
A COMPLETE TOOLCHAIN FOR AN INTERFERENCE-FREE
DEPLOYMENT OF AVIONIC APPLICATIONS ON MULTI-CORE SYSTEMS

Sylvain Girbal, Daniel Gracia Pérez, Jimmy Le Rhun, and Madeleine Faugère,
Thales TRT, Palaiseau, France.

Claire Pagetti, and Guy Durrieu,
ONERA, Toulouse, France.

Abstract
In the safety critical domain such as in avionics,

existing embedded solutions based on single-core
COTS processors are very unlikely to handle the new
level of performance requirement of next generation
safety-critical applications.

One alternative would be to use multi-core COTS
computers, but the predictability versus performance
trade-off remains an obstacle for their use in a
safety critical context: concurrent accesses to shared
hardware resources are generating inter-task or inter-
application interferences, breaking the isolation prin-
ciples required by such critical software.

To enable the usage of multi-core processors
on safety critical systems, interferences need to be
controlled and techniques need to be developed to
exploit multi-core performance benefits.

In this paper, we have developed an approach
and an associated tool suite able to enforce an
interference-free system execution while emphasizing
task parallelization to benefit from multi-core systems
inherent performance.

Providing strong certification guarantees of
interference-free multi-core systems would require us
to identify all potential sources of interference. This
is beyond the scope of this paper. While restricting
ourselves to the memory subsystems and the I/Os,
our goal is to ensure an interference-free execution
of a safety critical application deployed on a multi-
core architecture, by proposing an approach avoiding
interference scenarios.

Our proposed approach couples hardware con-
figurations minimizing interferences with a software
execution model decoupling communication phases
from execution phases. We are relying on a con-
straint problem solving (CPS) approach to build an
interference-free multi-core deployment.

This approach has been fully automated and is
supported by a toolchain from the problem formula-
tion to the code generation. It has been experimented
on an avionic application, and both the absence of
interference and the performance benefits have been
evaluated. With this approach, large safety-critical
applications can be ported to multi-core COTS pro-
cessors while preserving single-core based analysis
methodologies.

1. Introduction
Safety-critical domain industries such as the

avionics, automotive, space, healthcare or robotic
industries are facing an exponential growth of perfor-
mance requirements [1]–[3]. In the avionic industry,
international initiatives such as SESAR, NextGen, and
AIRES aiming at modernizing the air traffic manage-
ment while lowering the impact on the environment,
are pushing forward the need of more efficient embed-
ded systems to integrate new performance demanding
functions such as 4D trajectory.

Safety-critical software is usually characterized
by stringent hard real-time constraints, and missing a
single deadline could have catastrophic consequences
on either the user or the environment. A common
practice to guarantee the deadlines of a safety-critical
application with previous single-core COTS architec-
tures was to determine the application Worst-Case
Execution Time (WCET). This WCET computation
usually relies on analysis tools based on static pro-
gram analysis, detailed hardware model, as well as
measurement techniques [4]–[8].

A. The Challenge of Multi-core Architectures
For several decades, frequency scaling has pro-

vided sufficient performance growth to cover the
avionic requirements. The processor core was the
main shared resource, and the implicit time-sharing

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

of all other resources of the system was ensured by
adequate partitioning at the core level. With the end
of Moore’s law, chip providers have shifted to the
multi-core paradigm to provide effective performance
growth. However, this recent shift to multi-core ar-
chitectures in the embedded COTS market worsened
the runtime variability problem [9], [10] as contention
on shared hardware resources brought new variability
sources. For critical software, providing new solutions
to mitigate the impact on the worst case performance
is required.

Timing analysis tools are currently unable
to properly model such interferences between co-
running tasks, due to the lack of an accurate un-
derstanding of the contention mechanisms which are
frequently undocumented.

Several papers in the literature have quantified
the impact of such interferences on the observed
runtime of co-running tasks [11], [12]. A significant
degradation on the measured WCET can be observed
compared to a standalone single-core execution, up to
an order of magnitude equal to the number of cores.
This is clearly the opposite of the expected speed-up
that a multi-core architecture could provide.

To effectively use multi-core architectures for
avionic applications, the challenge is therefore to con-
trol those interferences to avoid these unsustainable
worst case scenarios, and provide ways to ensure
time and space isolation properties required by the
standards [13]–[15].

A straightforward way to eliminate interferences
is to forbid the concurrent execution of tasks that may
target the same shared hardware resources. However,
preventing parallel execution of tasks accessing the
main memory through the interconnect would lead to
no parallel execution at all and performances similar
single-core architectures, thus providing no advantage
from the performance point of view.

B. Contribution
In this paper, our goal is to build an

interference-free system based on multi-core COTS.
It will allow us to compute the WCET when dis-
tributing an avionic application to a such a multi-
core system relying on existing techniques defined
for single-core architectures.

We are relying on an execution model de-
coupling execution phases from interference-prone

communication phases used jointly with the private
memories of a distributed memory architecture. It
allows us to benefit from some parallel execution
while restricting communications on a unique core
at a time, thus eliminating interference scenarios on
interference-prone channels.

This execution model and the associated archi-
tecture are evaluated against a representative test ap-
plication. A complete toolflow is provided to generate
the application deployment (mapping and scheduling)
on the target multi-core. The ability of the framework
to generate deployments ensuring the absence of
interference on the shared resources is evaluated, as
well as its ability to scale while increasing the number
of tasks or the discrepancy of task periods.

We are comparing our solution against a single-
core deployment and a straightforward parallel de-
ployment not considering interferences, and evaluate
the benefits of the approach in terms of: 1) the
ability to ensure all tasks deadlines, 2) the ability to
effectively eliminate all interferences, 3) the capacity
of the system to be incrementally extended, and 4) the
ability to exploit the multi-core inherent performance
based on parallelism.

The paper is organized as follows: In Section 2
we are defining interferences and are providing some
guidelines to build interference-free systems. In Sec-
tion 3 we are presenting the automatic tool-flow
we implemented to generate interference-free deploy-
ments. Section 4 and 5 respectively correspond to the
experimental setup and corresponding evaluations.

2. Multi-core & Interferences
Compared to single-core architecture, multi-core

architectures potentially provide more performance
by allowing the parallel execution of several appli-
cations or tasks. With the increase of performance-
demanding functions in avionics, it is becoming crit-
ical to be able to exploit such level of parallelism,
effectively running different tasks in parallel, while
still ensuring spatial isolation and timing isolation
properties. However, running tasks in parallel intro-
duces some interferences that may endanger these
properties.

A. Defining Interferences
At hardware level, when several co-running

tasks, not sharing any data, are trying to concurrently

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

access the same shared hardware resource (such as
the main memory, the interconnect or some I/Os),
some arbitration mechanisms are involved at hardware
level allowing one of the tasks to access the resource
while delaying the others, resulting in a contention,
as depicted in Figure 1.

core L1
cache

core L1
cache

core L1
cache

core L1
cache

L
2
sh
ar
ed

ca
ch

e
L
2
sh
ar
ed

ca
ch

e

in
te
rc
o
n
n
ec
t

DDR
Memory

I/O

x

x

x

Figure 1. Interferences due to Concurrent Accesses
to Shared Hardware Resources.

From the delayed tasks point of view, these extra
delays, introduced because of the other co-running
tasks unpredictable behavior, are interferences break-
ing the time isolation principles required by avionic
standards [13]–[15].

Several studies [11], [12] have already quanti-
fied the maximum impact of such interferences on
the WCET, exhibiting a potential impact completely
offsetting the potential performance gain using multi-
core architectures. Multi-core induced interferences
therefore need to be controlled, in order to keep the
impact on the WCET manageable.

In the next section, we will present some guide-
lines on how to build an interference-free multi-core
system usable in an avionic context.

B. Building an Interference-free System
In order to build an interference-free computing

system, we consider both the hardware and the soft-
ware aspects in a coupled approach.

The main focus for the reduction of interference
in safety-critical systems is to ensure spatio-temporal
isolation between conflicting operations. This isola-
tion should be provided not only for the targeted
shared resource (e.g. shared memory access port), but
also along the data and control paths between the
initiator and the target (e.g. the interconnect buses
or network).

Dealing with interferences at hardware level: On
the multi-core processor market, two families of
multi-core architectures are available: The fist well
represented family, shared memory multi-core ar-
chitectures, illustrated by Figure 1, usually have a
memory hierarchy characterized by a large global
shared memory coupled with smaller cache mem-
ories closer to the cores to provide faster average
memory accesses. Such cache memory structures
have the advantage to be completely transparent from
the programming point of view with no memory
management at all in the source code. However, we
can hardly predict the time behavior of these cache
memories as every data access from the source can
either hit or miss depending on runtime behavior.

The second smaller family correspond to dis-
tributed memory multi-core architectures, and is
illustrated by Figure 2.

core

core

core

core

private
sram memory

memory access

answer

private
sram memory

memory access

answer

private
sram memory

memory access

answer

private
sram memory

memory access

answer

in
te
rc
on

n
ec
t

communication

communication

communication

communication

shared
DDR memory

communication

transparent local memory access

explicit distant memory copy

x

Figure 2. Distributed Memory Architecture

These architectures make a clear distinction be-
tween the globally shared memory and smaller private
memories tightly coupled with each core. Contrary
to shared memory architectures, regular memory in-
structions (load and stores) can only access the lo-
cal private memory. Data transfers between private
memories or to the globally shared memory have
to be made explicit in the source code. If on one
hand, adding explicit memory management and data
transfers to the application complexify the applica-
tion, on the other hand it enhances predictability:
only these data transfers over the interconnect are
interference-prone while memory access to the local
private memories could be performed seamlessly with
no risk of interferences.

Our main objective being to ensure spatial and
temporal isolation, selecting a multi-core COTS that

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

is not sharing all the hardware resources across the
whole system provides us with the opportunity to
drastically reduce interference scenarios. Beyond that,
• Some I/O peripherals can be statically allocated

to a specific core, effectively adding constraints
to the application deployment but preventing
conflicting accesses.

• A network-on-chip could also offer the opportu-
nity to route several transactions along different
paths, providing both spatial and timing isolation
with better performance than a classical time-
shared bus.
Finally, architectural features designed for high

scalability (NoC, distributed memories, minimization
of centralized resources, etc.) are also beneficial for
determinism as they reduce points of contention.

Overall, distributed memory architectures allow
us to perform core computation phases in isolation
within private memory scope. Code section perform-
ing fetch and data movement will be managed as
explicit communications over the interconnect. With
regards to WCET computation, such a scheme allows
us to be much less pessimistic than with unpredictable
cache memories. The main drawback is the lack
of legacy support because of the need to explicitly
control code and data movement in the system.

In critical systems however, and especially in the
avionics domain, explicit communication is already
an established and enforced principle to achieve spa-
tial isolation, using the APEX interface [16] for safe
inter-partition communication. The impact of such a
change can therefore be affordable.

For the rest of the paper, we make the assumption
that only accesses to the memory subsystem and the
I/Os are prone to interference in a multi-core proces-
sor. A complete certification process would enforce
us to first identify all possible sources of interference,
making sure that all of them are taken into account
by the proposed approach. Such an identification is
not trivial, and beyond the scope of this paper.

An evaluation of the shared memory systems
versus distributed memory systems with regards to
predictability is presented in Section 5.

Dealing with interferences at software level: At
software level, it has been a common practice to rely
both on scheduling techniques and execution models
[17]–[19] to enforce predictability.

In [20] the authors are proposing the AER ex-
ecution model to decompose application tasks into
A (acquisition), E (execution), and R (restitution)
phases. The idea is to decouple interference-prone
communication phases from computation-based ex-
ecution phases.

This model allows us to run execution phases
in parallel with a minimal risk of interference, while
keeping the communication (acquisition and restitu-
tion) phases strictly sequential as shown in Figure 3.

time

A E R

A E R

A E R

A E R

A E R

A E R

A E R

A E RCORE4

CORE3

CORE2

CORE1

parallelism

#comm

repetitive pattern

1 2 3 2 1 1 2 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3. AER Communication Models to Limit
Interferences

Coupling distributed memory multi-core archi-
tectures, with this execution model should allow
us to have execution phases mapped to the private
memories not performing any accesses to the in-
terconnect, and being able to fully run in parallel
without generating interferences. Explicit communi-
cations, generating traffic on the interconnect, will be
performed during acquisition and restitution phases,
keeping them sequential to avoid interferences.
Definition of the execution model. In this paper,
we consider the distributed-memory configuration of
the C6678 architecture presented in Section 4. We
highlight three rules to ensure the implementation to
be predictable on such a multi-core chip.
Rule 1: the platform memory areas are statically
configured.

a) Data and code are stored in the local pri-
vate memories (L2 configured as SRAM for
the C6678) to reduce implicit accesses to the
shared resources (TeraNet, DDR or peripherals)
as much as possible.

b) Tasks communicate via message passing. Mes-
sages are stored in specific areas of the local
memories, called Message Passing Areas (MPAs
- also in the L2 SRAM). The notion of MPAs is

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

inspired by the architectural design of the Intel
SCC [21], which includes on-chip memories
(MPB - message passing buffers) dedicated to
message passing.

Rule 2: Tasks are scheduled through partitioned
non-preemptive off-line scheduling, also referred as
dispatcher.

a) Periodic tasks: tasks are allocated to a core, and
on each core, a local schedule is computed with
a valid length.

b) Aperiodic tasks: static slots are allocated that
respect the requirements expressed as a maximal
number of activations during a given amount of
time.

Rule 3: All the accesses to the shared resources
(MPAs and DDR) are temporally segregated, as de-
fined in the AER model [20]: acquisition and restitu-
tion phases must be executed in isolation with other
communication phases. Delays for explicit communi-
cation between cores or with the external memory and
peripherals are pre-computed using a measurement-
based approach to determine an upper bound.

3. Automatic Tool-flow to Generate
Interference-free Systems

The previous section has introduced a set of rules
to be followed in order to obtain interference-free
systems. Therefore, the application designer has to
map the application according to those rules on the
target. Since the execution model is based on static
rules which must be applied off-line (off-line mapping
and scheduling), we have to offer automatic ways to
generate the intereference-free coding of applications.

A. Tool-flow Overview
The tool-flow works in two steps as illustrated

in Figure 4. The first objective is to formalize the
complete dispatching problem for the application ex-
ecuting on the target hardware platform constrained
by the execution model. We describe formally the
problem of allocation as a constraint programming
problem. We use the OPL tool from IBM ILOG
[22] to compute valid solutions. Several benchmarks
have been made to highlight the OPL capabilities
by playing with different dimensions of the problem
(number of tasks, size of the exploration window,
platform capacities, . . .). Even if the complexity of

the problem is exponential, the obtained results are
quite good.

The second objective is to automatically generate
the header files for the application code. This way, the
user can directly execute the mapped application on
the target. Two different header files are generated: the
first gives the static mapping of tasks on cores and the
spatial allocation of the communication buffers in the
MPA; the second file contains the local scheduling
for each core.

Application
Communicating tasks set

〈S,B〉

Hardware Target
multi-core COTS

nbCores, sizeL2, . . .
+ execution model

{Rule 1,. . . Rule n}

OPL Solver

Off-line Mapping
- partitioned non preemptive schedule

si.j.{a,e,r}
- static memory mapping

pi
- static communication buffers mapping

mi

Code Generation

Configuration files generation
mapping.h, schedule.h

Figure 4. Tool-flow Overview

B. Constraint-based Mapping Problem Formu-
lation

The mapping problem has two inputs: an appli-
cation model and a platform model. For the appli-
cation model, we consider an ARINC653-like struc-
ture. For the platform model, we consider the dis-
tributed memory architecture programmed following
the interference-free execution model. The output of
the off-line mapping consists of three items:

1) a static mapping of tasks to the cores and their
local memories;

2) a static mapping of the communication buffers
to the MPAs (message passing areas);

3) a partitioned non-preemptive off-line schedule
for each core.

The problem of partitioning and scheduling tasks is
equivalent to a multi-dimensional bin-packing prob-

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

lem, which is NP-hard as shown by [23]. Several
formulations of variations of this problem can be
found in the literature, e.g. [24]–[27]. The variations
stand in the application model and/or platform model,
and consequently the constraints to be applied.

1) System Model: The system model comprises
the application and the platform models.

Definition 1 (Application model): The task set
S = {τ1, . . . , τnbTasks} consists of tasks, each τi =
(Ti,WCETai, WCETei,WCETri,sizei) being character-
ized by its period Ti; its WCETs during the three
phases A (acquisition), E (execution), R (restitution);
its size denoted sizei including both the data and the
instructions memory size.

We write τi. j to denote the j-th job of task τi.
Each job is decomposed in the three phases τi. j.a for
the acquisition, τi. j.e for the execution and τi. j.r for the
restitution. In the sequel, τi. j.{a,e,r} will refer to a sub-
job ∈ {τi. j.a,τi. j.e,τi. j.r}. Each sub-job has a release
time ri. j and an (absolute) deadline di. j; they are
subject to precedence since τi. j.a must execute before
τi. j.e which must execute before τi. j.r. Thus τi. j.a =
(ri. j,di. j)→ τi. j.e = (ri. j,di. j)→ τi. j.r = (ri. j,di. j) with
ri. j = jTi and di. j = (j+1)Ti.

Usually, when computing off-line scheduling, the
schedule (or dispatch) is computed in the hyper-
period = lcm(Ti). We propose a way to reduce the
size of the length of the schedule: we define the
windowSize to be the duration on which tasks are
unrolled as jobs. To be correct, the schedule on
the windowSize should be expendable on the hyper-
period. The idea is to schedule all jobs released in
[0,windowSize], even if the deadline is later than
windowSize. On this window, we know exactly the
number of released jobs for each task τi which is
denoted nbJobsi.

The set of communication buffers
B = {b1, ...,bnbBuffers} describes the communication
between tasks. Each buffer b j = (src j,dsts j,sizeb j)
is characterized by its unique source (src), its
destinations (dsts), and its size (sizeb).

Definition 2 (Platform model): The multi-core
contains nbCores cores. Each core owns a two-level
hierarchy of SRAM memories and includes a specific
on-chip memory area, named the MPA (message
passing area), that is used to exchange data between
processor cores and that is stored physically in the
L2. Therefore, to describe the chip, we rely on the

following inputs: sizeL2,sizeMPA.
The platform comes with the rules of the execu-

tion model {Rule 1,Rule 2,Rule 3} described in the
Section 2B.

2) Decision Variables: Our approach relies on
two decision variables:

1) One for modeling the spatial mapping of tasks
to cores. We map each task to exactly one core,
such that all jobs (for all phases A, E, R) of
task τi are scheduled on the same core. Let
pi ∈{1, ...,nbCores} with i∈{1, . . . ,nbTasks} be
the decision variables that model the mapping of
tasks to cores. It takes the value q if task τi is
mapped to core q;

2) One for computing a valid off-line schedule.
Let si. j.{a,e,r} ∈ {1, ...,windowSize} with i ∈
{1, . . . ,nbTasks} and j ∈ {1, ...,nbJobsi} be the
decision variables which represent the start of
each job τi. j.a (resp. τi. j.e, τi. j.r). It takes the value
q if job τi. j.{a,e,r} starts at time q.

For the communication, each buffer bi is mapped to
the communication area on a given core. We assume
that producers always put their output data to the
local MPA, that is on the same core they run. Let
mi ∈ {1, . . . ,nbCores} with i ∈ {1, . . . ,nbBuffers} be
the variables that model the mapping of buffers to the
MPAs. It takes the value q if buffer bi is mapped to
MPA’s core q. Since mi can directly be derived from
pi, it is not a decision variable.

3) Constraints: This section is dedicated to
identify the constraints that must be fulfilled by the
decision variables. We decompose those constraints
per rule.

a) Spatial Mapping Constraints (Rule 1):
To fulfill Rule 1.a), we must map tasks such that their
sizes do not exceed the size of the local memory.
Since size_L2 is the capacity of the local memory,
we use the following constraint to bound the occupied
memory:

∀q≤ nbCores,

(
∑

i≤nbTasks
(pi = q)× sizei

)
≤ size_L2

Concerning the buffers, we assume that they are
always placed in the MPAs belonging to the producer.
Thus we simply have the following constraint:

∀i≤ nbBuffers,mi = psrci

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

The size of the buffers that are mapped to a core must
not exceed the available amount of on-chip memory in
that core’s MPA. The appropriate constraint to fulfill
Rule 1.b) is:

∀q≤ nbCores,

(
∑

i≤nbBuffers
(mi = q)× sizebi

)
≤ size_MPA

b) Off-Line Scheduling Constraints (Rule
2): In order to allocate enough execution time for
each job in the off-line schedule, we have to as-
sume that each job consumes its WCET. Under non-
preemptive scheduling, the end time depends solely
on the start time si. j and WCET. Tasks have been
divided in three sub-tasks that must be executed in
order, meaning that first A has to be executed, then E
and at last R. There is no constraint to run those sub-
tasks "in sequence" since other sub-tasks can execute
between two phases. This leads to the following
constraints:

∀i≤ nbTasks, j ≤ nbJobsi,

{
si. j.a +WCETai ≤ si. j.e

si. j.e +WCETei ≤ si. j.r

The execution of a job cannot start before its
release time, and because of the phase decomposition,
it entails that the A phase must start after the release
time. A release time is the instant at which a job can
start while the start time is exactly the instant when it
starts. In the same way, the latest valid time to finish
execution is the job’s deadline. This applies to the R
phase. This leads to the following constraints:

∀i≤ nbTasks, j ≤ nbJobsi,

{
ri. j ≤ si. j.a

si. j.r +WCETri ≤ di. j

The constraints have to take into account that
only one job can be executed on a core at a time.
When τi and τk are executed on the same core, any
job τi. j.{a,e,r} is scheduled either before or after job
τk.l.{a,e,r}, and the start times of the two jobs must
be separated by at least the WCET of the job that
executes earlier.

∀i,k ≤ nbTasks, j ≤ nbJobsi, l ≤ nbJobsk,(i, j) 6= (k, l)

pi = pk =⇒ ∀o, p ∈ {a,e,r},
si. j.o +WCEToi ≤ sk.l.p∨ sk.l.p +WCETpk ≤ si. j.o

c) AER Constraints (Rule 3): The last rule
states that A and R phases must be executed in
isolation. This can be expressed in a similar way
than the formula above which ensures that only one
job executes at a time on a core, except that it
applies wherever the tasks are mapped: job τi. j.{a,r} is
scheduled either before or after job τk.l.{a,r}, and the
start times of the two jobs must be separated by at
least the WCET of the job that executes earlier.

∀i,k ≤ nbTasks, j ≤ nbJobsi, l ≤ nbJobsk,(i, j) 6= (k, l)

=⇒ ∀o, p ∈ {a,r},
si. j.o +WCEToi ≤ sk.l.p∨ sk.l.p +WCETpk ≤ si. j.o

4) Optimization Criteria: When there are sev-
eral solutions for the constraint programming prob-
lem, it is interesting to express some preferences
among the solutions. For this, the idea is to define
a numerical function from the set of solutions whose
values depend on a quality criterion. The objective is
then to maximize this function. For the mapping prob-
lem, many optimization criteria can be envisioned. As
an example, we studied two of them:

The first criterion is to minimize the number of
cores used by the partitioning. In that case, the objec-
tive will be min ncores where ncores is constrained
as follows:

ncores = ∑
q≤nbCores

max
i≤nbTasks

(pi = q)

A second possibility is to smooth the utilization
on the cores. In that case, the objective will be min
usagemax where usagemax is constrained as follows:

usagemax =

min
q≤nbCores

(
∑

i≤nbTasks
(pi = q)

WCETai +WCETei +WCETri

Ti

)
4. Experimental Setup

In this section, we present both the avionic appli-
cation we evaluated and the target hardware platform
we considered.

A. Avionic Use-case
As a representative avionic test application that

may benefit from a multi-core architecture, we used
an experimental version of an FMS, based on an op-
erational FMS architecture from Thales, and written
in a multi-threaded way for this study.

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

FMS

Localization

Flightplan

Trajectory Guidance
Sensors

Nearest

bcp

legs
profiles

Auto Pilot

a
n

g
les

Display

database
NavigationPilot

Figure 5. Flight Management System

This test application, which functional view ap-
pears in Figure 5, aims at performing in-flight guid-
ance of aircrafts following a set of predefined flight
plans. During the flight, the FMS is then in charge
of (1) determining the plane localization and (2)
computing the trajectory in order to follow these flight
plans.

This application, presented in detail in [20] is
composed of 9 periodic tasks and 7 aperiodic tasks.
Table I summarizes the time critical constraints as
well as the memory footprint (code+internal data)
requirements associated with each task, and taken
into account by the automatic toolflow to build an
interference-free scheduling.

periodic memory output
task period footprint size
SENSC1 200ms 6352 B 744 B
LOCC1 200ms 8048 B 408 B
LOCC2 1.6s 2280 B 408 B
LOCC3 5s 4360 B 168 B
LOCC4 1s 3996 B 136 B
NEARP1 1s 2816 B 920 B
TRAJR1 200ms 7744 B 368 B
TRAJR2 300ms 7744 B 184 B
TRAJR3 300ms 7744 B 184 B
aperiodic max memory output
task activation footprint size
SENSA2 2 every 200ms 1416 B 256 B
SENSA3 2 every 200ms 1840 B 256 B
LOCA1 2 every 200ms 1616 B 128 B
LOCA2 5 every 5s 1768 B 216 B
LOCA3 5 every 1s 2024 B 216 B
FLPNA1 1 every 200ms 3152 B 1320 B
TRAJA1 1 every 200ms 1176 B 184 B

Table I. Real-time Constraints and Memory
Footprint Associated with the Test Application

Example 1: With the notations given in the con-
straint programming formulation, there are nbTasks=
16 tasks. The task SENSC1 is defined as (Ti,WCETai,
WCETei,WCETri,sizei) = (200,2,11,2,6352). For a
windowSize of 400 ms, the periodic task SENSC1 is

unrolled twice and generates two jobs:

SENSC1.1 : (0,200)
SENSC1.2 : (200,400)

The aperiodic tasks are unrolled on the windowSize
and treated as periodic tasks. Thus, for a windowSize
of 400 ms, the aperiodic task SENSA2 is unrolled into
four jobs.

SENSC1 produces a unique output buffer named
SensorsData which has a unique consumer LOCC1.
Thus, this generates the following buffers:

SensorsData : (SENSc1,{LOCc1},744)

SENSC1 consumes several input buffers including:

GpsConfig : (SENSA2,{SENSc1},160)

B. Hardware Platform
As evaluation platform, we selected the Texas

Instruments TMS320C6678 [28] depicted in Figure
6 and later referenced as C6678. This multi-core
platform is composed of 8 C66x DSP cores clocked
at 1 GHz. These cores implement a VLIW instruction
set architecture and can issue up to 8 instructions in
the same clock cycle. Cores are connected altogether
via the TeraNet on-chip network that also provides
access to devices such as the I/O interfaces, the DMA
engines, or the main memory.

Multicore Navigator

Network Coprocessor

Memory Subsystem

C66x
CorePac

L2 SRAM

L1P
SRAM

L1D
SRAM

HyperLink TeraNet

EDMA

PLL

Power Mgt

Semaphore2

Boot ROM

Debug

E
M

IF
1

6

G
P

IO

I2
C

P
C

Ie

U
A

R
T

S
P

I

T
S

IP

S
R

IO

NAND
flash

Queue
Manager

Packet
DMA

E
th

er
n

et
S

w
it

ch

SGMI

S
w

it
ch

Packet
Accelerator

Security
Accelerator

MSMC
Controller

MSMC
SRAM64-bit

DDR3
EMIF

DDR
Memory

512M

4M

64M

32K
32K

512K

eight c66x
DSP cores

Figure 6. Texas Instruments TMS320C6678

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

The memory hierarchy is organized as follows:
each core embeds a 32 KB level 1 program memory
(L1P), a 32 KB level 1 data memory (L1D), and
a 512 KB level 2 memory (L2) that may contain
instructions and data. Through the TeraNet intercon-
nect, the cores can also access a shared level 3 SRAM
memory (MSMC) of 4 MB, as well as the shared
external DDR3 memory of 512 MB.

The selection of the C6678 architecture was not
because of the DSP cores (we don’t actually use the
DSP features), and we are only using this architecture
as a regular multi-core. The most interesting feature
of this particular architecture is its ability to configure
its level 1 and level 2 memories (L1P, L1D and L2)
either as regular caches or as SRAM memories.

Example 2: With the notations given in the con-
straint programming formulation, the platform is de-
fined as nbCores= 8, sizeL2 = 520192 and sizeMPA =
3972.

This feature allowed us to evaluate both the
shared memory and the distributed memory config-
urations presented in Section 2, the corresponding
results being presented in Section 5.

5. Results
This section summarizes the experimental results

obtained with the tool-flow and on the real target in
bare-metal mode.

A. Scalability of the Constraint Programming
Solving Approach

To assess the scalability of the approach with
respect to the development host, we experimented
several parameters:
• the duration of the windowSize;
• the size of the tasks set;
• the size of the MPAs.

The applicability of the proposed approach is tied
to the ability of the constraint programming solving
(CPS) tool to compute a deployment in an acceptable
timeframe. The above-mentioned parameters can have
a significant impact on both the search time and the
memory usage of the CPS tool.

1) Influence of the WindowSize: During a time
window, each task τi has to be executed a number
of time depending on a ratio between the task pe-
riod and the windowSize duration. The schedule of
each of these executions, is translated into additional

constraints at the CPS tool level. Therefore, the win-
dowSize has a significant impact on the number of
constraints to be solved.

Figure 7 displays the correlation between the
windowSize value and respectively the search time
and the memory footprint required by OPL to solve
the dispatching problem.

0
0

48.7 GB

10

30

40

12.2 GB

memory (GBytes)

2.0 GB

20

10.2 MB windowSize

50

160004000 8000 12000 20000
0

100

200

300

0
7.05

55.68

297.25search time (seconds)

windowSize
4000 8000 12000 16000 20000

0.01

Figure 7. Memory Occupation (GB) and Search
Time (s) with Respect to WindowSize (ms)

We observe that the occupied memory is mul-
tiplied by 4 when the windowSize is multiplied by
2. Given our host hardware configuration (63 GB),
the maximum windowSize which can be processed is
about 20000 ms. We therefore cannot run OPL with
windowSize=40000 ms (the task set hyper-period)
since it would require a memory space of (at least)
200 GB. Memory occupation is thus the limiting
factor for analyzing wide time periods.

2) Influence of the Task Sets Size: Similarly,
increasing the number of tasks will increase the
number of constraints to be solved, thus impacting
the complexity of the dispatching problem. To test the
scalability of the approach with respect to the number
of tasks, we artificially increased their number by
instantiating the test application several times. With
the default windowSize, the test application requires
at least 2 cores to be mapped, so no more than 4 full
instances of this application could be mapped to the
multi-core platform.

Figure 8. Memory Occupation and Search Time
VS the Number of Application Instances

Figure 8 shows the correlation between the num-
ber of test application instances and respectively the

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

search time and the memory footprint required by
OPL to solve the dispatching problem.

Compared to the windowSize parameter, the
number of tasks has a significantly smaller impact on
the scalability of the tool. Furthermore, OPL managed
to compute a deployment with 4 instances of the test
application.

3) Influence of the MPA Size: While previ-
ous parameters were impacting the scheduling-related
constraints with a significant impact on the number
of constraints to be solved, the MPA size restrict the
available space to map the communication buffers.

We evaluated the scalability of our approach
against several values of the MPA size. With a MPA
size of 1200 B, no solution can be found, as the largest
data could not be mapped. However, unlike previous
parameters, changing the MPA size does not increase
the number of constraints, and we were not able to
observe any impact on neither the search time nor the
memory footprint of the CPS tool.

B. Interference Evaluation of Shared Memory
VS Distributed Memory Architectures

In Section 2B, we exhibited that the C6678 plat-
form allowed us to compare shared memory multi-
core architectures to distributed memory multi-core
architectures with respect to performance and their
ability to control interferences.

m
ax

im
um

 r
un

tim
e

(m
s)

SENS_C1 LOC_C1 LOC_C2 LOC_C3 LOC_C4 NEAR_P1 FLPN_A1 TRAJ_R1 TRAJ_R2 TRAJ_R3
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

single−core cache−based
single−core private memories
multi−core cache based
multi−core private memories

12 12

34

41

8 8

23
19

6 6

16
13

6 6

21
15

6 6

21
26

94

55

106

96

71

27

88

29

72

20

145

60 58

16

116

48

65

18

131

54

Figure 9. Shared Memory VS Distributed Memory
evaluation

Figure 9 corresponds to this evaluation, showing
the different individual runtimes of the different tasks
composing the test application. The first two con-
figurations correspond respectively to running these
tasks sequentially first on cache-based single-core
architecture, next on a private-memory-based single-
core architecture.

While this single-core deployment exhibits no
interferences (all tasks are run sequentially), the
private-memory-based configuration already shows
some significant performance improvement, with an
maximum speedup of 3.61 compared to the cache-
based solution.

The last two configurations of Figure 9 corre-
spond respectively to a deployment on a cache-based,
and a private-memory-based multi-core architectures.
All tasks are run in parallel with no special care for
interferences, that can be observed as the speed-down
compared to their single-core counterparts.

We observe similar speed-down for individual
task runtimes while moving from a single-core to a
multi-core configuration, with a speed-down of 2.7
for the cache-based version, and a speed-down of 3.0
for the private-memory-based version.

The overall impact on the maximum task run-
times while shifting the test application from a single-
core architecture to a multi-core architecture is sum-
marized in Figure 10.

shared
single-core

shared
multi-core

distributed
single-core

distributed
multi-core

availab
ility

single-core

multi-core
6-core

x2.7 x3

÷3.6

x1.2

Figure 10. Impact on Individual Task Runtime

Note that such speed-down for shifting from a
single-core to a multi-core version can drastically off-
set the expected performance gain. If the distributed
memory version exhibiting less interference could be
better suited for time-critical software, it is necessary
to be able to control the remaining interferences to
achieve an acceptable impact on WCET and overall
performance.

C. Evaluation of the AER Communication
Model to Eliminate Interferences

To eliminate remaining interferences, we applied
the AER communication model presented in Sec-
tion 2B, using the toolflow presented in Section 3
focusing only on the distributed-memory configura-
tion.

To quantify the impact on interferences of the
proposed model, we compared maximum runtime of
the tasks composing the test application, against the

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

single-core standalone version that is interference-
free. The results appear in Figure 11.

m
ax

im
um

 r
un

tim
e

(m
s)

SENS_C1 LOC_C1 LOC_C2 LOC_C3 LOC_C4 NEAR_P1 FLPN_A1 TRAJ_R1 TRAJ_R2 TRAJ_R3
0

10

20

30

40

50

60

70

80

90

100

standalone (sequential)
multi−core without AER
multi−core with AER on memory accesses
multi−core with AER on I/Os + memory accesses

12

41

13 12
8

19

9 8
6

13

7 6 6

15

6 6 6

26

6 6

55

96

78

55

27
29 28 27

20

60

20 20
16

48

18
16

18

54

18 18

Figure 11. Evaluating the AER Execution Model
on the C6678 Distributed Memory Architecture

The first two red configurations respectively
show the results of the standalone interference-free
version, and the multi-core version without AER, thus
maximizing interferences. It corresponds to the same
distributed memory results appearing in Figure 9.
Compared to the single-core deployment, this first
multi-core version exhibits a +200% increased indi-
vidual runtime in average.

The last two green configurations correspond to
worst observed runtimes when applying AER princi-
ples on the C6678. For the first one, we applied the
AER principles only on memory accesses. Compared
to the single-core deployment, we were able to reduce
the runtime increase to only +16%.

This remaining extra runtime indicates that all
the interferences have not been eliminated. This is
especially the case for task NEAR_P1 which exhibit a
+41% increase on the runtime compared to the single-
core version.

Beyond memory accesses, another possible
source of interference-prone communications on the
interconnect are the I/O accesses. All the considered
tasks are performing such I/Os to send information
to the display. Being responsible for the computation
of the nearest airports during the flight, the task
NEAR_P1 is the task producing most of the I/O
accesses.

By applying the same AER principles we applied
to memory accesses to the I/O accesses, we should
be able to eliminate these remaining interferences. To
do so, we centralized the I/O accesses on a dedicated
core, the other cores performing memory accesses
when requesting an I/O access. The results appear
as the last configuration of Figure 11, with no more

speed-down compared the single-core version, indi-
cating that all the interferences have been eliminated.

D. Performance Evaluation
Using both a distributed memory configuration

of the C6678 platform and the AER communica-
tion model, we managed to completely eliminate
the interferences, enabling the usage of such a plat-
form for time-critical systems, including avionics. But
performance-wise we have not yet quantified the gain
over a single-core platform.

By completely eliminating the interference over-
head, we have made the individual runtime of each
task to be the same as for a similar interference-less
single-core implementation, as shown in Figure 11.
Therefore, these runtimes cannot be used to quantify
the performance gain of the multi-core version.

From the time-critical application point of view,
the performance is sufficient if the application is able
to match all its deadlines. However, what can be com-
pared system-wise is the ability of the platform to run
more application concurrently without endangering
existing application and their own deadlines.

0ms 200ms 400ms

A B C

A

B

C

A

B

C

available

available

available

A B C

A

B

C

A

B

C

available

available

available

overhead

single-core

multi-core
without
AER

multi-core
with
AER

Figure 12. Defining Availability

To do so, we are defining the system availability
as the remaining amount of the time window that
is freely usable to run additional tasks, as presented
in Figure 12. For single-core deployment, this is the
remaining time not used in the window period. For
interference-prone multi-core, this is the remaining
time in this period once all the tasks have terminated
their job, including the overhead due to interferences.
For interference free multi-core this is the remaining
time in this period once all the tasks have finished
their job in the current window.

Availability defined this way is still pessimistic
for deployment using the AER model, as this model
would allow more execution phases to run in parallel.
But the results would be dependent on the amount
of communication versus computation that the new
tasks would perform. Considering that these new tasks

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

could potentially only perform communication we are
able to compute an lower bound on availability, as
presented in Figure 13.

us
ag

e
an

d
av

ai
la

bi
lit

y

single−core multi−core without AER multi−core with AER multi−core with AER + I/O

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

usage: 98%

usage: 72%
usage: 62%

usage: 49.5%

avail: 2%

avail: 28%
avail: 38%

avail: 50.5%

Figure 13. Availability Results

Figure 13 shows the availability results after
mapping the test application for different hardware
configurations with a time window of 200ms. The
first bar corresponds to a single-core deployment that
is just able to fit on the system with only 2% of the
the 200ms period still available. Second and Third
results correspond to deployments on a multi-core
architecture that are respectively not caring about in-
terferences and applying AER principles on memory
accesses only. These interference-prone deployments
of the application exhibit more availability but are
not able to ensure the deadlines due to the interfer-
ences. The last bar corresponds to the deployment on
our interference-free multi-core, and exhibit the most
availability with more than 50% of the period being
freely available to run more tasks / applications.

6. Related Works
An alternative path to obtain an easy analyzable

interference-free system would be to design determin-
istic and predictable multi-core architectures rather
than relying on existing multi-core COTS from the
consumer electronic domain.

Such an approach has been defined in PREDA-
TOR [29], and followed by several research projects
such as MERASA [30] / parMERASA [31] and
PRET [32].

Several studies also target the memory systems
and structural hazards for avoiding uncertainty fac-
tors. Bui et al. [33] pursue the temporal isolation
among multiple processes through some changes in-
troduced at the microarchitecture level, the memory
architecture, the network-on-chip, and the instruction-
set architecture. Reineke et al. [34] propose a novel

dynamic random access memory (DRAM) controller
in which the DRAM device is considered as mul-
tiple resources shared between one or more clients
individually, which improves the predictability of the
memory access latency. Lickly et al. [35] focus on
integrating timing instructions to a tailored thread-
interleaved pipeline. For example, a “deadline” in-
struction allowing the programmer to set a lower
bound deadline on the execution time of a segment
of code through accessing cycle-accurate timers.

Alternatively, the PROARTIS project [36] pro-
poses an interesting approach for the WCET problem
on multi-cores by proposing architecture designs with
randomness. Thanks to the randomness properties of
such designs probabilistic approaches can be applied
to compute accurate and probabilistic WCETs.

In [37], [38], the author presents an orthogonal
approach with a control software scheduling resource
accesses coupling MMU management with cache
locking techniques. During each time slot, one core is
granted a total access to memory hierarchy, restricting
other cores to the usage of their first level cache and
stalling them in case of a cache miss.

Finally, [39] provides an evaluation of various
control software techniques to enable the usage of
multi-core COTS for safety critical applications. Most
of the studied approaches also focus on getting close
to a deterministic usage of multi-core COTS.

7. Conclusion
In this paper, we have developed a complete

methodology and associated toolchain allowing to
build an interference-free deployment of safety criti-
cal applications on a multi-core system.

This methodology relies on an interference-free
paradigm in order to favor the certification processor
as well as the reuse of single core based design and
analysis techniques. Based on a programming model
decoupling communication and execution phases and
a formal problem formulation as a set of constraints,
an appropriate mapping and scheduling is obtained
avoiding interferences and favoring parallel task exe-
cution.

We applied this methodology to an avionic test
application on a particular multi-core architecture
managing to eliminate the interferences in the system,
while still exploiting the performance in term of
parallelism inherent to the multi-core COTS platform.

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

The scalability of the constraint problem solving tool
has also been evaluated.

However, the proposed approach is still far from
being certifiable: By avoiding interference-prone sce-
narios, we are not providing any real guarantee that
we are considering nor eliminating all interference
channels.

Also the test application is running bare-metal.
The execution model has therefore been implemented
as part of it. Such an execution model needs to be
developed as part of the real-time operating system
(RTOS) with additional certification constraints to be
taken into account.

Finally, we have shown that our approach fits
well with distributed memory systems, but most of the
available multi-core COTS follow the shared memory
paradigm. For such hardware targets, our approach
can rely on prefetch to drastically reduce the number
of interferences while not being able to completely
avoiding all of them, for instance because of cache
conflicts.

References
[1] E. Bailey, “Study report on anionics systems for
the time frame 2007, 2011 and 2020,” European
Organisation for the Safety of Air Navigation (EOSA),
vol. EUROCONTROL, 2004.
[2] C. Ebert and C. Jones, “Embedded software:
Facts, figures and future,” Computer, vol. 42, no. 4,
pp. 42–52, 2009.
[3] D. Dvorak and M. Lyu, “NASA study on flight
software complexity,” Jet Propulsion, p. 264, 2009.
[4] C. Ferdinand, F. Martin, C. Cullmann, M. Schlick-
ling, I. Stein, S. Thesing, and R. Heckmann, “Program
analysis and compilation, theory and practice,” in, T.
Reps, M. Sagiv, and J. Bauer, Eds., 2007, pp. 12–52.
[5] R. Heckmann and C. Ferdinand, “Verifying
safety-critical timing and memory-usage properties
of embedded software by abstract interpretation,” in
Proceedings of the conference on Design, Automation
and Test in Europe, ser. DATE’05, 2005, pp. 618–619.
[6] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner,
“Using measurements as a complement to static
worst-case execution time analysis,” in Intelligent
Systems at the Service of Mankind, vol. 2, 2005.
[7] P. Puschner and A. Burns, “Guest editorial: A
review of worst-case execution-time analysis,” Real-
Time Systems, vol. 18, no. 2/3, pp. 115–128, 2000.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.
Puschner, J. Staschulat, and P. Stenström, “The worst-
case execution-time problem - overview of methods
and survey of tools,” ACM Trans. Embed. Comput.
Syst., vol. 7, 36:1–36:53, 3 2008.
[9] R. Kirner and P. Puschner, “Obstacles in worst-
case execution time analysis,” in Proceedings of the
11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing, 2008, pp. 333–339.
[10] E. Mezzetti and T. Vardanega, “On the industrial
fitness of wcet analysis,” in Proceedings of the 11th
International Workshop on Worst Case Execution
Time Analysis (WCET2011), 2011.
[11] J. Nowotsch and M. Paulitsch, “Leveraging
multi-core computing architectures in avionics,” Eu-
ropean Dependable Computing Conference, pp. 42–
52, 2012.
[12] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset,
and A. Merigot, “Studying co-running avionic real-
time applications on multi-core cots architectures,” in
Embedded Real Time Software and Systems confer-
ence, 2014.
[13] Radio Technical Commission for Aeronautics
(RTCA) and EURopean Organisation for Civil Avi-
ation Equipment (EUROCAE), Do-297: Software,
electronic, integrated modular avionics (ima) devel-
opment guidance and certification considerations.
[14] ——, Do-178b: Software considerations in air-
borne systems and equipment certification, 1992.
[15] ——, Do-254: Design assurance guidance for
airborne electronic hardware.
[16] ARINC, ARINC Specification 653: Avionics Ap-
plication Software Standard Interface, Aeronautical
Radio INC, 2005.
[17] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and
L. Sha, “Real-time i/o management system with cots
peripherals,” IEEE Trans. Computers, vol. 62, no. 1,
pp. 45–58, 2013.
[18] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti,
“Deterministic execution model on cots hardware,” in
25th International Conference Architecture of Com-
puting Systems (ARCS’12), ser. Lecture Notes in
Computer Science, vol. 7179, Springer, 2012, pp. 98–
110.
[19] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J.
Criswell, M. Caccamo, and R. Kegley, “A predictable

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

execution model for COTS-based embedded sys-
tems,” in 17th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2011),
2011.
[20] G. Durrieu, M. Faugère, S. Girbal, D. Gracia
Pérez, C. Pagetti, and W. Puffitsch, “Predictable flight
management system implementation on a multicore
processor,” in Embedded Real Time Software and
Systems, ser. ERTS ’14, Toulouse, France, 2014.
[21] Intel Labs, “SCC external architecture specifica-
tion (EAS),” Intel Corporation, Tech. Rep., 2010.
[22] IBM ILOG, Cplex optimization studio, 2014.
[Online]. Available: http://www.ibm.com/software/
integration/optimization/cplex-optimization-studio/.
[23] M. R. Garey, R. L. Graham, D. S. Johnson,
and A. C. Yao, “Resource constrained scheduling as
generalized bin packing,” Journal of Combinatorial
Theory, vol. 21, pp. 257–298, 1976.
[24] C. Ekelin, “An optimization framework for
scheduling of embedded real-time systems,” PhD the-
sis, Chalmers University of Technology, 2004.
[25] K. Schild and J. Würtz, “Scheduling of time-
triggered real-time systems,” Constraints, vol. 5, no.
4, pp. 335–357, Oct. 2000.
[26] P.-E. Hladik, H. Cambazard, A.-M. Déplanche,
and N. Jussien, “Solving a real-time allocation prob-
lem with constraint programming,” J. Syst. Softw., vol.
81, no. 1, pp. 132–149, Jan. 2008.
[27] W. Puffitsch, E. Noulard, and C. Pagetti, “Off-
line mapping of multi-rate dependent task sets to
many-core platforms,” Real-Time Systems, 2015.
[28] Texas Instruments, “TMS320c6678 Multicore
fixed and floating-point digital signal proces-
sor,” Texas Instruments Incorporated, Tech. Rep.
SPRS691D, 2013.
[29] PREDATOR, “Design for predictability and ef-
ficiency. http://www.predator-project.eu/,”
[30] T. Ungerer, F. J. Cazorla, P. Sainrat, G. Bernat,
Z. Petrov, C. Rochange, E. Quiñones, M. Gerdes,
M. Paolieri, J. Wolf, H. Cassé, S. Uhrig, I. Guliashvili,
M. Houston, F. Kluge, S. Metzlaff, and J. Mische,
“Merasa: Multicore execution of hard real-time ap-
plications supporting analyzability,” IEEE Micro, vol.
30, no. 5, pp. 66–75, 2010.
[31] T. Ungerer, E. Quinones, H. Ozaktas, I. Broster,
J. Fernandes, and S. Kehr, “Parmerasa: Multi-core
execution of parallelised hard real-time applications
supporting analysability,” Workshop on Advanced
Real-time Architectures (ARPA), 2012.

[32] S. A. Edwards and E. A. Lee, “The case for
the precision timed (PRET) machine,” in Proceedings
of the 44th annual Design Automation Conference,
ser. DAC ’07, San Diego, California: ACM, 2007,
pp. 264–265.
[33] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke,
“Temporal isolation on multiprocessing architec-
tures,” in Proceedings of the 48th Design Automation
Conference, ser. DAC ’11, San Diego, California:
ACM, 2011, pp. 274–279.
[34] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A.
Lee, “PRET DRAM controller: Bank privatization for
predictability and temporal isolation,” in Proceedings
of the seventh IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system syn-
thesis, ser. CODES+ISSS ’11, Taipei, Taiwan: ACM,
2011, pp. 99–108.
[35] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A.
Edwards, and E. A. Lee, “Predictable programming
on a precision timed architecture,” in Proceedings
of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems, ser.
CASES ’08, Atlanta, GA, USA, 2008, pp. 137–146.
[36] F. J. Cazorla, E. Quiñones, T. Vardanega, L.
Cucu, B. Triquet, G. Bernat, E. Berger, J. Abella,
F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim, “Proartis: Probabilistically
analyzable real-time systems,” Transactions on Em-
bedded Computing Systems, vol. 12, no. 2s, p. 26,
May 2013.
[37] X. Jean, “Hypervisor control of COTS multi-
cores processors in order to enforce determinism
for future avionics equipment,” PhD Thesis, Telecom
ParisTech, 2015.
[38] X. Jean, D. Faura, M. Gatti, L. Pautet, and T.
Robert, “A software approach for managing shared re-
sources in multicore processors for IMA systems,” in
Digital Avionics Systems Conference (DASC), 2013.
[39] X. Jean, J. Le Rhun, D. Gracia Pérez, S. Girbal,
and M. Gatti, “Which deterministic software for hard
real-time systems using COTS multi-core proces-
sors?” In Proceedings of the 34th Digital Avionics
Systems Conference, ser. DASC’2015, Prague, Czech
Republic, 2015.

34th Digital Avionics Systems Conference
September 13–17, 2015

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/

	Introduction
	The Challenge of Multi-core Architectures
	Contribution

	Multi-core & Interferences
	Defining Interferences
	Building an Interference-free System

	Automatic Tool-flow to Generate Interference-free Systems
	Tool-flow Overview
	Constraint-based Mapping Problem Formulation
	System Model
	Decision Variables
	Constraints
	Optimization Criteria

	Experimental Setup
	Avionic Use-case
	Hardware Platform

	Results
	Scalability of the Constraint Programming Solving Approach
	Influence of the WindowSize
	Influence of the Task Sets Size
	Influence of the MPA Size

	Interference Evaluation of Shared Memory VS Distributed Memory Architectures
	Evaluation of the AER Communication Model to Eliminate Interferences
	Performance Evaluation

	Related Works
	Conclusion

