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P versus NP is considered as one of the most important open problems in computer science. This consists
in knowing the answer of the following question: Is P equal to NP? It is one of the seven Millennium Prize
Problems selected by the Clay Mathematics Institute. This question was first mentioned in a letter written
by John Nash to the National Security Agency in 1955. A precise statement of the P versus NP problem was
introduced independently in 1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof
for this problem have failed. To attack the P versus NP question the concept of NP-completeness has been
very useful. If any single NP-complete problem can be solved in polynomial time, then every NP problem has
a polynomial time algorithm. MONOTONE 3SAT is a known NP-complete problem. We prove MONOTONE
3SAT is in P. In this way, we demonstrate the P versus NP problem.
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1 THEORY
An important complexity class is NP-complete [7]. A language L C {0, 1}* is NP—complete if

e L € NP, and
o L' <, Lforevery L’ € NP.

If L is a language such that L" <,, L for some L’ € NP-complete, then L is NP-hard [5]. Moreover, if
L € NP, then L € NP-complete [5]. A Boolean formula ¢ is composed of

(1) Boolean variables: x1, xz, . . ., Xp;
(2) Boolean connectives: Any Boolean function with one or two inputs and one output, such as
A(AND), V(OR), —(NOT), =(implication), <(if and only if);

(3) and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A satisfying
truth assignment is a truth assignment that causes ¢ to be evaluated as true. A formula with a
satisfying truth assignment is a satisfiable formula. We define a CNF Boolean formula using the
following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [5]. A
Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses,
each of which is the OR of one or more literals [5]. A Boolean formula is in 3-conjunctive normal
form or 3CNF, if each clause has exactly three distinct literals [5].

For example, the Boolean formula

(x1V = x1V = x2) A(x3 VX2 Vxg) A(— x1V — x3V — xy)

is in 3CNF. The first of its three clauses is (x;V — x;V — x3), which contains the three liter-
als x1, — x1, and — x;. A relevant NP-complete language is 3CNF satisfiability, or 3SAT [5]. In
3SAT, it is asked whether a given Boolean formula ¢ in 3CNF is satisfiable. This problem re-
mains in NP-complete even if each clause contains either only negated or un-negated variables
(MONOTONE 3SAT) [7].

In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a
perfect square modulo n [8]; i.e., if there exists an integer x such that:

x* = q(mod n).

Otherwise, g is called a quadratic nonresidue modulo n [8]. When in the context is clear the
terminology “quadratic residue” and “quadratic nonresidue”, then it is dropped the adjective
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“quadratic” [8]. We use the shorthand notations g R p and g N p, to indicated that q is a quadratic
residue or nonresidue, respectively. [8].

2 RESULTS
THEOREM 2.1. MONOTONE 3SAT € P.

Proor. Let ¢ be a Boolean formula in 3CNF of n variables with m clauses. Let py, pa, . . ., pn be
the first n odd primes such that they have 2 as a quadratic nonresidue. We assign for each variable
in the Boolean formula ¢ a unique of these prime numbers such that the variable x; will have the
prime p; and so on consecutively.

We shall say z satisfies ¢ if the assignment (z R p1,z R p2, . . .,z R p,,) satisfies ¢. This means in
a satisfying truth assignment T the variable x; is true if z R p; or x; is false when z N p, and so
forth. Now, for each clause cx in ¢ we construct an expression of nonresidues and residues that
make the clause false for a possible candidate z. For example, in the clause ¢, = (x, V x5 V x¢)
for 1 < r,s,t < n, then a solution of the simultaneous nonresidues z N p,, z N ps and z N p;
guarantee the clause will be false because x, would be false, x; would be false and x; would be false.
However, we already know that when z N p,, z N ps and z N p;, then (2 X z) R p,, (2 X z) R ps and
(2 X z) R p; because 2 is a nonresidue modulo every of these chosen primes and the multiplication
of a nonresidue with a nonresidue is a residue [8]. Since p,, ps and p; are primes, then we can
assure that (2 X z) R (pr X ps X p;) due to the following property: a number x is a residue modulo y
when x is a residue modulo for every prime power dividing y [8].

Therefore, when (2 X z) R (p, X ps X p;), then we guarantee the clause c; will be evaluated as
false. In contraposition, in the clause cxr = (— x,V — x;,V — x;) for 1 < r,s,t < n, then a solution
of the simultaneous residues z R p,, z R ps and z R p; guarantee the clause will be false because x,
would be true, x; would be true and x; would be true. Since p,, ps and p; are primes, then we can
assure that z R (p, X ps X p;) due to the property mentioned above. Hence, when z R (p, X ps X p;),
then we guarantee the clause ¢;- will be evaluated as false. Consequently, if we guarantee that
some number z complies with (2 X z) N (p, X ps X p;) or z N (p, X ps X p) for every clause c in ¢,
then z will correspond to a satisfying truth assignment for ¢.

However, it is enough to search an odd or even number z between all the values of 0 < z <
Pn-2 X Pn-1 X pn such that z and 2 X z complies with the nonresidues of the triple multiplication of
primes from each clause due to the following property: a number x is a nonresidue modulo y when
x is a nonresidue modulo for at least one prime power dividing y [8]. Certainly, for every triple of
primes p;, p; and p, within the numbers between 0 and p; X p; X py. there are the fully combinations
of residues and nonresidues between the primes p;, p; and px [13]. When we mean combinations,
we actually mean for example a number that is residue from p; and p;, but it is nonresidue with py
and so forth. In this way, p,—2 X pn—1 X pn, is the greatest upper bound which complies that property
in ¢p. Thus, MONOTONE 3SAT € P. Certainly, we can find the first n odd primes such that they have
2 as a quadratic nonresidue just checking for every odd prime p whether

p = 3(mod 8)

or
p = 5(mod 8)

as a consequence of the Euler’s criterion [13]. Indeed, there are infinitely many primes of the form

8 x k + 3 or 8 X k + 5 due to Dirichlet’s theorem on arithmetic progressions [14]. Moreover, the n'"

odd prime which has 2 as a quadratic nonresidue is polynomially bounded by n X In n, because of
Li(x)

7(x;8,3) and 7(x; 8, 5) are asymptotic to ¥c) where ¢ is the Euler’s totient function and Li is the

Eulerian logarithmic integral [14]. Consequently, the search of the number z through the iteration



from 0 to p,_2 X pu_1 X pn can be done O(n?). In addition, we can feasible search these special first
primes, because we can make the primality test of a number in polynomial time [2]. O

THEOREM 2.2. P = NP.

Proor. If any single NP-complete problem can be solved in polynomial time, then P = NP [12].
As a consequence of Theorem 2.1, the answer of the P versus NP problem will be P = NP. O

3 DISCUSSION

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient
solution to an NP—complete problem such as 3SAT will break most existing cryptosystems including:
Public-key cryptography [10], symmetric ciphers [11] and one-way functions used in cryptographic
hashing [6]. These would need to be modified or replaced by information-theoretically secure
solutions not inherently based on P-NP equivalence.

There are enormous consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research are
NP-complete, such as some types of integer programming and the traveling salesman problem [9].
Efficient solutions to these problems have enormous implications for logistics [4]. Many other
important problems, such as some problems in protein structure prediction, are also NP-complete,
so this will spur considerable advances in biology [3].

Indeed, a proof of P = NP could solve not merely one Millennium Problem but all seven of them
[1]. This observation is based on once we fix a formal system such as the first-order logic plus the
axioms of ZF set theory, then we can find a demonstration in time polynomial in n when a given
statement has a proof with at most n symbols long in that system [1]. This is assuming that the
other six Clay conjectures have ZF proofs that are not too large such as it was the Perelman’s case

[1].
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