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P versus NP is considered as one of the most important open problems in computer science. This consists

in knowing the answer of the following question: Is P equal to NP? It is one of the seven Millennium Prize

Problems selected by the Clay Mathematics Institute. This question was first mentioned in a letter written

by John Nash to the National Security Agency in 1955. A precise statement of the P versus NP problem was

introduced independently in 1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof

for this problem have failed. To attack the P versus NP question the concept of NP-completeness has been

very useful. If any single NP-complete problem can be solved in polynomial time, then every NP problem has

a polynomial time algorithm. MONOTONE 3SAT is a known NP-complete problem. We prove MONOTONE

3SAT is in P. In this way, we demonstrate the P versus NP problem.
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1 THEORY
An important complexity class is NP–complete [7]. A language L ⊆ {0, 1}∗ is NP–complete if

• L ∈ NP , and
• L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard [5]. Moreover, if

L ∈ NP , then L ∈ NP–complete [5]. A Boolean formula ϕ is composed of

(1) Boolean variables: x1,x2, . . . ,xn ;
(2) Boolean connectives: Any Boolean function with one or two inputs and one output, such as

∧(AND), ∨(OR),⇁(NOT),⇒(implication), ⇔(if and only if);

(3) and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying

truth assignment is a truth assignment that causes ϕ to be evaluated as true. A formula with a

satisfying truth assignment is a satisfiable formula. We define a CNF Boolean formula using the

following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A

Boolean formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses,

each of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal

form or 3CNF , if each clause has exactly three distinct literals [5].

For example, the Boolean formula

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three liter-

als x1,⇁ x1, and⇁ x2. A relevant NP–complete language is 3CNF satisfiability, or 3SAT [5]. In

3SAT , it is asked whether a given Boolean formula ϕ in 3CNF is satisfiable. This problem re-

mains in NP–complete even if each clause contains either only negated or un-negated variables

(MONOTONE 3SAT) [7].
In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a

perfect square modulo n [8]; i.e., if there exists an integer x such that:

x2 ≡ q(mod n).

Otherwise, q is called a quadratic nonresidue modulo n [8]. When in the context is clear the

terminology “quadratic residue” and “quadratic nonresidue”, then it is dropped the adjective
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“quadratic” [8]. We use the shorthand notations q R p and q N p, to indicated that q is a quadratic

residue or nonresidue, respectively. [8].

2 RESULTS
Theorem 2.1. MONOTONE 3SAT ∈ P .

Proof. Let ϕ be a Boolean formula in 3CNF of n variables withm clauses. Let p1,p2, . . . ,pn be

the first n odd primes such that they have 2 as a quadratic nonresidue. We assign for each variable

in the Boolean formula ϕ a unique of these prime numbers such that the variable x1 will have the
prime p1 and so on consecutively.

We shall say z satisfies ϕ if the assignment (z R p1, z R p2, . . . , z R pn) satisfies ϕ. This means in

a satisfying truth assignment T the variable x1 is true if z R p1 or x2 is false when z N p2 and so

forth. Now, for each clause ck in ϕ we construct an expression of nonresidues and residues that

make the clause false for a possible candidate z. For example, in the clause ck = (xr ∨ xs ∨ xt )
for 1 ≤ r , s, t ≤ n, then a solution of the simultaneous nonresidues z N pr , z N ps and z N pt
guarantee the clause will be false because xr would be false, xs would be false and xt would be false.
However, we already know that when z N pr , z N ps and z N pt , then (2 × z) R pr , (2 × z) R ps and
(2 × z) R pt because 2 is a nonresidue modulo every of these chosen primes and the multiplication

of a nonresidue with a nonresidue is a residue [8]. Since pr , ps and pt are primes, then we can

assure that (2 × z) R (pr × ps × pt ) due to the following property: a number x is a residue modulo y
when x is a residue modulo for every prime power dividing y [8].

Therefore, when (2 × z) R (pr × ps × pt ), then we guarantee the clause ck will be evaluated as

false. In contraposition, in the clause ck ′ = (⇁ xr∨⇁ xs∨⇁ xt ) for 1 ≤ r , s, t ≤ n, then a solution

of the simultaneous residues z R pr , z R ps and z R pt guarantee the clause will be false because xr
would be true, xs would be true and xt would be true. Since pr , ps and pt are primes, then we can

assure that z R (pr × ps × pt ) due to the property mentioned above. Hence, when z R (pr × ps × pt ),
then we guarantee the clause ck ′ will be evaluated as false. Consequently, if we guarantee that

some number z complies with (2 × z) N (pr × ps × pt ) or z N (pr × ps × pt ) for every clause c in ϕ,
then z will correspond to a satisfying truth assignment for ϕ.
However, it is enough to search an odd or even number z between all the values of 0 ≤ z ≤

pn−2 × pn−1 × pn such that z and 2 × z complies with the nonresidues of the triple multiplication of

primes from each clause due to the following property: a number x is a nonresidue modulo y when

x is a nonresidue modulo for at least one prime power dividing y [8]. Certainly, for every triple of

primes pi , pj and pk , within the numbers between 0 and pi ×pj ×pk there are the fully combinations

of residues and nonresidues between the primes pi , pj and pk [13]. When we mean combinations,

we actually mean for example a number that is residue from pi and pj , but it is nonresidue with pk
and so forth. In this way, pn−2 ×pn−1 ×pn is the greatest upper bound which complies that property

in ϕ. Thus,MONOTONE 3SAT ∈ P . Certainly, we can find the first n odd primes such that they have

2 as a quadratic nonresidue just checking for every odd prime p whether

p ≡ 3(mod 8)

or

p ≡ 5(mod 8)

as a consequence of the Euler’s criterion [13]. Indeed, there are infinitely many primes of the form

8 × k + 3 or 8 × k + 5 due to Dirichlet’s theorem on arithmetic progressions [14]. Moreover, the nth

odd prime which has 2 as a quadratic nonresidue is polynomially bounded by n × lnn, because of

π (x ; 8, 3) and π (x ; 8, 5) are asymptotic to
Li(x )
φ(8) where φ is the Euler’s totient function and Li is the

Eulerian logarithmic integral [14]. Consequently, the search of the number z through the iteration
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from 0 to pn−2 × pn−1 × pn can be done O(n4). In addition, we can feasible search these special first

primes, because we can make the primality test of a number in polynomial time [2]. �

Theorem 2.2. P = NP .

Proof. If any single NP–complete problem can be solved in polynomial time, then P = NP [12].

As a consequence of Theorem 2.1, the answer of the P versus NP problem will be P = NP . �

3 DISCUSSION
Cryptography, for example, relies on certain problems being difficult. A constructive and efficient

solution to an NP–complete problem such as 3SAT will break most existing cryptosystems including:

Public-key cryptography [10], symmetric ciphers [11] and one-way functions used in cryptographic

hashing [6]. These would need to be modified or replaced by information-theoretically secure

solutions not inherently based on P–NP equivalence.
There are enormous consequences that will follow from rendering tractable many currently

mathematically intractable problems. For instance, many problems in operations research are

NP–complete, such as some types of integer programming and the traveling salesman problem [9].

Efficient solutions to these problems have enormous implications for logistics [4]. Many other

important problems, such as some problems in protein structure prediction, are also NP–complete,
so this will spur considerable advances in biology [3].

Indeed, a proof of P = NP could solve not merely one Millennium Problem but all seven of them

[1]. This observation is based on once we fix a formal system such as the first-order logic plus the

axioms of ZF set theory, then we can find a demonstration in time polynomial in n when a given

statement has a proof with at most n symbols long in that system [1]. This is assuming that the

other six Clay conjectures have ZF proofs that are not too large such as it was the Perelman’s case

[1].
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