D), EPcrust (2D)

variance of terrestrial gravity anomalies C0 1, 2, 3, . . . , 20 [mgal]
kernel type of stochastic Stokes’ integral v 1: optimum, 2: biased, 3: unbiased
spherical cap size ψ0 0.1, 0.2, . . . , 2.0 [◦]
integration radius of gravity
gradients in DWC

ψDgR 0.1, . . . , 1.0 [◦]

input models (gravity, DEM) resolution inp mod res 0.01, 0.02, . . . , 0.1 [◦]
output geoid resolution geoid res 0.01, 0.02, 0.03, . . . , 0.2 [◦]

gridding method of
digital elevation model

DEM grid meth
nearest neighbour, bilinear,
bicubic, boxN×N for N = 1,2, . . . ,9

gridding method of
gravity anomalies

anmly grid meth
bilinear, cubic, nearest neighour,
Greens’ function approach

Input data and parameters are listed in table 7.1. More details about input data are described
in chapter 5, sections 5.1 and 5.3. Filtered gravity database is used in all computations. Other
used data for computation are GGM and DEM models. Several GGM models which showed
best agreement with GNSS/levelling data are selected (see, 5.4.1). For topographic effects three
SRTM-based DEMs, GTOPO30 and ETOPO1 are used. For crustal density in 1D case different
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constant values from 2000 to 3100 kgm−3 are selected. In 2D case, surface crustal density
models are used; CRUST1 and EPcrust, transformed from 3D to 2D by averaging of layers,
and three additional models created by inversion methods according to the Airy-Heiskanen,
Pratt-Hayford and Parasnis-Nettleton’s models. Parameters in computation of geoid using KTH
approach are: a) variance of terrestrial gravity anomalies C0, b) kernel type of stochastic Stokes’
integral v, c) spherical cap size ψ0, and d) integration radius of gravity gradients ∆gTrr in DWC.
These are crucial parameters in geoid determination by KTH approach, under assumption that
the best possible gravity anomalies, GGM and DEM models are used. Few additional parameters
may also affect solution such as resolution and gridding method of the input data and geoid
model. Several values for geoid grid resolution, from 0.01◦ to 0.2◦, are used in computations.

7.1 HRG2018-KTH: new gravimetric and hybrid geoid models

Around 3000 different geoid solutions are computed as a result of using many combinations
of different input models and parameters. Statistics of the geoid solution that resulted in the
smallest standard deviation when fitted to the GNSS/levelling is given in table 7.2. These mod-
els are named HRG2018-KTH-gra for gravimetric and HRG2018-KTH-hyb for hybrid (fitted)
solution. Gravimetric (no-fit) solution has mean bias of almost -9 dm compared to GNSS/level-
ling. Bias is removed after fitting, while standard deviation is reduced to 3.5 cm. As it was the
case in RCR geoid and GGM validation applying the 3rd polynomial parametric model resulted
in smallest standard deviation when gravimetric geoid is fitted. Seven parametric model showed
very similar results with 3.6 cm.

Table 7.2: Statistics of the geoid undulation differences δNGNSS/lev.−geoid for HRG2018-KTH geoid. Units: [cm].

fit model min max range mean st. dev.

no fit -99.5 -71.4 28.0 -87.3 4.8
bias -12.2 15.7 27.9 0.0 4.8

linear -12.8 13.8 26.6 0.0 4.0
2nd poly -11.0 14.3 25.3 -0.0 3.9
3rd poly -11.9 13.0 24.8 -0.0 3.5

3-p -12.7 13.8 26.5 0.0 4.0
4-p -11.0 14.4 25.4 -0.0 3.9
5-p -10.9 14.5 25.4 -0.0 3.9
7-p -11.5 14.1 25.6 0.0 3.6

The best gravimetric and the best hybrid solutions are selected after ascended sort of all
computed geoid solutions by RMS values. Statistics of them are showed in table 7.3. However,
difference between the best gravimetric and hybrid solution is in several dozens of centimeters
implying that if gravimetric geoid solution has smallest standard deviation, it does not mean it
will also have the smallest standard deviation after fitting to GNSS/levelling. This stands as one
of unresolved problems of the computation with KTH approach. It is completely counterintuitive
that these two solutions differ in mean values by 85 cm and in standard deviations around 27



CHAPTER 7. KTH APPROACH GEOID 139

Table 7.3: Statistics of the gravimetric and hybrid geoid solutions giving smallest RMS compared to
GNSS/levelling. Selected among more than 3000 different solutions. Units: [cm].

selected solution by RMS fitting parametric model min max range mean st. dev.

best gravimetric solution no fit -96 97 193 -3.9 31.8
3rdpoly -90 74 164 1.2 22.9

best hybrid solution
(HRG2018-KTH-gra and
HRG2018-KTH-hyb)

no fit -99 -71 28 -87.3 4.8
3rdpoly -12 13 25 0.0 3.5

cm (no fit rows in table 7.3). Gravimetric geoid which results in the smallest RMS compared
to GNSS/levelling data should also agree well after fitting. Best gravimetric geoid solution has
very small mean error but large standard deviation, while best hybrid (’fitted’) geoid solution
has the opposite, large mean value and small standard deviation. The best gravimetric solution
after fitting does not improve agreement with GNSS/levelling. Even the mean value (bias) is not
completely filtered in fitting procedure. After fitting it still has mean bias of 1.2 cm with standard
deviation of 22.9 cm. Solution with such standard deviation is not reliable and much worse than
the best gravimetric solution computed by RCR approach. It is even worse when compared to
the geoid that could be computed from satellite-only GGM, not to say from the best GGM like
EGM2008. The problem might be in computation of the approximate geoid undulation by the
stochastic modification of the Stokes’ kernel. It is known that hybrid geoid models are used in
practical applications and are fixed to the national or continental MSL based vertical datum.

On figures 7.1 geoid undulation differences are visualized. As it can be seen from the left
figure, the bias is so large that it cannot be visualized with the same scale as after fitting. On
the right figure differences are mostly distributed around zero, without areas with evidently
larger discrepancies. HRG2018-KTH-hyb for the largest part of the Croatian area has smaller
differences than 3 cm. The issue with reliability of gridded δN differences on this figure is that
only 495 GNSS/levelling points were used for the whole study area.
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(a) gravimetric (b) gravimetric after removal of mean -87.3 cm

(c) hybrid

Figure 7.1: Gridded geoid undulation differences δNGNSS/lev.−geoid for gravimetric and hybrid KTH geoid models
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(a) Topographic correction δNtop
comb (b) Atmospheric correction δNatm

(c) Downward Continuation effect δNDWC (d) Ellipsoidal correction δNell

Figure 7.2: Additive correction of on geoid undulation in KTH approach

7.2 Additive corrections

The statistics of approximate geoid undulation and additive corrections are given in table 7.4.
Approximate geoid undulation Ñ has the largest values of all components in KTH approach
ranging from 37.5 to 50.5 m. Topographic correction Ntop

comb has most values around 3 cm with
minimum of -66 cm. This correction reduces all approximated geoid undulations as it has only
negative values. Atmospheric correction δNatm

comb has almost all values smaller than 1 cm. Down-
ward correction δNDWC has strong contribution on the geoid undulation which ranges from -8
cm to 53 cm. Ellipsoidal effect δNell achieves values from -0.2 to 0.2 cm, which is for one
order smaller than other corrections. Finally, geoid undulation N, after summing up all additive
corrections, have values from 37.5 to 50.43 cm with mean value of 44.98 m.

Approximate geoid undulations Ñ are shown in figure 7.3a. They are smooth and have
visible correlation with topography. Computation of this contribution is the most crucial for



142 7.2. ADDITIVE CORRECTIONS

(a) Ñ (b) Gravimetric HRG2018-KTH-gra

(c) Hybrid HRG2018-KTH-hyb

Figure 7.3: Approximate geoid undulation (Ñ), gravimetric and hybrid geoid models HRG2018-KTH-gra

Table 7.4: KTH approach additive corrections

Units min max range mean st. dev.

Ñ [m] 37.53 50.53 12.99 45.00 2.06
δNtop [cm] -66.50 0.00 66.50 -3.09 5.72
δNatm [cm] -0.60 0.30 0.90 -0.06 0.10
δNDWC [cm] -7.70 52.90 60.60 0.65 2.72
δNell [cm] -0.20 0.20 0.40 -0.07 0.05

N [m] 37.54 50.43 12.89 44.98 2.05
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computation of final geoid undulation. Largest geoid undulation values, more than 46 m, are in
the northern Alps area and along Dinaric Alps mountain chain. Smallest values are found along
the coastline and in Adriatic Sea. Topographic effect δNtop

comb is shown on fig. 7.2a. It has a strong
correlation with the topography. Over the sea and flat area it is almost zero, whereas in high
mountainous it can have values of more than 60 cm. δNtop

comb has negative values everywhere, to
compensate the effect of topographic masses which cause increasing the geoid undulation. Here
selection of DEM strongly affects computed values of geoid undulations. Atmospheric effect
Natm is shown on fig. 7.2b. At this level of geoid accuracy (which is still not at the level of 1 cm)
it should be taken care although it does not exceed values of more then 0.5 cm. Atmospheric
effect is negative in high mountains, and positive value in sea areas and flat terrain.

According to Molodenskii free-air gravity anomalies refer to the topographic surface. Stokes
integral requires gravity anomalies are give on the geoid therefore DWC has to be performed. In
KTH approach this is not accounted for on gravity anomalies, so the error emerges in computa-
tion of approximated geoid undulation. According to Sjöberg DWC error can be accounted for
after geoid computation in correction δNDWC (shown on fig. 7.2c). DWC has a correlation with
topography, as in δNtop

comb, with largest values where larger masses exist. It has mostly positive
values which are almost everywhere less than 5 cm. In extreme cases values may have larger
than 20 cm. Over the sea DWC effect is smaller with values achieving maximally 2 to 3 cm.
Ellipsoidal effect on geoid undulation δNell is smaller than 0.2 cm over the entire study area, as
it can be seen from figure 7.2d.

Final HRG2018-KTH gravimetric and hybrid geoid models are shown in figure 7.3.

7.3 Influence of input parameters and models on geoid solutions

Analysis of various input data and parameters on the accuracy of geoid models using KTH
approach is performed using following procedure:

1. selection of the geoid solution which showed the best agreement with GNSS/levelling data
(solution in table 7.2),

2. select and alter (change) each input data and parameter (all parameters given in table 7.2),
3. compute geoid solutions with altered selected data and parameter,
4. validate computed geoid solution on GNSS/levelling points and obtain standard deviation

of δN differences,
5. analyze differences between geoid solution as a function of each altered data or parameter.

The same procedure is repeated for all input parameters and models from table 7.2.
Standard deviation of δN differences as a function of the selected global geopotential model

is shown on figure 7.4. Models EGM2008, ITUGGC16, GOCONSGCF2TIMR5 and GOCO05s
are tested. Geoid solution computed using EGM2008 model has smallest standard deviation.
Coefficient of correlation is 0.5 indicating the importance of proper GGM selection. It should
be emphasized only GGMs that showed the best agreement with the gravity and GNSS/leveling
data on the study area were used (according to results in section 5.4.1). The differences between
solutions would be much larger if GGMs which agree worse with terrestrial GNSS/levelling and
gravity data would have been used.

Standard deviation of δN differences as a function of the maximal degree of GGM nmax is



1447.3. INFLUENCE OF INPUT PARAMETERS AND MODELS ON GEOID SOLUTIONS

egm2008

ITUGGC16

goconsgcf2tim
r5

goco05s
4.2

4.3

4.3

4.4

4.4

4.5

4.5

4.6

Figure 7.4: Standard deviation of δNGNSS/lev.−geoid as a function of global geopotential model (GGM)
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Figure 7.5: Standard deviation of δNGNSS/lev.−geoid as a function of maximum degree of GGM (nmax)

shown on figure 7.5. Here, EGM2008 was used as input model. The importance of selection of
the best maximal degree is evident as standard deviation is changed from approximately 10 cm to
3 cm for higher degrees nmax. For nmax > 150 standard deviation decreases rapidly until nmax =
300. For nmax > 300 standard deviation changes around 4 cm, indicating that GGMs afterwards
are not ideal and well-suited for regional geoid determination. For nmax > 300 terrestrial data
could improve geoid solution further. Coefficient of correlation is -0.7 which also confirms
assumption that with the increase of nmax geoid model standard deviation decreases.

Standard deviation of δN differences as a function of the used digital elevation model is
shown on figure 7.6. SRTM 3′′ is the most accurate DEM over Croatia, followed by SRTM30,
SRTM15, GTOPO30, ETOPO1 (according to Varga and Bašić (2013) and Varga and Bašić
(2015)). DEMs are used in geoid modelling for topographic effects and downward continuation.
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Figure 7.6: Standard deviation of δNGNSS/lev.−geoid as a function of digital elevation model (DEM)

Geoid undulation differences δN between solutions using different DEMs are few millimeters at
most. This is not expected as past studies in the RCR approach have shown that DEMs have huge
importance in gravimetric geoid modelling. However, such studies cannot be directly compared
with result of the KTH approach as the modelling of topographic effects is largely different.
However, it is indicative that even less accurate DEM models may provide accurate gravimetric
geoid models. In any case, it is generally expected that the most detailed and accurate model for
the particular study area shall be used for computations.
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Figure 7.7: Standard deviation of δNGNSS/lev.−geoid as a function of gridding method of the digital elevation model
(DEM grid meth)

Standard deviation of δN differences as a function of the gridding method of digital elevation
model is shown on figure 7.7. This is a computational step in gravimetric geoid development
where DEM in some cases has to be transformed from initial resolution another resolution. In
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these cases appropriate interpolation method has to be selected. Tested interpolation methods
are: bilinear, nearest neighbour, bicubic, and averaging using different box sizes. The results
show that when DEM is gridded using bilinear interpolation the resulting geoid will result in the
best agreement with GNSS/levelling. The differences between other interpolation methods are
at the order of few millimeters.
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Figure 7.8: Standard deviation of δNGNSS/lev.−geoid as a function of gridding method of the anomalies (anmly grid
meth)

Standard deviation of δN differences as a function of the gridding method of gravity anoma-
lies is shown on figure 7.8. The objective is to find the best gridding method of gravity anomalies
as Stokes integral require gridded gravity anomalies, whereas original gravity data are given as
scattered (point) values. In this step, point free air anomalies were first transformed to com-
plete Bouguer anomalies, then gridding was performed and finally free air anomalies (which are
input data in KTH approach) are reconstructed from the gridded complete Bouguer anomalies.
Tested interpolation methods are linear, nearest neighbour, natural neighbour, cubic and bihar-
monic spline interpolation (Matlab v4, see Sandwell 1987). Bilinear interpolation method shows
smallest standard deviation compared to other methods. Overall, differences between different
interpolation methods of gravity anomalies are at the order of few millimeters.

Standard deviation of δN differences as a function of the constant crustal density values ρc

is shown on figure 7.9. Values of ρc from 2000 to 3100 with interval of 50 kgm−3 are tested.
The differences between solutions are up to 5 mm. Therefore there is an small effect on geoid
solution, but there is no clear indication which constant crustal density value could yield the best
results. However, generally the most suitable value of the crustal density for this study area is
from 2100 to 2500 kgm−3.

Standard deviation of δN differences as a function of the geoid resolution is shown on figure
7.10. Tested geoid resolution values were from 0.005 to 0.2◦ with interval of 0.01◦. Standard
deviation of δN decreases with the increase of geoid resolution. Results with very highest
resolution (e.g. 0.005 ◦) indicate increase of the standard deviation. The best solution is obtained
with resolution of 0.02◦ (or 1.2 ′ or 72 ′′). The results indicate importance of the proper selection
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Figure 7.9: Standard deviation of δNGNSS/lev.−geoid as a function of density of the crust (ρc)
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Figure 7.10: Standard deviation of δNGNSS/lev.−geoid as a function of resolution of the geoid (geoid res)

of the geoid resolution.
Standard deviation of δN differences as a function of the spherical cap size ψ0 is shown on

figure 7.11 . Values of ψ0 from 0.1◦ to 4◦ with the interval of 0.1◦ were tested. The differences
between solutions depending of the ψ0 are very large; difference between standard deviation of
the best solution with ψ0 = 0.5◦ and worst solution with ψ0 = 3.5◦ is 30 cm. Generally, the
solution that yielded smallest standard deviation are obtained with ψ0 from 0.1 to 1◦. It mush be
emphasized that these results are obtained with fixed nmax = 300 of EGM2008. Selection of the
spherical cap size ψ0 is not independent of the nmax so it is better to analyze changes in standard
deviation as a function of both ψ0 and nmax.

Standard deviation of δN differences as a function of variance of terrestrial gravity data C0
is shown on figure 7.12. Values of C0 from 1 mgal to 30 mGal with the interval of 1 mGal were
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Figure 7.11: Standard deviation of δNGNSS/lev.−geoid as a function of spherical cap size (ψ0)
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Figure 7.12: Standard deviation of δNGNSS/lev.−geoid as a function of variance of terrestrial gravity data (C0)

tested. The differences between solutions depending of the variances C0 are at the centimeter
level. Differences between solutions with the smallest (C0 = 10 mGal) and largest (C0 = 30
mGal) standard deviations are 2 cm. For variances C0 from 1 to 10 mGal the solutions are more
or less identical, but for C0 > 10 mGal standard deviation increases linearly. This show that in
KTH approach selection of the proper stochastic prediction of input gravity data has large effect
on geoid solution.

Standard deviation of δN differences as a function of Stokes integral stochastic solution is
shown on figure 7.13. Tested values v are: 1: biased. 2: unbiased, 3: optimum. Unbiased (
v = 2 on x-axis of the figure) and optimum (v = 3 on x-axis on figure) have as twice as larger
standard deviation compared to biased solution of the stochastic modification of Stokes’ kernel.
Furthermore, if all solutions of the geoid models are compared; unbiased (v = 2) and optimum
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Figure 7.13: Standard deviation of δNGNSS/lev.−geoid as a function of Stokes integral stochastic solutions (v)

(v = 3) solutions result in the smallest standard deviation for gravimetric geoid models (without
fitting to the GNSS/levelling), whereas biased (v = 1) solutions result in the smallest standard
deviation in hybrid geoid models (fitted to the GNSS/levelling with some parametric model). As
on figure 7.13 fitted solutions with the 3rd parametric models are given, biased (v = 1) solutions
have smallest standard deviation of 3.5 cm. This problem requires further investigations.
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Figure 7.14: Standard deviation of δNGNSS/lev.−geoid as a function of input (gravity anomalies, DEMs) models
resolution (inp mod res)

Standard deviation of δN differences as a function of input models resolution is shown on
figure 7.14. As all input models have to be gridded in computations, their resolution has to be
selected. Values from 0.01◦ to 0.1◦ with interval of 0.01 ◦ were tested. The differences between
solutions with smallest and largest standard deviation are 15 cm. The solution with smallest
standard deviation is where input models have resolution of 0.02 ◦ (1.2 ′ and 72 ′′) From 0.03 ◦
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to 0.1 ◦ results have values of around 20 cm.
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Figure 7.15: Standard deviation of δNGNSS/lev.−geoid as a function of Integration radius of anomalies in DWC
(ψDgR)

Standard deviation of δN differences as a function of the integration radius of anomalies
in DWC ψDgR is shown on figure 7.15. Contrary to the spherical cap size ψ0, where smallest
standard deviations are obtained for 0.1◦ < ψ0 < 1◦ (see, fig. 7.11), here smallest standard
deviations are obtained for 1◦ < ψDgR < 3◦. The differences between solutions with smallest
and largest standard deviation are more than 1 cm.
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Chapter 8

Remove-Compute-Restore geoid

Results of geoid computations using RCR approach are presented in this section. Theoretical
basis of the RCR approach is described in section 4.7.

In RCR approach geoid model can be computed using different geoid computation methods.
Each method has advantages and drawbacks. Furthermore, each method has its own methodol-
ogy of calculation with method-specific input parameters. For example, LSC uses point data,
while Stokes uses gridded data. Stokes integration by FFT require zero padding of the input
data, whereas analytic integration does not. In LSC stochastic model and covariance function
has to be defined, while in Stokes integration all data have the same weight in computing geoid
undulation.

Therefore, objectives of this section are:

• investigate the influence of different crustal models on resulting geoid models,
• comparison of geoid models and their’s accuracy developed by different analytic and spec-

tral geoid computation methods,
• investigate influence of different input parameters in each geoid computation method,
• find and analyze a solution which will give the best agreement with GNSS/levelling data,
• analyze fitting parametric models.

All used methods are listed in table 8.1 and these are ’classical’ Stokes integration with
unmodified and modified Stokes’ kernel, flat-Earth and 3D collocation, and planar, spherical
and spherical multi-band FFT. For each method different input parameters are used that will be
listed for each method. Not all methods are discussed in details, therefore interested readers
should consult references listed in table 8.1.

Input data in all methods are residual gravity anomalies ∆gFA−GGM−RT M. Computation of
∆gFA−GGM−RT M is described in chapter 6. More than ten thousand solutions of residual gravity
anomalies ∆gFA−GGM−RT M were computed using different combinations of input parameters and
models and only few solutions are chosen and used in geoid computations. They are selected by
smallest RMS criteria and to have diversity of parameters, such as: GGM, maximal degrees of
expansion, density, resolution of DEM, etc.
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Table 8.1: Geoid computation methods in RCR approach

Geoid computation method Acronym
Equations
in section

Reference

Stokes integration (analytic) Stokes 4.7.5.1 *see in section

LSC (spherical, 3D) GEOCOL 4.7.4
Tscherning (1985),
Tscherning (2013)

LSC (planar, 2D) GPCOL 4.7.4.1 Forsberg (1987)
Planar FFT GEOFOUR 4.7.6.1 Van Hees (1991)

Spherical multi-band FFT SPFOUR 4.7.6.2 Forsberg and Sideris (1993)
Spherical 1D FFT SP1D 4.7.6.4 Haagmans et al. (1993)

8.1 Solutions using different crustal density models

The statistics of geoid solutions computed using different density models is given in table 8.3.
There are three groups of solutions: a) 1D using constant density values from 2000 to 3000
kgm−3, b) 2D surface (lateral) density models: models computed by inversion using Pratt-
Hayford, Airy-Heiskanen, and Parasnis-Nettleton methods, and crustal models CRUST1 and
EPcrust which were averaged from original 3D layers to 2D, c) 3D crustal models CRUST1
and EPcrust. These crustal density models are used in all steps of geoid computation, including
remove and restore steps as well as quasi-geoid to geoid correction.

Results of evaluation of hybrid (fitted) geoid solutions using different crustal density values
and models are shown in table 8.4. Notable differences between solutions is in the statistical
parameter mean error. Mean error increases if ρc is not the optimal value on computation area.
In 1D case, when values of crustal density larger than 2700 kgm−3 are selected mean error
increases for 4 to 5 cm compared to the solution with the smallest mean error -0.4 cm using
ρc = 2200 kgm−3. In solutions where surface crustal density models are used, the solution
where the model EPcrust is used results in the smallest mean error 0.3 cm. Where surface
density crustal density models are created using inversion method, the solution where Pratt-
Hayford model is used results in the smallest mean error 1.1 cm, while the biggest mean error is
obtained using Airy-Heiskanen’s density model.

In solutions where 3D density models are used, EPcrust model resulted in the smallest mean
error 0.3 cm, where CRUST1 model resulted in 1.2 cm larger mean error. It suggests EPcrust 3D
model is more appropriate on the Croatian territory. There are no big differences comparing 2D
and 3D solution with CRUST1 and EPcrust models. Crustal models can improve representation
of crustal structure but only up to some level. The reason lies in the coarse resolution of currently
available models. CRUST1.0 is 1◦and EPcrust 0.5◦which means that crustal structure at this
study area is represented with around 500 values when using CRUST1.0 and 1000 values when
using EPcrust. If crustal models are compared to elevation models in terms detailednesses, e.g.
SRTM in 3′′resolution has around 278 million values for the same study area. This is apparently
a limitation in using currently available crustal models in regional gravity field modelling and
geoid determination.
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Table 8.2: Statistics of residual gravity anomalies ∆gFA−GGM−RT M selected for geoid computation

no. min max range mean st. dev. parameters

1 -60.2 194.5 254.6 -0.4 9.3
GGM= egm2008, nmax= 1000, DEM= SRTM3, dens model= konst,
ρc= 2670 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 90 ′′ , LPFref DEM= 50 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

2 -83.0 177.5 260.5 -0.3 8.9
GGM= egm2008, nmax= 1500, DEM= SRTM3, dens model= konst,
ρc= 2670 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 90 ′′ , LPFref DEM= 30 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

3 -52.2 186.1 238.2 -0.7 7.6
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= konst,
ρc= 2300 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

4 -52.1 186.1 238.2 -0.7 7.6
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= konst,
ρc= 2300 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 25 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 30 km

5 -71.1 167.3 238.5 -0.7 13.7
GGM= egm2008, nmax= 250, DEM= SRTM3, dens model= konst,
ρc= 2670 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 450 ′′ , LPFref DEM= 25 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 10 km , r2= 100 km

6 -69.9 157.6 227.5 -0.6 13.8
GGM= ITU GGC16, nmax= 225, DEM= SRTM3, dens model= konst,
ρc= 2670 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 450 ′′ , LPFref DEM= 25 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 10 km , r2= 100 km

7 -65.0 151.0 215.9 -0.7 14.4
GGM= goco05s, nmax= 225, DEM= SRTM3, dens model= konst,
ρc= 2670 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 385 ′′ , LPFref DEM= 25 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 10 km , r2= 150 km

8 -53.1 186.7 239.7 -0.9 7.4
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= konst,
ρc= 2200 kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 25 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= BOX 3X3, r1= 1 km , r2= 5 km

9 -62.7 186.2 248.9 -1.7 7.6
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= Epcrust,
ρc= NaN kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 25 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 30 km

10 -53.5 185.3 238.8 -1.2 8.1
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= CRUST1,
ρc= NaN kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

11 -57.4 186.4 243.8 -1.1 7.5
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= Pratt,
ρc= NaN kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

12 -56.3 186.4 242.6 -1.1 7.5
GGM= egm2008, nmax= 2190, DEM= SRTM30, dens model= Parasnis,
ρc= NaN kgm−3 , res fine DEM= 5 ′′ , res coarse DEM= 10 ′′ ,
res ref DEM= 30 ′′ , LPFref DEM= 80 ′′ ,
DEM grid meth= NEAREST NEIGHBOR, r1= 5 km , r2= 20 km

In case of standard deviation, either in 1D, 2D or 3D cases of density models gravimetric
geoid solutions among themselves have values from 5.0 cm to 8.0 cm. However, standard devi-
ation seems to be more insensitive than mean error. For example in 3D case, when EPcrust and
CRUST1 are used the difference is 1 mm. In 1D case using any value from ρc = 2000 kgm−3 to
ρc = 2400 kgm−3 will bring differences of few millimeters in terms of standard deviation.

If solutions computed using 1D, 2D and 3D densities are compared, it can be concluded
that there is a necessity to find and select more appropriate density values or model for geoid
determination as systematic bias can be included with values that are larger than 5 cm. The
differences between best solutions for the 1D, 2D and 3D cases are within 1-2 cm. For a 1 cm
geoid model this effect might be crucial.
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Table 8.3: Statistics of the geoid undulation differences δNGNSS/lev.−geoid for gravimetric geoid models computed
with constant values, 2D surface (lateral) and 3D crustal models. Units: ρc in [kgm−3], statistics in [cm].

crustal parameter/model min max range mean st. dev.

1D

ρc = 2000 -14 15 29 1.6 5.7
ρc = 2100 -14 14 29 1.0 5.1
ρc = 2200 -15 14 28 -0.4 5.3
ρc = 2300 -16 13 29 -1.5 5.4
ρc = 2400 -16 13 29 -2.2 5.5
ρc = 2500 -16 13 29 -3.2 6.1
ρc = 2600 -17 13 29 -3.9 6.2
ρc = 2670 -18 13 31 -4.7 6.1
ρc = 2700 -19 13 31 -5.1 6.4
ρc = 2800 -21 13 34 -6.0 6.9
ρc = 2900 -24 13 36 -6.9 7.2
ρc = 3000 -26 13 39 -8.1 7.8
ρc = 3100 -29 13 41 -9.3 8.0

2D

CRUST1 -16 14 31 -2.0 5.6
EPcrust -15 15 30 0.3 5.2

Airy-Heiskanen -18 14 32 -4.3 6.8
Parasnis-Nettleton -15 15 30 1.2 5.7

Pratt-Hayford -14 14 29 1.1 5.2

3D
CRUST1 -16 14 31 -1.5 5.0
EPcrust -15 14 29 0.3 4.9

8.2 Solutions using different computation methods

8.2.1 ’Classic’ Stokes

Parameters for geoid computation with Stokes’ method are given in table 8.5. Different Stokes’
kernel modifications Stokesmod are used (explained in section 4.7.5.2). The basic Stokes’ kernel
is unmodified, whereas used modifications include Wong-Gore, Heck and Gruninger, Meissl’s,
spheroidal Molodenskii (Vaníček and Kleusberg) and spheroidal Molodenskii-Meissl (Feather-
stone). From the Stokes’ kernel different degrees nmod may be removed therefore values from
10 to 300 are used. Integration zone of anomalies is divided on inner and outer zone and different
values of radiuses of integration in inner and outer zone are used.

More than 500 solutions using Stokes’ integration were calculated using different combina-
tions of input parameters and input residual gravity anomalies. Some selected results are given
in table 8.6. The best solution is no. 3. with standard deviation 3.7 cm. It was derived using
Vaníček and Kleusberg’s modification with degree nmod = 400, integration radiuses of inner and
outer zone 0.1◦ and 1.0◦.
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Table 8.4: Statistics of the geoid undulation differences δNGNSS/lev.−geoid for hybrid (fitted) geoid models computed
with constant values, 2D surface (lateral) and 3D crustal models. Units: ρc in [kgm−3], statistics in [cm].

crustal parameter/model min max range mean st. dev.

1D

ρc = 2000 -9 7 17 0.1 3.3
ρc = 2100 -9 8 18 0.1 3.1
ρc = 2200 -10 9 19 -0.2 3.3
ρc = 2300 -10 9 18 -0.2 3.5
ρc = 2400 -10 9 18 -0.2 3.5
ρc = 2500 -9 9 18 -0.2 3.5
ρc = 2600 -10 9 18 0.0 3.4
ρc = 2670 -9 10 19 0.0 3.4
ρc = 2700 -9 9 18 0.1 3.2
ρc = 2800 -10 9 20 0.0 3.5
ρc = 2900 -18 10 28 0.1 3.9
ρc = 3000 -9 10 20 0.1 3.6
ρc = 3100 -11 9 20 0.0 3.5

2D

CRUST1 -8 10 18 0.3 3.2
EPcrust -9 7 17 -0.4 3.5

Airy-Heiskanen -12 8 19 -0.1 3.4
Parasnis-Nettleton -9 8 17 0.1 3.3

Pratt-Hayford -8 8 16 0.3 3.1

3D
CRUST1 -8 9 18 0.3 3.0
EPcrust -9 7 16 -0.3 2.9

Table 8.5: Input data and parameters for computation of geoid using Stokes method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

Stokes’ kernel modification Stokesmod

0: no modification, 1: spheroidal (Wong and Gore),
2: Heck and Grueninger, 3: Meissl,
4: spheroidal Molodensky (Vaníček and Kleusberg),
5: spheroidal Molodenski-Meissl

degree of Stokes’ kernel modification nmod 10, 20, 50, 100, 200, 300, 500
inner zone integration range ψin 0.25, 0.5, 1.0, 2.0 [◦]
outer zone integration range ψout 3, 4, 5 [◦]

8.2.2 Planar FFT

Parameters for geoid computation with the planar FFT are given in table 8.7. Two parameters are
changed in computations: tapering window width iwndw and removal of the mean value from
the input anomalies lmean. Tapering window is used for elimination of periodicity effect which



156 8.2. SOLUTIONS USING DIFFERENT COMPUTATION METHODS

Table 8.6: Statistics of the differences between GNSS/levelling and selected geoid models computed using Stokes
method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -54.2 54.0 108.2 -0.2 14.5

Stokesmod = 1, ψin= 0.3◦ ,
ψout = 3.0◦ , nmod = 200, GGM= goco05s, nmax= 225,
dens model= konst, ρc= 2670 kgm−3 ,
DEM= SRTM3, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 385′′ ,
LPFref DEM= 25′′ , r1= 10 km , r2= 150 km

2 -16.2 12.9 29.0 0.0 3.8

Stokesmod = 2, ψin= 0.1◦ ,
ψout = 1.0◦ , nmod = 200, GGM= egm2008, nmax= 2190,
dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

3 -16.9 13.4 30.3 -0.0 3.7

Stokesmod = 4, ψin= 0.1◦ ,
ψout = 1.0◦ , nmod = 400, GGM= egm2008, nmax= 2190,
dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

4 -14.1 12.8 26.9 0.0 3.8

Stokesmod = 3, ψin= 0.1◦ ,
ψout = 1.0◦ , nmod = 0, GGM= egm2008, nmax= 2190,
dens model= CRUST1, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

5 -15.0 12.9 27.9 0.1 3.8

Stokesmod = 5, ψin= 0.1◦ ,
ψout = 1.0◦ , nmod = 400, GGM= egm2008, nmax= 2190,
dens model= CRUST1, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

is a problem related to the discrete Fourier transform. According to Forsberg and Tscherning
(2008) this can be avoided either by zero-padding or windowing of the data on the borders
(edges).

Table 8.7: Input data and parameters for computation of geoid using planar FFT method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

tapering windowing width iwndow 0, 1, 2, 3, 5, 10, 20, 30 [grid points]
remove mean from data lmean 1: yes, 0: no

More than 1300 solutions are computed using different parameters and residual gravity
anomalies. The best solution is no. 3 in which CRUST1 3D model is used (table 8.8). Window-
ing was used for 20 grid points, without removal of mean values from the data. Otherwise, more
than 100 solutions resulted in blank or strange geoid undulation values. Comparison between
solutions with and without removed mean from the data does not seem to improve results.
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Table 8.8: Statistics of the differences between GNSS/levelling and selected geoid models computed using planar
FFT method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -10.9 8.4 19.4 -0.0 3.0
lmean= 0, iwndow= 40, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

2 -9.2 12.5 21.7 0.0 3.1
lmean= 0, iwndow= 10, GGM= egm2008,
nmax= 2190, dens model= Pratt, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

3 -9.7 12.3 22.0 -0.0 3.1
lmean= 0, iwndow= 34, GGM= egm2008,
nmax= 2190, dens model= CRUST1, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

4 -10.5 8.8 19.4 0.0 3.0
lmean= 0, iwndow= 20, GGM= egm2008,
nmax= 2190, dens model= Pratt, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

5 -10.8 9.7 20.5 -0.0 3.1
lmean= 0, iwndow= 20, GGM= egm2008,
nmax= 2190, dens model= Parasnis, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

8.2.3 LSC with flat-Earth logarithmic covariances

Parameters for geoid computation with the least squares collocation using planar logarithmic
covariance function are given in table 8.9. Selected values for smplintsizeECF are 1, 2, 5, 10,
20 km. Block computation is done using blocks with sizes from 0.5◦to 3◦, as computation with
22000 available point data showed to be slow. Values from 0.1 to 10 mGal are used for obser-
vation errors σmax. Values of parameters C0, D and T are obtained from empirical covariance
function (ECF).

More than 200 solutions using different parameters and residual gravity anomalies are cal-
culated. The best solution is no. 3 where 3D model CRUST1.0 is used with standard deviation
3.1 cm and mean error 0.0 cm after fitting (table 8.10).

8.2.4 Least Squares Collocation

Parameters for geoid computation with the least squares collocation are given in table 8.11. This
is the most complex method for geoid determination which has to performed in few steps: 1)
derivation of empirical covariance function, 2) fitting of ECF, 3) calculation of height anomalies.

Selected results of geoid models are given in table 8.12. The best solution is no. 4 with stan-
dard deviation 3.0 cm and mean error 0.0 cm. Under assumption that residual gravity anomalies
are smooth and parameters of fitted covariance function describe their trend with small RMS it
gives stable solutions. For many variations using different input parameters standard deviation
does not exceed values of more than 4 cm. In comparison with FFT, where changing some of
the parameters can produce differences of more than few cm’s among solutions.
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Table 8.9: Input data and parameters for computation of geoid using flat-Earth logarithmic LSC method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

sample interval size of ECF smplintsizeECF’ 1,2, 5, 10, 20 [km]
block size blcksize 0.5, 1, 2, 3 [◦]
overlap of neigbour blocks blckovrl p 0.5 [◦]
observation error σmax 0.1, 1, 2, 5, 10 [mGal]
search ranges of attenuation
factors D and T

(1 10), (10 100) [km]

variance of data C0 * computed from fitting of
the analytic ECF to
the flat flat-earth logarithmic
covariance function

high frequency attenuation factor D
low frequency attenuation factor T

Table 8.10: Statistics of the differences between GNSS/levelling and selected geoid models computed using
flat-Earth logarithmic LSC method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -9.1 9.5 18.6 -0.0 3.3

smplintsizeECF= 3 km, blcksize= 0.75 ◦ ,
blckovrl p= 0.50 ◦ , σmax= 2.0 mgal,
C0= 6.57 mgal, D= 1 km, T = 12 km, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2200 kgm−3 ,
DEM= SRTM30, DEM grid meth= BOX 3X3, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 1 km , r2= 10 km

2 -17.5 16.9 34.4 0.0 4.9

smplintsizeECF= 20 km, blcksize= 0.75 ◦ ,
blckovrl p= 0.50 ◦ , σmax= 3.0 mgal,
C0= 13.64 mgal, D= 20 km, T = 15 km, GGM= goco05s,
nmax= 225, dens model= konst, ρc= 2670 kgm−3 ,
DEM= SRTM3, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 10′′ , res ref DEM= 385′′ ,
LPFref DEM= 25′′ , r1= 10 km , r2= 150 km

3 -9.3 10.6 19.9 0.1 3.1

smplintsizeECF= 10 km, blcksize= 0.20 ◦ ,
blckovrl p= 0.50 ◦ , σmax= 3.0 mgal,
C0= 6.83 mgal, D= 1 km, T = 20 km, GGM= egm2008,
nmax= 2190, dens model= CRUST1, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

4 -9.6 10.3 19.8 0.0 3.3

smplintsizeECF= 2 km, blcksize= 0.20 ◦ ,
blckovrl p= 0.50 ◦ , σmax= 10.0 mgal,
C0= 6.95 mgal, D= 1 km, T = 17 km, GGM= egm2008,
nmax= 2190, dens model= Epcrust, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km

8.2.5 Spherical multi-band FFT

Parameters for geoid computation using spherical multi-band FFT method are given in table
8.13. In this method Wong-Gore Stokes modification is used. Method-specific parameters is
number of reference parallels nopar. Other used parameters are: a) radiuses of integration in
inner and outer zones ψin and ψout , b) degrees of modification of Wong-Gore’s kernel, c) tapering
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Table 8.11: Input data and parameters for computation of geoid using LSC method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

Empirical covariance function

sample interval size of ECF smplintsizeECF’ 5, 10, 15 [′]

Fitting of the empirical covariance function (Tscherning 1976a, Tscherning 1976b)

type of degree variance-covariance function
model used for degree-variances larger than nmax

ktype 1, 2, 3
integer in numerator of the
anomaly degree-variance model

linter

ratio between the Bjerhammar-sphere
radius and the mean radius of the Earth RE

R

the depth to the Bjerhammar sphere of the radius RB idepth
variance of gravity anomalies at zero altitute vargd2 400 [mgal2]

maximal degree for empirical degree-variances imax
usually corresponds to the maximal
degree of EGM

error degree variances model model
computed from σCnm and σSnm

of the corresponding GGM
model used from degree imin 2, 50, 100

input error degree variance scale factor vg or AA 1
number of iterations for nonlinear adjustment nitmax

apriori standard deviations of
AA, A and RB−RE in adjustment

τAA, τA, τRB−RE 1.0

no of values taken from ECF idat 5, 10, 15
relative weight weight 0.1, 0.5
data variance at mean altitude cc 200, 400 [mgal2]
standard deviation of observations wm 0.1 [mgal]
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Figure 8.1: Empirical covariance function for the best solution
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Table 8.12: Statistics of the differences between GNSS/levelling and selected geoid models computed using least
squares collocation method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -10.9 11.4 22.4 -0.1 3.3

ktype= 2, linter= 4, R= -2.76 km,
vargd2= 17.68 mGal2 , imin= 2, imax= 600, nitmax= 10,
τ1= 1, τ2= 1, τ3= 1, idat= 5,
weight= 0.1, cc= 400, vg= 0.73, weight= 0.1, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2200 kgm−3 ,
DEM= SRTM30, DEM grid meth= BOX 3X3, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 1 km , r2= 10 km

2 -10.2 9.4 19.6 -0.0 3.1

ktype= 2, linter= 4, R= -2.75 km,
vargd2= 17.84 mGal2 , imin= 2, imax= 600, nitmax= 10,
τ1= 1, τ2= 1, τ3= 1, idat= 5,
weight= 0.1, cc= 400, vg= 0.73, weight= 0.1, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

3 -10.6 9.9 20.6 -0.0 3.1

ktype= 2, linter= 4, R= -2.75 km,
vargd2= 17.84 mGal2 , imin= 2, imax= 600, nitmax= 10,
τ1= 1, τ2= 1, τ3= 1, idat= 5,
weight= 0.1, cc= 400, vg= 0.73, weight= 1.0, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

4 -10.5 9.0 19.5 0.0 3.0

ktype= 2, linter= 4, R= -2.75 km,
vargd2= 17.84 mGal2 , imin= 2, imax= 600, nitmax= 10,
τ1= 1, τ2= 1, τ3= 1, idat= 5,
weight= 0.1, cc= 400, vg= 0.73, weight= 1.0, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

5 -10.0 9.9 19.9 0.0 3.2

ktype= 2, linter= 5, R= -2.74 km,
vargd2= 17.85 mGal2 , imin= 2, imax= 600, nitmax= 10,
τ1= 1, τ2= 1, τ3= 1, idat= 15,
weight= 0.1, cc= 400, vg= 0.73, weight= 1.0, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2300 kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

window and d) remove mean value from the data.
Few selected results are given in table 8.14. The solution which gives the smallest standard

deviation is no. 4 with 3.7 cm. It was calculated with nre f = 5 and integration radius in inner
zone ψin = 0.1◦.

8.2.6 Spherical 1D FFT

Parameters for geoid computation using 1D FFT are given in table 8.15. In this algorithm Wong-
Gore’s kernel modification is implemented with modification degrees nmod1 and nmod2 . Integra-
tion area is divided in two zones inner and outer which are defined with two parameters ψin and
ψout . Different values are tested for all input parameters.

More than two thousand different solutions are computed using different combination of
input parameters and data. Few selected results are given in table 8.16. The best solution is no.
1 with standard deviation of 3.6 cm and mean value 0.0 cm. It was calculated with radiuses of
integration of inner and outer zone of ψin = 0.1◦ and ψout = 3.0◦ and degrees of removal nmod1
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Table 8.13: Input data and parameters for computation of geoid using spherical multi-band FFT method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

number of reference parallels nrpar 1, 2, 3, 4, 5
inner zone integration range ψin 0.25, 0.5, 1.0, 2.0 [◦]
outer zone integration range ψout 3, 4, 5 [◦]

lower range of Stokes’ kernel modification nmod1 10, 20, 50, 100
upper range of Stokes’
kernel modification

nmod2 100, 200, 300, 400

tapering windowing width iwndow 0, 1, 2, . . . , 10, 20, 30 [grid nodes]
remove mean from data lmean 1: yes, 0: no

Table 8.14: Statistics of the differences between GNSS/levelling and selected geoid models computed using
spherical multi-band FFT method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -64.6 51.1 115.6 -0.1 16.8

nre f = 2, ψin= 0.5◦ , ψout = 3.0◦ ,
nmod1= 50, nmod2= 300, lmean= 0,
iwndow= 5, GGM= ITU GGC16, nmax= 225, dens model= konst,
ρc= 2670 kgm−3 , DEM= SRTM3, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 450′′ , LPFref DEM= 25′′ ,
r1= 10 km , r2= 100 km

2 -17.7 12.9 30.6 0.0 3.8

nre f = 2, ψin= 0.5◦ , ψout = 2.0◦ ,
nmod1= 200, nmod2= 300, lmean= 0,
iwndow= 0, GGM= egm2008, nmax= 2190, dens model= Epcrust,
ρc= NaN kgm−3 , DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 30′′ , LPFref DEM= 80′′ ,
r1= 5 km , r2= 20 km

3 -17.8 13.2 31.0 0.1 3.8

nre f = 2, ψin= 0.5◦ , ψout = 2.0◦ ,
nmod1= 200, nmod2= 300, lmean= 0,
iwndow= 0, GGM= egm2008, nmax= 2190, dens model= Pratt,
ρc= NaN kgm−3 , DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 30′′ , LPFref DEM= 80′′ ,
r1= 5 km , r2= 20 km

4 -17.9 13.2 31.2 -0.1 3.8

nre f = 2, ψin= 0.5◦ , ψout = 2.0◦ ,
nmod1= 200, nmod2= 300, lmean= 0,
iwndow= 0, GGM= egm2008, nmax= 2190, dens model= Parasnis,
ρc= NaN kgm−3 , DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 30′′ , LPFref DEM= 80′′ ,
r1= 5 km , r2= 20 km

5 -17.3 13.0 30.4 0.0 3.7

nre f = 2, ψin= 0.1◦ , ψout = 2.0◦ ,
nmod1= 200, nmod2= 300, lmean= 0,
iwndow= 0, GGM= egm2008, nmax= 2190, dens model= konst,
ρc= 2200 kgm−3 , DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 30′′ , LPFref DEM= 80′′ ,
r1= 5 km , r2= 20 km

and nmod2 of 200 and 250.
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Table 8.15: Input data and parameters for computation of geoid using spherical 1D FFT method

Data and parameter name Acronym Input values

residual gravity anomalies ∆gFA−GGM−RT M table 8.2

inner zone integration range ψin 0.25, 0.5, 1.0, 2.0 [◦]
outer zone integration range ψout 3, 4, 5 [◦]

lower range of Stokes’ kernel modification nmod1 10, 50, 100, 200, 250
upper range of Stokes’ kernel modification nmod2 100, 200, 300, 400, 600

remove mean from data lmean 1: yes, 0: no

Table 8.16: Statistics of the differences between GNSS/levelling and selected geoid models computed using
spherical 1D FFT method. Fitting parametric model: 3rdpoly. Units: [cm].

no. min max range mean st. dev. input values of parameters

1 -13.7 13.3 27.0 -0.0 3.6

ψin= 0.1 ◦ , ψout = 3.0 ◦ ,
nmod1 = 200, nmod2 = 250, lmean= 0, GGM= egm2008,
nmax= 2190, dens model= konst, ρc= 2200 kgm−3 ,
DEM= SRTM30, DEM grid meth= BOX 3X3, res fine DEM= 5′′ ,
res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 1 km , r2= 5 km

2 -34.4 30.2 64.6 -0.0 10.0

ψin= 0.1 ◦ , ψout = 2.0 ◦ ,
nmod1 = 100, nmod2 = 200, lmean= 0, GGM= goco05s,
nmax= 225, dens model= konst, ρc= 2670 kgm−3 ,
DEM= SRTM3, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 10′′ , res coarse DEM= 20′′ , res ref DEM= 400′′ ,
LPFref DEM= 30′′ , r1= 10 km , r2= 30 km

3 -18.4 12.5 30.9 -0.0 3.8

ψin= 0.3 ◦ , ψout = 1.0 ◦ ,
nmod1 = 200, nmod2 = 200, lmean= 0, GGM= egm2008,
nmax= 2190, dens model= Parasnis, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ ,
res ref DEM= 30′′ , LPFref DEM= 80′′ , r1= 5 km ,
r2= 20 km

4 -16.4 13.0 29.4 -0.0 3.7

ψin= 0.1 ◦ , ψout = 2.0 ◦ ,
nmod1 = 200, nmod2 = 250, lmean= 0, GGM= egm2008,
nmax= 2190, dens model= Pratt, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 10′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 20 km

5 -17.7 13.3 31.0 0.0 3.8

ψin= 0.3 ◦ , ψout = 2.0 ◦ ,
nmod1 = 200, nmod2 = 250, lmean= 0, GGM= egm2008,
nmax= 2190, dens model= CRUST1, ρc= NaN kgm−3 ,
DEM= SRTM30, DEM grid meth= NEAREST NEIGHBOR,
res fine DEM= 5′′ , res coarse DEM= 25′′ , res ref DEM= 30′′ ,
LPFref DEM= 80′′ , r1= 5 km , r2= 30 km
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8.2.7 Validation of geoid models computed with RCR and KTH approaches

Statistical comparison of geoid models computed using different methods and validated on
GNSS/levelling points is given in table 8.17. The best fit is obtained using planar FFT (GE-
OFOUR) and spherical 3D LSC (GEOCOL) of 3.0 and 3.1 cm. Very similar results are ob-
tained with analytic Stokes integration method (Stokes), spherical multi-band FFT (SPFOUR)
and SP1D methods. The differences between different methods are all within 1 cm; GEOFOUR
as the best, and SPFOUR as the worst solution. The results indicate that the best RCR approach
hybrid geoid solution is better for 0.5 cm than the best KTH approach solution.

Table 8.17: Comparison of the statistics of geoid undulation differences (δNGNSS/lev.−geoid). Geoid models are
computed using different RCR methods and KTH approach. Fit: 3rdpoly, units: [cm].

Geoid computation method min max range mean st dev

KTH -11.4 12.1 23.5 -0.2 3.4
Stokes -16.8 12.8 29.5 -0.0 3.7

GEOFOUR -9.7 12.3 22.0 -0.0 3.1
GPCOL -10.6 10.8 21.4 0.1 3.1

SPFOUR -17.3 13.0 30.4 0.0 3.7
GEOCOL -10.6 9.1 19.7 0.1 3.1

SP1D -16.6 11.7 28.3 -0.0 3.6

Mean value (error) is (almost) completely removed within the fitting procedure, with maxi-
mal values of -0.2 cm in KTH.

8.2.7.1 Differences between geoid models computed using different methods

Statistics of geoid undulations (N) for models computed using different methods are shown in
table 8.18. Selected solutions in this case are the ones that resulted in the best agreement with
GNSS/levelling data as they are considered to be the most accurate. Geoid undulations N over
study area have values between 36.6 m and 50.5 m, with mean values of 44.1 m. All RCR
approach solutions have almost the same values for all statistical parameters. Geoid computed
using KTH approach has differences of around 1 m in comparison with RCR approach solutions
for minimum, maximum and mean.

Statistics of the differences between gravimetric geoid models computed using different
methods is given in table 8.19. The differences are obtained by subtraction of gravimetric geoid
grids (grid1−grid2).

The biggest differences are obtained when geoid model derived using KTH approach is sub-
tracted from geoid derived using RCR approach. For example, when KTH and RCR GEOCOL
grids are subtracted the mean value is 1.01 m. More generally, mean differences between KTH
geoid and different RCR solutions are having values from 88 to 101 cm. The differences can
achieve in some areas values of 1.4 m, while minimal differences seize around 38 cm. Slightly
better agreement with KTH geoid showed geoid computed using SPFOUR method. KTH and
RCR approach are both unique and non-easily comparable approaches, but these differences are
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Table 8.18: Statistics of gravimetric geoid models computed using different computation methods. Units: [cm].

Geoid method min max range mean st dev

KTH 37.4 50.5 13.1 45.0 2.1
Stokes 36.6 49.7 13.0 44.1 2.1

GEOFOUR 36.7 49.8 13.1 44.1 2.1
GPCOL 36.4 49.6 13.2 44.0 2.2

SPFOUR 36.6 49.8 13.1 44.1 2.1
GEOCOL 36.7 49.5 12.8 44.0 2.2

SP1D 36.6 49.7 13.1 44.1 2.1

hard to explain and should be analysed thoroughly in the future. Currently, it looks like these
are completely different surfaces.

Differences are much smaller, although they still exist, when only RCR computation meth-
ods are compared. Largest differences are between GPCOL and SP1D methods with -13.0±12.4
cm. GEOCOL and GPCOL method agree within -0.6±6.3 cm. However, both GEOCOL and
GPCOL do not agree well with other methods. E.g. GEOCOL- SP1D results in the -12.4±14.6.
SPFOUR and SP1D agree the best with -0.1±1.3 cm. Stokes and SP1D differ by -3.4±3.6 cm.

Gridded differences between geoid models computed using various RCR methods are given
in appendix B. The scale is unique for all figures, therefore, differences which are larger than 20
cm, as between KTH and different RCR methods, are completely red.

Largest differences between methods are in the Adriatic sea where altimetric data from
DTU15 model were included in the database. In order to increase reliability of future gravi-
metric geoid model solutions, the existing gravity database will need to be updated with new
data in these areas.

Differences between GEOFOUR and GEOCOL (subfigure n), and GEOFOUR and GPCOL
(subfigure l), are for the most of computation area constant although at the south of computation
area there are some visible differences at the borders in FFT methods.
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Table 8.19: Statistics of the differences (δN = grid−grid) between gravimetric geoid models computed using
different computation methods. Units: [cm].

Geoid method min max range mean st. dev.

KTH - Stokes 36.1 117.0 80.5 91.8 10.2
KTH - GEOFOUR 28.9 133.0 104.0 92.7 12.8

KTH - GPCOL 45.8 141.0 95.4 102.0 15.5
KTH - SPFOUR 31.7 114.0 82.2 88.3 9.7
KTH - GEOCOL 39.9 147.0 107.0 101.0 16.9

KTH - SP1D 32.0 114.0 82.1 88.4 9.6
Stokes - GEOFOUR -14.8 25.3 40.1 0.9 7.5

Stokes - GPCOL -8.0 34.2 42.2 9.6 9.2
Stokes - SPFOUR -16.0 5.9 21.8 -3.5 4.1
Stokes - GEOCOL -14.8 40.2 54.9 9.0 11.3

Stokes - SP1D -15.6 4.0 19.6 -3.4 3.6
GEOFOUR - GPCOL -7.0 34.5 41.5 8.8 8.8

GEOFOUR - SPFOUR -39.4 16.5 55.9 -4.4 10.5
GEOFOUR - GEOCOL -12.8 38.1 50.9 8.2 8.0

GEOFOUR - SP1D -35.1 15.4 50.5 -4.3 9.8
GPCOL - SPFOUR -47.3 9.3 56.6 -13.1 12.7
GPCOL - GEOCOL -29.1 17.1 46.2 -0.6 6.3

GPCOL - SP1D -46.1 7.0 53.1 -13.0 12.4
SPFOUR - GEOCOL -13.9 54.1 67.9 12.5 15.0

SPFOUR - SP1D -3.0 4.8 7.8 0.1 1.3
GEOCOL - SP1D -52.4 13.5 65.9 -12.4 14.6
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8.3 HRG2018-RCR: new gravimetric and hybrid geoid models

The solution which resulted in the smallest standard deviation compared to GNSS/lev. was cal-
culated using GEOFOUR method. This can be considered as the best solution when compared
to all other RCR methods and also solution obtained using KTH approach. Names are given to
those models: HRG2018-RCR-gra for gravimetric and HRG2018-RCR-hyb for hybrid variant
of the model. Input parameters of this solution are given in section 8.2.2, table 8.8, no. 3.

Quasi-geoid (ζ ) to geoid (N) correction

Gravimetric quasi-geoid defined by height anomalies ζ is obtained as a result of computations
using RCR approach and residual gravity anomalies ∆gFA−GGM−RT M (as explained in subsection
4.7.1). The gravimetric geoid defined by geoid undulations is obtained by applying quasi-geoid
to geoid correction (ζ −N).

Figure 8.2: Quasi-geoid (ζ ) to geoid (N) correction

The quasi-geoid to geoid correction is for the most part of the study area around 1 to 2 cm,
as it can be seen from figure 8.2. It is largest in mountainous areas, such as Alps at the north,
Velebit in the middle and Dinarides at the south-east of the study area. Its maximal values are
larger than 15 cm. In coastal areas and in low-lands this correction is small and can sometimes
be neglected.
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Remove-restore contributions in gravity anomalies and geoid undulations

Statistics of the different gravity anomalies contributions in remove step and calculation of input
residual gravity anomalies are given in table 8.20. Residual gravity anomalies ∆gFA−∆gGGM−
∆gRT M, after subtracting GGM and RTM contribution, have standard deviation of 6.5 and mean
value of -1.0 mGal. This means that input anomalies were very smooth and have no system-
atic biases or outliers in the data prior to geoid computation, which is a preferable property,
although it can be argued whether by selection of nmax = 2190 medium wavelengths have also
been filtered. The mean value is actually increased if only RTM effect ∆gRT M is filtered from the
∆gFA anomalies in remove step, which implies that gravity anomalies ∆gFA−∆gRT M have no
special meaning and interpretation unless long-wavelengths are not filtered. Actually, the most
important step is derivation of the reference surface (reference DEM) which replace and model
short-frequency part of gravity anomalies. Statistics of the geoid undulation contributions to the

Table 8.20: Statistics of the remove gravity anomaly contributions of the input residual gravity anomalies
∆gFA−∆gGGM−∆gRT M . Units: [mGal].

Contribution min max range mean st. dev.

∆gFA -130.7 216.6 347.3 9.9 34.9
∆gGGM -114.2 172.4 286.6 16.4 34.2
∆gRT M -267.6 67.8 335.4 -5.8 19.6

∆gFA−∆gGGM -209.6 190.6 400.2 -6.5 20.0
∆gFA−∆gRT M -112.5 182.3 294.9 15.7 34.3

∆gFA−∆gGGM−∆gRT M -36.4 35.0 71.4 -1.0 6.5

final geoid in restore step are given in table 8.21.
Geoid undulation NGGM computed from the chosen global geopotential models has the

largest contribution. Residual geoid undulation N∆gFA−∆gGGM−∆gRT M from compute step has mean
value of -12 cm with standard deviation of 14 cm. RTM geoid undulation NRT M computed in
restore step has small values; mean value 0.0 m, with minimal and maximal values of -11 cm
and 14 cm. This is in accordance with the expected RTM anomaly property which has smallest
power in high-frequencies and has small indirect effect. Statistics of the final geoid undulation
for the territory of the Republic of Croatia are given in the last row of the table. Final geoid
undulation has minimum and maximal values of 36.68 and 49.51 m with mean value of 43.99

Table 8.21: Statistics of the compute and restore geoid undulation contributions of the HRG2018-RCR geoid. Units:
[m].

Contribution min max range mean st. dev.

N∆gFA−∆gGGM−∆gRT M -0.50 0.15 0.65 -0.12 0.14
NGGM 36.66 49.55 12.89 44.11 2.10
NRT M -0.11 0.14 0.25 -0.00 0.02

N 36.68 49.51 12.83 43.99 2.16
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(a) Gravimetric (b) Hybrid

Figure 8.3: Final gravimetric and hybrid geoid models HRG2018-RCR

m.
HRG2018-RCR gravimetric and hybrid geoid models are shown in figure 8.3. Differences

between gravimetric and hybrid geoid models are given in figure 8.4. The differences are smaller
than 10 cm for most of the study area. In the continental (northern and north-eastern) area
the differences are smaller than 5 cm. However, in the mountainous areas, as well as in the
near-coastal areas, where there were not many terrestrial data (around ϕ = 45◦ and λ = 16◦),
differences have values larger than 15 cm.

8.3.1 Validation and fitting of geoid models using GNSS/levelling data

The final step in geoid modelling is fitting and validation of the gravimetric geoid model us-
ing GNSS/leveling data. In this step, different fitting parametric models can be used. No-fit
parametric model corresponds to the gravimetric model, while all other fitting models are re-
lated to the hybrid model. Input data are differences between: 1. geoid undulations obtained
from GNSS/levelling NGNSS/levelling and 2. geoid undulation interpolated from gravimetric geoid
Ngeoid . In ideal case, differences would have been randomly distributed and have mean near 0
cm. The procedure is described more thoroughly in section 4.8.

In validation step, new, non-standard fitting procedure has been implemented as it is be-
lieved it can give more realistic statistical results. The standard procedure is to start from a
GNSS/levelling dataset, and split it on two datasets: parametric and control subsets. Points in
both parametric and control subsets are randomly selected. Parametric subset is used for deter-
mination of parametric (fitting) coefficients, and control subset is used for independent validation
of the goodness of fit of the hybrid geoid model. In a standard procedure, splitting of the dataset
is usually repeated only once, so final statistics of the fitting procedure will largely depend on
the randomly selected points in parametric and control subsets. The ratio parametric/control of
selected points in each subset will also determine the final statistics. Especially if the number of
points in GNSS/levelling dataset is less than (let’s say) few hundreds points. To overcome this
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Figure 8.4: Transformation surface: difference between gravimetric and hybrid HRG2018-RCR models

drawback, fitting procedure in this study was modified and possibly improved in such way that
fitting is repeated for n times, where n was provisionally taken as 20. So the aforementioned
procedure of splitting the GNSS/levelling dataset on parametric and control datasets, then com-
puting fitting parameters, and validation of geoid, was repeated 20 times. The advantage is that
with repeating of the same procedure different points will be selected thus the importance points
selection in parametric and control datasets will diminish and will not affect statistics. In few
numerical experiments with various numbers of n, statistics of geoid accuracy after fitting may
be different in some cases by more than 1 cm.
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Table 8.22: Statistics of GEOFOUR geoid solution by different fitting parametric models. Units: [cm].

fit model min max range mean st. dev.

nofit -13.0 36.8 49.9 8.6 9.9
bias -22.1 28.5 50.6 0.1 9.9

linear -35.2 16.9 52.1 -0.2 6.8
2ndpoly -10.6 11.9 22.6 -0.1 3.6
3rdpoly -9.7 12.3 22.0 -0.0 3.1

3pfit -34.9 16.7 51.7 -0.2 6.7
4pfit -24.9 17.3 42.1 -0.2 5.8
5pfit -21.2 16.6 37.8 -0.2 5.6
7pfit -9.7 14.3 24.0 -0.1 3.3

Statistics of the gravimetric and fitted geoid models is given in table 8.22. Nine parametric
models are tested, along with no-fit. 3rd polynomial parametric models gives the smallest stan-
dard deviation of 3.0 cm with mean value 0.0 cm. Other parametric models which give close
results are 7p fit and 2nd polynomial. It is indicative that in all other solutions (except this fi-
nal geoid solution) 3rd polynomial always gives the smallest standard deviation. More simpler
parametric models, such as bias, also model systematic errors but not comparable to the 3rdpoly
or 7p fit.

Geoid undulation differences δNGNSS/lev.−geoid of gravimetric and hybrid solutions are grid-
ded over the study area of the Republic of Croatia to uncover areas in which differences between
control and computed geoid have large and biased values. Gridding was done with 495 points
corresponding to the number of available GNSS/levelling points. Gridded differences δN, where
Ngeoid are interpolated from gravimetric and hybrid geoids HRG2018-RCR-gra HRG2018-RCR-
hyb, are shown in figures 8.5a and 8.5b.

According to figure 8.5a, over the continental area of Croatia the differences have values
smaller than 5 cm. The problematic area is in southern part of the study area and over the
Velebit mountains where differences δN have values larger than 30 cm. The reason is probably
in the less quality data and computation method, as well as in the complex topography in this
area.

On figure 8.5b fitted differences δN are gridded and visualized. 3rd polynomial is used as
a fitting parametric model as it showed the best agreement with GNSS/levelling (table 8.22).
According to the figure, large amount of the systematic error present in the gravimetric differ-
ences (shown in figure 8.5a) is eliminated in fitting procedure. Differences δN over the whole
Croatian area seem to be randomly distributed without evident areas with extreme values. Fitted
differences do not have higher values than the rest of the area low-land area. This suggests that
3rd polynomial is optimal choice for gravimetric geoid model fitting onto the GNSS/levelling
points.
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(a) δNGNSS/lev.−HRG2018−RCR−gra

(b) δNGNSS/lev.−HRG2018−RCR−hyb

Figure 8.5: Gridded geoid undulation differences δNGNSS/lev.−geoid for gravimetric and hybrid geoid models
HRG2018-RCR
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(g) simple Bouguer anomaly (∆gBA)

Figure 8.6: Absolute values of differences (residuals) between GNSS/levelling points and gravimetric geoid as a
function of different variables
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Geoid undulation differences as a function of different variables

On figure 8.6 geoid undulation differences δNGNSS/lev.−geoid for gravimetric geoid HRG2018-
RCR-gra are analysed as a function of different variables.

It is seen from subfigure a that most of the GNSS/levelling points have orthometric heights
between 100 and 200 m and have values of differences less than 10 cm. Furthermore, for
GNSS/levelling points which have orthometric heights from 0 to 100 m all differences have
values from 10 to 25 cm. These are points which are located near the coastline. This suggests
that gravimetric geoid does not agree well with GNSS/levelling along the coastline (which is
also observed in figure 8.5a). There are only very few points monumented on the larger ortho-
metric heights (H > 400 m) making it harder to validate geoid models in mountainous areas.
For H > 400 m differences δN increase as there are only very few points that have values less
than 5 cm.

Differences δN have values larger than 15 cm for the geoid undulation N around 43 m
(subfigure b). However, most of the GNSS/levelling points have geoid undulation between 44
and 46 m. When differences δN are compared to geodetic latitude and longitude (subfigures c
and d) it can be seen that they values larger than 15 cm around ϕ = 44◦ and λ = 16◦. Analyzing
the dependency of the differences as a function of the quasi-geoid to geoid correction it follows
that with the increase of the difference between quasi-geoid and geoid differences δN are also
increased. Quasi-geoid and geoid surfaces differ the most in mountainous areas where this
correction also has higher values than in flat areas. Dependency of gravity differences about
free-air and simple Bouguer anomaly (subfigures f and g) reveal that differences tend to increase
for larger values of both types of anomalies.

8.3.2 Relative geoid accuracy validation

Besides for absolute positioning where height of the point is determined by GNSS positioning
and then transformed to orthometric in the needed national MSL-based vertical datum by using
hybrid geoid model, relative heightening using GNSS/levelling method shall also be assessed.
The results of relative geoid accuracy validation are compared with ’classical’ precise and tech-
nical levelling and their corresponding allowed misclosure limits by the distance in km. It is
known that accuracy of levelling for heights transfer exponentially decreases with the distance
and as such accumulates errors. The validation procedure is described in section 4.8.1.

The results of relative geoid accuracy validation are shown in figure 8.7. It follows from the
figure that hybrid geoid models are of comparable accuracy with precise levelling for transfer
of the heights over the distances larger than 250 km, and far better than technical levelling even
after 40 km. KTH gravimetric geoid is for distances larger than 50 km better than technical
levelling, while RCR gravimetric geoid indicates errors for the distances between 200 and 350
km. This means that time-consuming and expensive levelling can already be substituted for most
of the engineering tasks. For hybrid geoid models relative accuracy is improved and is constant
for all distances. As expected, for distances that are smaller than approximately 200 km, precise
levelling is superior to GNSS/levelling. However, if geoid accuracy becomes 1 cm in absolute
sense it can be expected that the relative accuracy will be comparable with precise levelling,
except for very small distances.
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Figure 8.7: Relative geoid accuracy of gravimetric and hybrid models HRG2018-RCR and HRG2018-KTH

8.4 Review

Conclusions can be drawn from the results presented in the previous section as well as from the
results of the analysis of other solutions that were computed with all kinds of combinations of
input parameters and models.

Crustal models in geoid determination. Crustal density values and models can result in the
differences between solutions of few centimeters in gravimetric geoid determination. Differ-
ences have systematic trend; increase mean value and not affecting standard deviation. In hybrid,
fitted to GNSS/levelling in LVD, solutions these differences are modeled and filtered. Therefore,
results of fitted geoid models are nearly similar and not depended on the used crustal values and
models. Comparable result emerged in e.g. Omang (2000).

Constant crustal density value for Croatia. Optimal results are obtained when using the con-
stant crustal density value ρc= 2250 kgm−3, instead of the global estimation of ρc= 2670 kgm−3.
This value is confirmed in three independent computation tasks: 1) smallest standard deviation
and mean values obtained when residual gravity anomalies ∆gFA−GGM−RT M are calculated, 2)
smallest standard deviations of geoid models computed using RCR and KTH approaches when
compared to GNSS/levelling dataset, 3) obtained when eight layers from the global crustal model
CRUST1.0 are averaged. Finally, these results agree with first attempts of mean crustal density
values determination in one part of Croatia Čolić et al. (1992).
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Selection of input gravity anomalies. One of the most important steps before geoid computa-
tion is selection of the input data (residual gravity anomalies ∆gFA−GGM−RT M). Solutions which
agreed the best with GNSS/levelling in all geoid computation methods are derived with the same
input data.

Selection of the GGM model: satellite-only vs. combined GGM. It is an open question
whether to use satellite-only or combined GGM model in computation of GGM effects in remove
and restore steps. Although data combining and spectral wavelengths mixing probably should be
avoided the results on this study area show that solutions which give smallest standard deviation
are obtained using combined-data EGM2008 model with maximal degree (nmax = 2190).

Geoid computation methods. Each geoid computation method has its own input parameters,
advantages and drawbacks. It is impossible to make general conclusions, but most of our results
confirm past research. Analytic Stokes integration is the most exact, but is time-consuming,
whereas spectral methods are superb in terms of computational speed. In some cases FFT might
produce outliers or void values. If spectral methods are compared, planar approximation (GE-
OFOUR) is simple and the most accurate. Lest Square Collocation is by far the most complex
and time consuming method. In this case where around twenty thousand points are used, com-
putation of geoid lasted more than few hours. The amount of point gravity data in this study
showed to be manageable for LSC, but if more data are available, it would soon become im-
possible to use them for computations in one step. Another issue is the spatial extent of the
available data. Generally, Stokes integration require knowledge of data of at least 1 to 2◦(and
normally 3 to 5◦) from the borders of the computed geoid, which means that gravity data from
surrounding countries or sea areas are needed. This makes data collection and creation of the
gravity database more complex. The most important step in LSC is derivation and selection of
covariance function, which depends on more than ten different input parameters. This implies
that researcher has to select some input values without knowing exactly what impact does it have
on the computed geoid solution. Simpler alternative is using flat-Earth covariances with block
computations, which seem to give similar results as the 3D LSC. However, block computation
may provide inconsistencies on the block boundaries as well as unknown errors because differ-
ent covariance functions are used for each block. Such issue may also be resolved by using the
same covariance function for the entire computation area. In any case, LSC method, along with
GEOFOUR, resulted in the most precise geoid solution of all compared methods.

Gravimetric vs fitted geoid model. The results show a strong correlation between gravimetric
(no fit) and hybrid (fitted) solutions. Gravimetric geoid solutions which have the smallest stan-
dard deviation compared to GNSS/levelling data, will also have smallest standard deviation in
hybrid geoid models. This is important if some country decides to implement a new geoid-based
vertical datum. In that case, from different gravimetric geoid solutions, one solution has to be
selected. The question arises: by which criteria should gravimetric geoid model be selected and
declared as a vertical datum. The most logical answer would be the solution which agrees the
best with the real geoid surface, and this would probably be the geoid surface defined by the
points in the GNSS/levelling dataset.
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Selection of the fitting parametric model. Generally, from all tested parametric models, the
3rd polynomial model results in the best agreement of gravimetric geoid models with GNSS/lev-
elling dataset. Seven parametric model (7-p) also produces well agreement while other paramet-
ric models still leave some systematic errors which propagate into the statistics. As a rule, the
most important thing in fitting is that mean error, which indicates systematic bias between gravi-
metric geoid solution and local mean-sea-level vertical datum, is completely removed. In other
words, after fitting mean error should be less than few millimeters. It is worth to mention here
that completely another approach was implemented in the determination of the HRG2009 quasi-
geoid model (see, Bašić and Bjelotomić 2014), when GNSS/levelling data were used as input
data together with gravity anomalies in LSC method. Then, no fitting procedure was necessary
as geoid was already fitted to the LVD HVRS71.
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Chapter 9

Conclusions

“If we knew what it was we were doing, it
would not be called research, would it?”

Albert Einstein, 1879-1955

Surface crustal density models were developed for the territory of Croatia. The most realis-
tic model was computed with Parasnis-Nettleton’s method. Largest differences between models
were those developed by Airy-Heiskanen’s and Parasnis-Nettleton’s methods, while smallest
differences were between models developed by Pratt-Hayford’s and Parasnis-Nettleton’s meth-
ods.

A new methodology and software routines were developed and used for modelling of topo-
graphic effects in all steps of regional geoid determination allowing inclusion of surface crustal
density models and 3D crustal models with up to eight layers. Developed routines may be
used for seamless gravity field modelling, determination of gravimetric and hybrid geoid mod-
els, validation of global geopotential models, and gridding of gravity anomalies. Any number
and combination of input parameters and models may be defined before starting computations.
Compared to the past, unrelated programming routines required much manual work from the
researcher which resulted in computational and efficiency problems when large number of dif-
ferent variants of models had to be computed and compared.

Geoid models were computed using different constant crustal density values, developed 2D
crustal density models, and publicly available 3D crustal models. The results indicate that a
mean value of ρc= 2250 kgm−3 is more appropriate for the territory of the Republic of Croatia
compared to the globally estimated value ρc= 2670 kgm−3. Compared to the constant crustal
density values, improvement of the accuracy of gravimetric geoid models by using surface
crustal models is around 2 cm in mean value, while standard deviation is not affected. Us-
ing 3D crustal models, instead of surface density models, geoid models accuracy is changed
by less than 1 cm in mean value, while standard deviation is not changed. Therefore, imple-
mentation of the reliable surface crustal density model into gravity field modelling and geoid
determination for now seems to be optimal option, as 3D crustal density models still have coarse
resolution and unknown reliability. Importance of implementation of the optimal and realistic
crustal density information will increase in the foreseeing future when absolute geoid accuracy
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reaches the ultimate goal 1 cm.
Different gridding (interpolation) methods with variable input parameters for several types

of gravity anomalies were tested. The smallest errors in gridding were produced by using Krig-
ing method for all types of gravity anomalies. Concerning Kriging method, it is crucial to find
and apply optimal variogram model based on input data, otherwise gridding accuracy will suf-
fer. Moving average and polynomial regression gridding methods showed errors of more than 20
mGal. Additionally, differences between gridding methods are smaller if input gridded data is
smoother. For example, differences between first and second most accurate gridding method for
rough free-air gravity anomalies are 2.2 mGal, while for smooth complete Bouguer anomalies
0.7 mGal. The best type of anomalies ∆g for gridding are complete and simple Bouguer anoma-
lies with standard deviation of 2.1 mGal. As expected, free-air gravity anomalies showed to be
non-suitable for interpolation. Taking into account the simplicity of calculation and small dif-
ferences in accuracy when gridding complete Bouguer anomalies, gridding may be sufficiently
well done using simple Bouguer anomalies, although complete Bouguer anomalies will gener-
ally result in highest gridding accuracy.

In GGM validation, combined data models EGM2008 and EIGEN-6C4 showed best agree-
ment with GNSS/levelling and gravity data. From satellite-only GGMs, ITU-GGC16 and GO-
CONS-GCF-2-TIM-R5 indicate best agreement of all validated models.

Detailed numerical investigation of the influence of all input parameters and models in resid-
ual gravity field modelling for RCR approach was done. The results allowed usage of the resid-
ual gravity anomalies ∆gFA−GGM−RT M with smallest possible mean error and standard deviation
as input data in geoid determination. Input parameters which have the strongest influence on
residual gravity anomalies as they change mean and standard deviation by more than 3 mGal:
maximum degree of expansion of GGM, resolution of the reference and fine DEM, and crustal
density. Selection of the global geopotential model or digital elevation model and gridding
method of digital elevation models have moderate influence changing mean or standard devia-
tion between 1 and 3 mGal. More detailed conclusions are given in chapter 6, section 6.3.

The influence and sensitivity of input parameters and models in KTH approach was inves-
tigated. It is now much clearer how different parameters affect the accuracy of geoid models,
and how to select optimal combination of input parameters to derive the best possible solution
starting from the input data and models.

A new gravimetric and hybrid geoid models for the territory of Croatia were determined
using KTH and RCR approaches. Standard deviation of the best hybrid geoid model HRG2018-
RCR is 3.0 cm, and HRG2018-KTH is 3.5 cm.

In comparison of different spatial and spectral geoid computation methods planar FFT (GE-
OFOUR) and LSC resulted in the smallest standard deviation of 3.0 cm and 3.1 cm with mean
values of 0.0 cm after fitting to GNSS/levelling. When hybrid geoid models are compared, dif-
ferences between accuracies of geoid computation methods compared to GNSS/levelling are
generally less than 1 cm.

Comparison of the differences (grid - grid) between gravimetric geoid models computed
with different methods of RCR approach and KTH approach reveal mean biases of more than
10 cm. The biggest differences are between best gravimetric models solutions of KTH and RCR
approaches where mean difference is around 90 cm. After 1-parameteric fitting, mean difference
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is reduced down to 0.0 cm.
Different parametric models are used for transformation of gravimetric to hybrid geoid

model and for GGM validation. In all cases 3rd polynomial model resulted in the smallest
standard deviation with almost complete elimination of mean. Seven-parametric model in some
cases achieved comparable results, but was never better.

Future research

In this thesis several topics related to regional gravity field modelling and geoid determination
were investigated. The results obtained throughout PhD research opened and generated new
topics and ideas for conducting research in the future. Some of them are:

• Validation of the created surface crustal density models using independent geophysical
data. Creation and publication of a unique and verified combined surface crustal density
model which could be used in all geodetic and geophysical applications.

• Development of the 3D crustal density and Moho depths models for the territory of the
Republic of Croatia using available data, e.g. from GOCE or GRACE-FO satellite gravity
missions or other geophysical and geological data.

• Repeat computations on other areas worldwide and analyze the influence of different pa-
rameters and models in gravity field modelling and geoid determination using RCR and
KTH approaches (chapters 6 and 7).

• Perform numerical investigations of the influence of all input parameters and models on
the accuracy of computed geoid model in RCR approach.

• Compare RCR and KTH approaches on other areas worldwide. Compute geoid with the
Stokes-Helmert (UNB) approach and compare it with the RCR and KTH approaches.

• Include other types of gravity-field data, such as deflections of vertical or gravity gradi-
ents, and investigate their’s impact on the accuracy of geoid models.

• Validate, control and update gravity and GNSS/levelling databases. Special focus should
be on densification of the databases in mountainous, coastal, and marine areas.

• Investigate requirements for replacement of the present MSL-based Height Reference
System (HRS) HVRS71 with the geoid-based height reference system which would be
consistent with the most recent recommendations of the IAG realization of International
Height Reference System (IHRS) and World Height System (WHS) (see, Ihde et al. 2017,
Sánchez and Sideris 2017).
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ϕ , λ , h, r, θ , λ ,x, y, z, GM, a, b, J2,V , NGNSS/lev. Ngeoid , W , T , δgTC, ∆gFA, ∆gsB,∆gcB,
∆gGGM, ∆gFA−GGM−RT M, δgB, δgFA, G, δgRT M, ∆gRT M, N, ζ , ρc, ρw, ρm, Ñ, δNatm, δNcomb

top ,
δNDWC, δNell , ψ , ψ , dcn, R, n, m,h,H, H∗, H ′, Q,S, P, Vs,Vp, gra, hyb, ∆NGNSS/lev.−geoid
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Čolić, K., T. Bašić, S. Petrović, B. Pribičević, M. Ratkajec, H. Sünkel, and N. Kühtreiber (1992). New geoid solution
for Slovenia and part of Croatia. In Proceed. of the First Continental Workshop on the Geoid in Europe, P. Holota
and M. Vermeer (eds.), pp. 158–165.
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Hrvatske. Ekscentar 1(15), 104–108. URL: http://hrcak.srce.hr/81663.

Varga, M. (2012b). Topo-isostatic model of the territory of the Republic of Croatia. MSc thesis, Faculty of Geodesy,
University of Zagreb.
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Appendix A

Flowcharts of KTH and RCR geoid
determination approaches
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Figure A.1: Flowchart of geoid determination using KTH approach.
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Figure A.2: Flowchart of geoid determination using RCR approach.
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Appendix B

Gridded geoid undulation differences
between KTH and RCR solutions

Figure B.1: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Units: [cm]. Part 1/3.
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Figure B.2: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Units: [cm]. Part 2/3.
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Figure B.3: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Units: [cm]. Part 3/3.
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Figure B.4: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Mean difference between models removed. Units: [cm]. Part 1/3.
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Figure B.5: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Mean difference between models removed. Units: [cm]. Part 2/3.
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Figure B.6: Differences (grid 1−grid 2) between gravimetric geoid models calculated by using different
computation methods. Mean difference between models removed. Units: [cm]. Part 3/3.
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Appendix C

Models of topographic reductions and
gravity anomalies

Developed models of gravity anomalies for the territory of the Republic of Croatia is given in
this chapter. Initial data for development of models are free-air gravity anomalies ∆gFA from the
database described in section 5.1, visualized in figure 5.1b.

Table C.1: Statistics of the gravity anomaly models. Units: [mgal].

Model of min max range mean st. dev.

∆gFA -59 120 178 13 23
δgTC -0 21 21 2 3
∆gFaye -48 125 173 15 22
∆gsB -90 45 135 -18 26
∆gcB -84 47 131 -16 25

δgA−H -1 256 257 59 52
∆gA−H -187 39 226 -46 46
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Figure C.1: Normal gravity γ0 model

Figure C.2: Free-air gravity anomaly ∆gFA model
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Figure C.3: Terrain correction δgTC model

Figure C.4: Faye (Helmert) anomaly ∆gFaye model
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Figure C.5: Simple Bouguer anomaly ∆gsB model

Figure C.6: Complete Bouguer anomaly ∆gcB model
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Figure C.7: Airy-Heiskanen topographic-isostatic reduction δgA−H model

Figure C.8: Airy-Heiskanen topographic-isostatic anomaly ∆gA−H model
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Appendix D

Developed software

Programming language: Matlab.
Total scripts: 160.
Total lines of code: 13260.

Listed routines enable automatized creation of gravimetric and hybrid geoid models and
models of gravity anomalies with definition of input models and parameters. The routines are
sorted in task-related sections and ordered in a structured and connected way. Short description
of the most relevant routines:

• A00:
– control script which runs all other routines,
– definition of global input parameters, models, paths,
– preparing, converting, structuring, filling gaps of the input models,
– backup of the data that runs with each run of the main progra,
– creation of folders
– compilation of Fortran and C++ scripts.

• A1, A2, A3:
– creation of the input gravity database,
– automatizes fill of the gravity database,
– creation of the anomaly and geoid grids,

• A5, A6: calculation of the global and terrain gravity effects,
• A7: cross-validation and gridding of gravity anomalies,
• A8: creation of crustal (2D) density grids,
• A9: vizualization of all gravity, GGM, DEM, density grids,

• B: calculation of GGM gravity effects using different input data and parameters (GGM
models and maximum degree of SH),

• C1: creation of fine, coarse, reference DEMs,
• C2: calculation of terrain gravity effects using different input data parameters (DEM mod-

els, r1, r2, resolutions of DEMs),

• D:
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– residual gravity field modeling using GGM and terrain gravity effects,
– calculation of different types of gravity anomalies (Bouguer, topo-isostatic, Helmert,

etc.),
– visualization of gravity residuals,
– selection of gravity residuals,
– detection and filtering of outliers,

• E1 to E8: RCR geoid determination approach (Stokes, GEOFOUR, SPFOUR, GPCOL,
LSC, and SP1D geoid determination methods) using various input data and parameters

• F8: KTH geoid determination approach
• G1: UNB geoid determination approach (results not presented in this thesis)
• H1: GGM models validation on gravity and GNSS/levelling points
• E23, E24, S_DR: all kinds of analysis’, visualizations, statistics, etc.

Table D.1: A list of developed Matlab scripts

File name Last modified Lines of code
A00_ulazni_parametri 22-Aug-2017 145
A00a_supp_reset_all_computation_data_and_metadata 16-Aug-2017 343
A00aa_delete_bad_solutions_init 04-Aug-2017 33
A00ab_delete_bad_solutions 04-Aug-2017 244
A00b_create_unique_ids 08-Jun-2017 13
A00c_supp_delete_variables 04-Aug-2017 1
A00d_prepare_all_input_models 18-Sep-2017 89
A00db_fill_gaps_in_input_models 19-Sep-2017 31
A00f_backup 04-Aug-2017 35
A00g_consistency_solutions_check 08-Jun-2017 58
A00g_make_folders 09-Aug-2017 27
A00h_compile_software 02-Jun-2017 17
A1_A_stations_init 05-Sep-2017 87
A1_B_stations_fill 21-Jul-2017 60
A1_C_GGMplus_evaluation 03-Jun-2017 31
A2_geoid_grid 15-Jun-2017 42
A3_anomaly_grid 04-Oct-2017 26
A5_TC_efekti_svih_tocaka 22-Sep-2017 143
A6_GGM_efekti_svih_tocaka 24-Jun-2017 65
A7_A_cross_validation_best_gridding_method 23-Aug-2017 162
A7_B_grid_FA_anomaly 03-Jun-2017 30
A8_A_density_grid 25-Sep-2017 163
A8_B_density_grid_vizualization 06-Oct-2017 80
A9_vizualizacija_gridova 12-Oct-2017 174

Continued on next page
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Table D.1 – continued from previous page
File name Date modified Lines of code
B0_graflab_init 18-Sep-2017 15
B1_A_graflab_metadata 02-Jun-2017 42
B1_B_graflab_remove_compute 02-Jun-2017 39
C0_A_TC_init 06-Oct-2017 109
C1_0_metadata_modeli 02-Jun-2017 191
C1_A_DMR_TCGRID 03-Apr-2017 18
C1_B_TC_DMR_fini 14-Apr-2017 18
C1_C_DMR_grubi 02-Jun-2017 26
C1_D_DMR_ref 02-Jun-2017 27
C1_E_rho 01-Aug-2017 58
C2_A_TC_remove_metadata 14-Jul-2017 92
C2_B_TC_remove_compute 02-Jun-2017 70
D1_AB_residuals_with_or_without_outliers 25-Jun-2017 48
D1_AC_recompute_residuals 21-Jul-2017 44
D1_AD_manually_create_residuals 10-Jul-2017 71
D1_A_gravity_residuals 21-Jul-2017 310
D1_B_vizualization_gravity_residuals 13-Sep-2017 183
D1_C_graph 19-Jul-2017 71
D1_C_graph_2 11-Sep-2017 168
D1_C_graph_3 11-Sep-2017 38
D2_A_select_gravity_residuals_for_4_RCR 04-Aug-2017 46
D2_B_outliers_gravity_GNSSlev 31-Jul-2017 31
D3_gridding_DWC_selected_gravity_residuals 25-Jul-2017 52
E1_A_Stokes_init 02-Aug-2017 20
E1_B_Stokes_metadata 02-Jun-2017 40
E1_C_Stokes_compute 15-Jun-2017 49
E20_restore_init 08-Jun-2017 32
E21_A_graflab_metadata 08-Jun-2017 31
E21_B_graflab_restore_compute 13-Jun-2017 43
E22_A_TC_metadata 08-Jun-2017 30
E22_B_TC_restore_compute 11-Jun-2017 71
E23_A_RCR_restore 10-Oct-2017 418
E23_A_RCR_restore_error 13-Jun-2017 29
E23_B_RCR_export_geoid_statistics 10-Oct-2017 171
E23_C_A_fit_gravimetric_geoid_and_independent_geoid_validation 21-Aug-2017 134
E23_C_B_vizualize_gravimetric_hybrid_residuals 11-Oct-2017 104
E23_C_C_differences_geoid_vs_GNSS_lev 10-Oct-2017 84
E23_C_D_statistics_of_all_geoid_compt_methods 10-Oct-2017 49
E23_C_E_relative_geoid_accuracy 10-Oct-2017 106

Continued on next page
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Table D.1 – continued from previous page
File name Date modified Lines of code
E23_C_S_initialize_names_and_paths 17-Aug-2017 121
E24_A_A_RCR_mega_metadata 10-Aug-2017 43
E24_A_B_RCR_graph 18-Sep-2017 176
E24_B_RCR_geoid_vizualization 10-Aug-2017 201
E2_A_GEOFOUR_init 04-Aug-2017 15
E2_B_GEOFOUR_metadata 15-Jun-2017 33
E2_C_GEOFOUR_compute 04-Aug-2017 60
E3_A_GPCOL_init 04-Aug-2017 18
E3_B_GPCOL_metadata 08-Jun-2017 37
E3_C_GPCOL_compute 04-Aug-2017 94
E4_A_SPFOUR_init 03-Aug-2017 19
E4_B_SPFOUR_metadata 15-Jun-2017 41
E4_C_SPFOUR_compute 07-Aug-2017 65
E7_A_SP1D_init 03-Aug-2017 17
E7_B_SP1D_metadata 15-Jun-2017 39
E7_C_SP1D_compute 07-Aug-2017 60
E8_0_cov_init 04-Aug-2017 28
E8_1_A_empcov_metadata 08-Jun-2017 31
E8_1_B_empcov_compute 09-Jun-2017 45
E8_2_A_covfit_metadata 30-Jul-2017 59
E8_2_B_covfit_compute 30-Jul-2017 74
E8_3_0_statistics_of_covariances 30-Jul-2017 38
E8_3_1_vizualize_covariances 12-Oct-2017 79
E8_4_A_geocol_init 07-Aug-2017 16
E8_4_B_geocol_metadata 28-Jul-2017 41
E8_4_C_geocol_compute 04-Aug-2017 114
F1_A_KTH_init 07-Jul-2017 34
F1_B_KTH_metadata 02-Jun-2017 90
F1_C_KTH_compute 28-Jun-2017 179
F1_D_KTH_export_statistics 23-Jun-2017 35
F2_A_KTH_geoid_vizualization 05-Sep-2017 171
F2_B_KTH_graph 28-Jun-2017 137
F2_C_KTH_graph_3 28-Jun-2017 44
F2_S_KTH_recompute_statistics 07-Jun-2017 22
F2_S_KTH_remove_unnecesary_fields 07-Jun-2017 18
G1_A_UNB_init 08-Jun-2017 51
G1_B_A_UNB_effects_metadata 01-Jun-2017 55
G1_B_B_UNB_effects 01-Jun-2017 168
G1_C_A_UNB_graflab_init 27-Apr-2017 12

Continued on next page
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Table D.1 – continued from previous page
File name Date modified Lines of code
G1_C_B_UNB_graflab_metadata 26-Apr-2017 31
G1_C_C_UNB_graflab_compute 26-Apr-2017 44
G1_D_A_UNB_Stokes_metadata 02-Jun-2017 43
G1_D_B_UNB_Stokes_compute 09-Jun-2017 90
G1_E_UNB_validation 02-Jun-2017 38
G1_F_A_UNB_effects_vizualization 19-Jun-2017 93
G1_F_B_UNB_graflab_vizualization 19-Jun-2017 78
G1_F_C_UNB_Stokes_vizualization 19-Jun-2017 101
G1_S_UNB_supp_vizualization 17-Feb-2017 21
G1_Z_UNB_DWC 03-Apr-2017 35
H1_A_GGM_validation 21-Aug-2017 170
H1_B_GGM_vizualization 14-Aug-2017 175
H1_C_A_GGM_graph 06-Oct-2017 107
H1_C_B_GGM_graph 10-Oct-2017 91
H1_C_C_GGM_residuals_map 06-Oct-2017 135
H1_C_D_GGM_all_parametric_models 06-Oct-2017 56
H1_C_E_GGM_statistics 22-Aug-2017 52
H1_D_A_GGM_spectral 19-Sep-2017 79
H1_D_B_GGM_spectral 20-Sep-2017 84
O1_A_input 11-Oct-2017 197
O2_A_graph_1_1 12-Oct-2017 100
O2_B_graph_2_vs_1 07-Oct-2017 116
O2_C_graph_correl 07-Jul-2017 36
S_DR_10_RCR_geoid_components_statistics 10-Oct-2017 190
S_DR_11_geoidi_ili_razlike_geoida 10-Oct-2017 151
S_DR_12_A_geoid_statistics 13-Oct-2017 70
S_DR_12_S_A_geoid_statistics_metadata 13-Oct-2017 159
S_DR_12_S_B_add_space_between_rows 13-Oct-2017 35
S_DR_13_geoid_all_parametric_models 10-Oct-2017 64
S_DR_14_geoid_to_quasi_geoid_correction 10-Oct-2017 51
S_DR_15_FA_TC_Bouguer_TI_anomaly_map 13-Oct-2017 171
S_DR_16_unfiltered_filtered_residuals_map 06-Oct-2017 84
S_DR_16_unfiltered_filtered_residuals_map_animation 25-Sep-2017 85
S_DR_17_CRUST1 06-Oct-2017 99
S_DR_18_GGM_nmax 20-Sep-2017 29
S_DR_19_Stokes_kernel 13-Oct-2017 52
S_DR_1_statistika_anomaly_filter_non_filter 13-Sep-2017 21
S_DR_20_export_list_of_routines 16-Oct-2017 40
S_DR_21_leg_pol 13-Oct-2017 22

Continued on next page
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Table D.1 – continued from previous page
File name Date modified Lines of code
S_DR_22_surface_spherical_harmonics 26-Sep-2017 20
S_DR_23_Schwarz1984 12-Oct-2017 15
S_DR_2_A_DEM_eksport 13-Oct-2017 27
S_DR_2_B 06-Oct-2017 26
S_DR_3_EGM2008 13-Oct-2017 48
S_DR_4_density_grid_publication_vizualize 13-Oct-2017 132
S_DR_5_CV 23-Aug-2017 159
S_DR_6_KTH_geoid 13-Oct-2017 118
S_DR_7_A_KTH_selected_solutions 11-Oct-2017 82
S_DR_7_B_KTH_best_solution 10-Oct-2017 39
S_DR_8_A_RCR_residuals_selected_solutions 10-Oct-2017 86
S_DR_O2_A_init 28-Jul-2017 56
S_DR_O2_B_D2_run 07-Jul-2017 34
S_func_R_2_text 16-Jun-2017 7
S_func_read_geoid_model 09-Aug-2017 32
S_rectangle_lines_from_points_lat_lon 22-Sep-2017 15
S_spoji_egm2008 21-Jun-2017 20
S_zero_padding 22-Jul-2017 0
N_or_g_fitting 11-Aug-2017 113
W0_LVD 07-Apr-2017 40
ertm2160_2013_v2 10-Oct-2014 219
expand_area_with_gravity 22-Feb-2017 36
ggmplus2013_v4 20-Jan-2017 221
h_H_N_fitting 11-May-2017 93
inv_chol 06-Sep-2016 11
legen_nm 25-Apr-2016 9
par_elips 10-May-2017 129
parametric_model_v2 29-May-2017 94
struct_unique_records 06-Feb-2017 43
test_access_ggmplus 20-Jan-2017 76
vincenty_distance 05-Apr-2017 108
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Appendix E

Additional tables

Table E.1: Properties of height systems (after Meyer et al. 2007 and Ince 2011)

Type Equation
Defines

level surface
Misclosure

Physically
meaningful

Rigorous
implementation

Geopotential
number C =

∫ P
0 gδn yes no yes yes

Dynamic Hdyn = C
γ0

yes no yes yes

Orthometric H = C
ḡ no no yes no

Normal H∗ = C
γ̄

no no no yes

Normal-
orthometric

HNO = C∗
γ̄

no no no yes

Ellipsoidal h no no no yes

Geoid
undulation

N = h−H

Height
anomaly

ζ = h−H∗
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Table E.2: A list of fitting parametric models (Daho et al. 2006, Fotopoulos 2013)

Name AT
i

1-p 1

4-p 1, cosϕ cosλ , cosϕ sinλ , sinϕ

5-p 1, cosϕ cosλ , cosϕ sinλ , sinϕ , sin2
ϕ

7-p
1, cosϕ cosλ , cosϕ sinλ , sinϕ , sin2

ϕ , cosϕ sinϕ sinλ

W , cosϕ sinϕ cosλ

W ;

W =
√

1− e2 sin2
ϕ

differential similarity cosϕ cosλ , cosϕ sinλ , sinϕ , sinϕ cosϕ sinλ

W , sinϕ cosϕ cosλ

W , 1− f 2 sin2
ϕ

W , sin2
ϕ

W

1st poly. 1, ∆ϕ , ∆λ

2nd poly. 1, ∆ϕ , ∆λ , ∆ϕ∆λ , ∆ϕ2, ∆λ 2

3rd poly. 1, ∆ϕ , ∆λ , ∆ϕ∆λ , ∆ϕ2, ∆λ 2, ∆ϕ∆λ 2, ∆ϕ3, ∆λ 3

4th poly.
1, ∆ϕ , ∆λ , ∆ϕ∆λ , ∆ϕ2, ∆λ 2, ∆ϕ2∆λ , ∆ϕ∆λ 2, ∆ϕ3, ∆λ 3, ∆ϕ2,
∆ϕ3∆λ , ∆ϕ∆λ 3, ∆ϕ4, ∆λ 4

Table E.3: Basic statistical measures used for analysis of results

name acronym equation

arithmetic mean mean xmean =
1
n (∑

n
i=1 xi)

variance σ xσ = 1
n

(
∑

n
i=1 x2

i
)

root mean square rms xrms =
√

1
n

(
∑

n
i=1 x2

i

)
standard deviation st. dev. xst.dev. =

√
1

n−1 ∑
n
i=1 (xi− x̄)2



Table 9.4: Formulas for obtaining gravity values, topographic reductions and gravity anomalies

Functional Type Symbol Formulas

gr
av

ity

Free-Air gFA = g+δgFA

simple Bouguer gsB = g+δgFA−δgB

complete Bouguer gcB = g+δgFA−δgB +δgTC

Faye (Helmert) gFaye = g+δgFA−δgTC

Airy-Heiskanen gA−H = g+δgFA−δgA−H

Pratt-Hayford gP−H = g+δgFA−δgP−H

Residual Terrain Model gRT M = g+δgFA−δgRT M

re
du

ct
io

n

Free-Air δgFA = − ∂g
∂H H ≈− ∂γ

∂H H
simple Bouguer δgB = 2πGρHP

terrain correction δgTC = G
∫ ∫ HP∫

H

ρ(x,y,z)(HP−z)
l3 dxdydz

Airy-Heiskanen δgA−H = δgtop
A−H −δgcomp

A−H = G
∫ ∫ H(x,y)∫

0

ρ(x,y,z)(HP−z)
l3 dxdydz−G

∫ ∫ −T0−HP∫
−T0−t−HP

∆ρ(x,y,z)(HP−z)
l3 dxdydz

Pratt-Hayford δgP−H = δgtop
P−H −δgcomp

P−H = G
∫ ∫ H(x,y)∫

0

ρ(x,y,z)(HP−z)
l3 dxdydz−G

∫ ∫ −HP∫
−D−HP

∆ρ(x,y,z)(HP−z)
l3 dxdydz

Residual Terrain Model δgRT M = 2πGρ(HP−Href)−G
∫ ∫ H∫

Hre f

ρ(x,y,z)(HP−z)
l3 dxdydz≈ 2πGρ(x,y,z)(H−Href)−δgTC

an
om

al
y

anomaly ∆g = g− γ0
Free-Air ∆gFA = gFA− γ0
simple Bouguer ∆gsB = gsB− γ0
complete Bouguer ∆gcB = gcB− γ0
Faye (Helmert) ∆gFaye = gFaye− γ0
Airy-Heiskanen ∆gA−H = gA−H − γ0
Pratt-Hayford ∆gP−H = gP−H − γ0
Residual Terrain Model ∆gRT M = gRT M− γ0
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5. Varga, Matej; Dragčević, D.; Pinter, D.; Ramić, M.; Topolovec, I. Review of the regional geoid models around the world.
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u Zagrebu. 124 (2011); 69-75.
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1. Bašić, A. (2017). Unification of the local height reference systems by determination of vertical datum shifts and potential

values W0. Zagreb: Faculty of Geodesy. MSc Thesis. Supervisor: Bašić, T. Principal investigator: Matej Varga.
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Matej Varga.

6. Grgac, I. The Application of Gravity in Height Systems. MSc Thesis. Zagreb: Faculty of Geodesy, 20.09. 2013., 66 pages.
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