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CREST is a novel modelling language for the definition of Continuous-
time, REactive SysTems. This domain-specific language (DSL) targets small
cyber-physical systems (CPS) such as home automation systems. While
CREST is a graphical language and its systems can be visualised as CREST
diagrams, the main form of use is as internal DSL for the Python general
purpose programming language. Nevertheless, CREST systems are based on
a formal structure and semantics. This report provides this formalisation
and elaborates on the design choices that have been made.

1 Introduction

In this article we present the Continuous REactive SysTems (CREST) language. CREST
is a domain-specific language (DSL) created for the modelling of CPS such as automated
gardening systems or building automation. CREST particularly focuses on the creation
of models that capture the reactive behaviour of a CPS’ components and the flow of
resources between its physical parts. Data is typed as resources such as light, electric-
ity, heat or switch positions and data transfer as influences between system components
(“entities”). CREST follows a strictly hierarchical system view that encourages compo-
sition and system-of-systems designs. Entity behaviour is modelled via automata and
continuous value updates take real-valued time into account.

One of CREST’s main features is the recognition of the complexity, concurrency and
parallelism that is inherent to CPS. The language semantics guarantee a synchronous
representation and evolution of the model, while still preserving dynamic behaviour with

∗This project is supported by: FNRS STRATOS : Strategy based Term Rewriting for Analysis and
Testing Of Software, the Hasler Foundation, 1604 CPS-Move, and COST IC1404: MPM4CPS
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arbitrary time granularity, as opposed to other formalisms, which demand the use a base-
clock and fixed time steps. This allows the modelling, precise representation and faithful
verification of the system.

CREST’s syntactic structure and semantics were designed with six core principles in
mind:

1. Assert the synchronism of CREST systems,

2. Preserve data locality for coherent modeling and efficient verification,

3. Support the concurrency and parallelism that is inherent to CPS,

4. Enforce reactive systems principles,

5. Enable continuous behaviour through arbitrary time granularity,

6. Support the inherent non-determinism of physical systems.

This paper provides details about how CREST’s formalisation supports these principles
and allows the precise verification and simulation of CPS.

The report is structured as follows: Section 2 elaborates on CREST and it’s basic
syntax and language structure. Since CREST uses under-specification for some parts
of its syntax, Section 3 introduces semantic constraints that restrict this functionality.
Section 4 offers information about extensions to the syntax, which enable the simplified
description of CREST systems. Section 5 provides details about the formal, operational
semantics of CREST.

2 Language Structure

CREST is a modelling DSL that combines a system’s architectural and behavioural
aspects. From an architectural point of view, CREST systems are strictly hierarchical
compositions of entities, forming a tree-like structure. This means that every system has
one root entity which may contain arbitrarily many child-entities (“subentities”), that
possibly have subentities themselves, etc.

We will use the model of a plant growing lamp displayed in Figure 1 as a running exam-
ple for CREST’s syntax, structure and semantics. The example consists of a GrowLamp
entity and two separate submodules for heating and lighting.

An entity can define ports to model the transfer of data and resources between its
internal value storage and other entities. Ports are associated with resources, such as
lumen, Celsius or “switch”, which have a value domains (e.g. R for lumen or {on, off}
for switch). An entity’s interface consists of input and output ports. Local
ports are used to store data values internally. The growing lamp for example defines
on-time to locally store a value.

The behaviour of CREST entities is defined by automata that consist of states and
state transitions. In our example the lamp transitions between Off and On states. Each
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transition defines a Boolean guard function (off-guard, on-guard). Transitions between
states are enabled iff the guard functions (over an entity’s port values) evaluate to True.

The example also shows the usage of updates ( ). Updates are special functions that
can modify port values. They are associated with automaton states. When the specified
state becomes active, the update is continuously evaluated and the specified port is set
to the function’s result value. Updates can read ports values to perform calculations
and have access to the time that has been passed since entering the state or since last
evaluation of the update. They can therefore be used to model continuous changes over
time within entities. In the growing lamp example updates are used to modify the values
of on time, electricityL and electricityH when the lamp is turned on.

A port can only be modified by one update function at the same time. This means
that per automaton state and port only one update function is allowed. This is to avoid
non-deterministic setting of port values through write-race conditions. Further, cyclic
update dependencies between ports are not allowed. This means that there cannot be an
update function that reads a port A and writes a port B and another one that reads B
and writes A. In order to resolve cyclic dependencies (such as algebraic loops), all ports
define a pre value, that stores the port’s value before modifying it through the update
execution.

The limitations on the number of updates per port remove the need for a dedicated
connector concept (e.g. adding all incoming port values or choosing the smallest/highest
value) that defines the desired behaviour. Instead, CREST uses logical entities, such as
the Adder in Figure 1. Such entities behave exactly as standard entities, but do not have
an explicit physical counterpart.

Direct data transfer between two ports can be modelled using influence ( ) relations.
Influences are special updates that are active in every automaton state and transfer
the value of one specific port to another. Optionally, they can define transformation
functions that convert from the source domain to the target domain. The growing
lamp defines for example the fahrenheit to celsius transformation, which converts
the growing lamp’s room temperature value from Fahrenheit to Celsius as it updates
the temp-in port.

An implementation of CREST is available as a Python-internal DSL. The preliminary
interactive version is available online: https://mybinder.org/v2/gh/stklik/CREST/

sam-demo 1.

1Launching might take one or two minutes to build. We thank BinderHub for hosting their service for
free.
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2.1 Formal language structure

CREST’s formalisation (structure and semantics) is defined on a system-global level.
States, transitions, ports, etc. are then divided into mutually exclusive sets for each
entity to preserve locality. The rest of this section refers to non-overlapping partitions
of sets, denoted by the

⊔
operator.

Notation (Partition of sets). Formally we define a partition as follows: Given a set S,
we define the subsets S1, . . . Sn to be a partition of S =

⊔
i Si or S = S1 t . . . t Sn iff

∃S1, . . . Sn ⊆ S such that ∀i, j, i 6= j =⇒ Si ∩ Sj = ∅ and S =
⋃

1≤i≤n
Si.*

Note that we will not provide a complete description of the concepts of Figure 1
but pick a few representative examples instead. By convention we use the following
notations: Sets are Capitalised , functions are lowercased , and sets of function names are
Calligraphed. This section defines the sets and functions that together specify a CREST
system.

Definition 1 (Types and Values). Given a set of units Units and a set of domains
Domains, the set of resource types is defined as Types = Domains × Units. The values
of a resource type type are {〈v, unit〉 | v ∈ domain, 〈domain, unit〉 ∈ Types}, where
type = 〈domain, unit〉. The set of all resource values is defined as Resources = {〈v, unit〉 |
∃〈domain, unit〉 ∈ Types ∧ v ∈ domain}. It contains all possible couples of values and
units.

For legibility, we use the simplified notations domain unit and v unit for a resource
type and value. We therefore write e.g. NWatt and 3Watt for 〈N,Watt〉 and 〈3,Watt〉.

Finally, we define the ∈ operator on resource values and resource types, in order to
test for compatibility between a value and a type. This feature is used in CREST to
verify that a value can be written to a port, which is annotated with a resource type.
Formally we define that a resource value is part of a resource type, iff the value is an
element of the type’s domain, and the value’s unit and the type’s unit match:

∀res = 〈value, unit1〉 ∈ Resources,∀type = 〈domain, unit2〉 ∈ Types,

res ∈ type ⇔ value ∈domain ∧ unit1 = unit2

We therefore conclude that e.g. 3Watt ∈ NWatt and 3Watt ∈ RWatt, but 3Watt /∈
NLumen. In Figure 1 we see the following resource type definitions:

Units ={Watt, Switch, Celsius, . . . }
Domains ={R,N, {on, off}, . . . }

Types ={RWatt, {on, off}Switch,RCelsius, . . . }
Resources ={0Watt, onSwitch, 22Celsius, . . . }

Definition 2 (Hierarchy of Entities). CREST components are modelled as entities.
Each entity can contain other entities, which are referred to as children or subentities.
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An entire CREST system’s structure forms a rooted tree. It is defined by a set of entity
names Entities, and a function parent : Entities → Entities ∪ {⊥} , which returns the
parent of an entity or ⊥ if it has no parent. CREST’s strict entity structure asserts
that there is exactly one entity without parent, which we refer to as the system’s root.
Formally the constraint is expressed as:

∣∣ {e | e ∈ Entities ∧ parent(e) = ⊥}
∣∣ = 1

children : Entities → P(Entities) returns the direct children of any entity, and the
constant root : Entities provides the system’s root entity.

children(e) = {e′ | e′ ∈ Entities ∧ parent(e′) = e}
root = e s.t. e ∈ Entities ∧ parent(e) = ⊥

The growing lamp example consists of one root entity that encapsulates three suben-
tities for lighting, heating and an adder, which sums the values of its two input ports:

Entities = {GrowLamp,LightElement, . . . }
root = GrowLamp

children(GrowLamp) = {LightElement,HeatElement,Adder}
children(LightElement) = ∅

. . . = . . .

Definition 3 (Ports). CREST uses ports for transfer and storage of resources. A
CREST system defines these ports as set of port names Ports, and a function type :
Ports → Types that defines the resource type of each port. In the example above, the
port names of the growing lamp system are:

Ports = {electricity, switch, on-time, light, temperature, . . .}

The types associated with these ports are for instance:

type(electricity) = RWatt type(switch) = {on, off}Switch type(light) = NLumen

The system’s port names are partitioned into inputs, outputs and local ports Ports =
PortsI t PortsL t PortsO. Each port is also assigned to exactly one entity such that

Ports =
⊔

e∈Entities

Portse

The intersection of these partitions provides us with each entity’s inputs, outputs and
local ports:

∀e ∈ Entities


PortsIe = PortsI ∩ Portse

PortsOe = PortsO ∩ Portse

PortsLe = PortsL ∩ Portse

6



CREST allows only a subset of ports to be used within transition guards and update
functions. In fact, an entity can only read certain ports called sources. Further, an
entity’s updates can only write to specific ports called targets. These rules enforce the
locality principle, as explained above.

The function sources : Entities → P(Ports) provides the ports of an entity, that can be
used to calculate transition guards or the value of update functions. The set is composed
of an entity’s inputs, the entity’s local ports and, to pass data from subentities, the direct
subentities’ output ports.

∀e ∈ Entities, sources(e) = PortsIe ∪ PortsLe ∪
⋃

e′∈children(e)

PortsOe′

In the growing lamp we find for example

sources(GrowLamp) = {electricity, switch, room-temperature, lightL,

on-time, heatH , temperatureA}
sources(Adder) = {heat-in, temp-in}

targets : Entities → P(Ports) is a function that returns the set of possible targets of
update functions for an entity. Targets can be an entity’s local ports, outputs and all
direct subentities’ input ports.

∀e ∈ Entities, targets(e) = PortsOe ∪ PortsLe ∪
⋃

e′∈children(e)

PortsIe′

Definition 4 (Bindings). During the execution of a CREST system, each port is asso-
ciated with a value of its respective type. The mappings from ports to values are defined
by the set Bindings = {b : Ports → Resources | ∀p ∈ Ports, b(p) ∈ type(p)}. The initial
port bindings for some of the ports in Figure 1 are as follows:

b(electricity) = 0Watt b(switch) = offSwitch

b(on-time) = 0Time b(light) = 0Lumen

b(. . . ) = . . . b(. . . ) = . . .

Definition 5 (States and Transitions). The behaviour of a CREST entity is defined by
an automaton consisting of a set of states States and a guarded transition relation. The
set of all states is partitioned into distinct subsets for each entity, such that

States =
⊔

e∈Entities

Statese ∧ ∀e ∈ Entities,Statese 6= ∅

In Figure 1 we find the following states: States = {On,Off,OnL,OffL,Add,State}.
These states are split up for each individual entity as follows:

StatesGrowLamp = {On,Off} StatesLightElement = {OnL,OffL}
StatesHeatElement = {State} StatesAdder = {Add}

7



The Transitions relation associates a source state to a target state using a guard
function name. CREST requires a transition’s source and target states to be part of
the same entity. T is the set of all guard function names. Based thereon, the set of
transitions is defined by:

Transitions ⊆
⋃

e∈Entities

Statese × Statese × T

In Figure 1 we find the following definitions

Transitions = {〈On,Off, off-guard〉, 〈Off,On, on-guard〉, . . . }
T = {on-guard, off-guard, . . . }

The function τ : T → (Bindings × Bindings → B) maps the guard function names
to guard function implementations. Guard implementations return a Boolean value
(True/False) when called with the current port bindings bind and the previous port
bindings pre (bind , pre ∈ Bindings). The return value states whether a transition is
enabled. The guard function must only use the values of ports in the entities’ source
ports to compute its result. (See the semantic constraints section.)

In the growing lamp example τ(on-guard) points to the following guard function:

τ(on-guard)(binding , pre)

{
False if binding(electricity) < 100Watt

True if binding(electricity) > 100Watt

Definition 6 (Updates). Updates are functionality that allows to write values to ports.
Each update specifies an automaton state and evaluates continuously while that state is
active. Updates specify functions that evaluate which values are written to ports. These
functions are called with the current and previous port bindings as parameters. This
makes it possible to modify a port value based on another port’s value.

In the example above we see that the Adder defines an update add. add reads the
values of Adder’s two input ports, sums them up and writes them to the output port.

Updates can also be used to model changes over time. This is possible since update
functions have access to the amount of time that passed in the state δt. Hence they can
be used to model timing aspects.

Formally, the set of updates Updates associates states, ports and update function
names U :

Updates ⊆
⋃

e∈Entities

(
Statese × targets(e)× U

)
Per target port and state only one update definition is allowed, to avoid conflicts when

two updates try to write to the same port:

∀p ∈ Ports, s ∈ States, | {〈s, p, u〉 ∈ Updates} |≤ 1

The function υ : U → (Bindings×Bindings×T→ Resources) maps the update names
to their implementations. Applied to port bindings bind and the previous port bindings
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pre (bind , pre ∈ Bindings) and a passed time span δt ∈ T they provide a new value for
the specified port.

The execution of the update function (identified by υ) can only change ports which
are targets of the entity that contains the associated state. Further, only source ports
are allowed for the calculation of the returned value. See the semantics section for more
details. In our example, updates are for instance:

Updates = {〈On, electricityL,update light electricity〉,
〈On, on-time, update on time〉, . . . }

U = {update on time, update light electricity, . . . }

The CREST diagram also displays a special kind of update functions: influences.
Influences are static updates that connect two ports statically, independent of an entity’s
automaton state and the time that passed. Since such influences are a purely syntactic
addition (they can be expressed through a set of “normal” updates), they are not directly
part of the structure and semantics of a CREST system. See Section 4.1 for the formal
definition of influences.

Definition 7 (dependencies). We define a function dependencies : U → Ports that
returns a set of ports for each update function name. We add a constraint that depen-
dencies can only be source-ports:

∀〈s, p, u〉 ∈ Updates, s ∈ Statese, p ∈ targets(e), dependencies(u) ⊆ sources(e)

The dependencies-function is used to determine the execution order of updates within
the operational semantics.

2.2 State of the System

Definition 8 (State of the system). The state of an entire CREST system w ∈ W is a
combination of the current states of all entity automata, the port bindings, the ports’
previous bindings, and a global time.

W = Currents × Bindings × Bindings × T

Each CREST system defines its initial state w0 ∈W .
The set of current states is given by Currents =
{f : Entities → States | ∀e ∈ Entities, f(e) ∈ Statese}

In the example current ∈ Currents is initially defined as

current(GrowLamp) = Off current(LightElement) = OffL

current(HeatElement) = ∅ current(Adder) = AddL

9



2.3 CREST Syntactic Structure

Based on the definitions above, a CREST system is specified as a structure containing
information about the data types, entity hierarchy, ports, states and transitions, updates,
influences, and an initial state:

〈Units,Domains, Entities, parent , Ports, type, States,

Transitions, T , τ, Updates,U , υ, dependencies, w0〉

2.4 Changes to the system state

Definition 9 (Change of automaton states). The state transition of an entity e to a
state s is represented by w[e 7→ s]. This creates a new system state w′ such that current
of all entities remains the same, except for e (the entity to be updated), which now maps
to s.

∀w ∈W , w = 〈current , bind , pre, t〉,
∀e ∈ Entities,∀s ∈ Statese, w[e 7→ s] = 〈current ′, bind , pre, t〉

where ∀e′ ∈ Entities, current ′(e′) =

{
s if e′ = e

current(e′) otherwise

Definition 10 (Change of port values). Changes to port bindings are denoted by w[ps],
where ps is a set of port-value mappings (p 7→ r). We define the value assignment to be
the creation of the global state where the bindings for all ports p appearing within ps
are the new values and all ports not specified within ps remain unchanged.

∀w ∈W, w = 〈current , bind , pre, t〉,
∀ps ∈ {f : P ′ → Resources | P ′ ⊆ Ports ∧ f(p) ∈ resource(p)},
w[ps] = 〈current , bind ′, pre ′, t〉, where

∀p ∈ Ports,

{
bind ′(p) = r ∧ pre ′(p) = bind(p) if p 7→ r ∈ ps

bind ′(p) = bind(p) ∧ pre ′(p) = pre(p) otherwise

Note, that the the previous port values pre of the ports in ps are updated.

To set the GrowLamp’s inputs we could call e.g.

w[{electricity 7→ 500Watt, switch 7→ onSwitch}]

These definitions allow us to model the modification of individual automata and port
values. The effects of such changes on an entire CREST system and the upkeep of a
well-formed system-state require more complex behavioural routines that are defined as
CREST’s semantics.
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3 Semantic Constraints

CREST systems have certain constraints on update functions and transition guards.
These constraints limit the implementations of update functions and transition guards.
As CREST does neither prescribe a syntax nor a semantics of these implementations
it is of absolute importance that these constraints are upheld. Below, we present the
constraints that these implementations need to fulfil.

Transition guard locality This constraint states that the guard conditions can only use
ports that are part of an entity e’s source ports (sources(e)) for evaluation. The formal
requirement below expresses this using the requirement that the application of a guard
function onto two bindings b1 and b2 produces the same result, when b1 and b2 are equal
for all sources ports, but differ in (at least) one non-sources port.

∀e ∈ Entities,∀〈s, t, g〉 ∈ Transitions, s, t ∈ Statese,∀b1, b2, pre1, pre2 ∈ Bindings, ∀p1 ∈ sources(e), b1(p1) = b2(p1), pre1(p1) = pre2(p1)
∧

∃p2 /∈ sources(e), b1(p2) 6= b2(p2) ∨ pre1(p2) 6= pre2(p2)

 =⇒ τ(g)(b1, pre1) = τ(g)(b2, pre2)

Update resource type The next constraint states that an update always has to produce
it’s target’s resource.

∀〈s, p, u〉 ∈ Updates,∀δt,∀b ∈ Bindings, υ(u)(b, δt) ∈ resource(p)

Update function locality Similarly to transition guards, update functions also can only
use ports within an entity e’s source ports (sources(e))

The constraint below expresses the following: Given any entity e, for all updates
writing towards a target-port p of that entity, the update’s function implementation
υ(u) has to produce the same result when applied onto a binding that is equal in it’s
source states.

∀e ∈ Entities,∀〈s, p, u〉 ∈ Updates, p ∈ targets(e),∀b1, b2, pre1, pre2 ∈ Bindings, ∀p1 ∈ sources(e), b1(p1) = b2(p1), pre1(p1) = pre2(p1)
∧

∃p2 /∈ sources(e), b1(p2) 6= b2(p2) ∨ pre1(p2) 6= pre2(p2)

 =⇒ υ(u)(b1, pre1, δt) = υ(u)(b2, pre2, δt)

4 Syntactic Extensions

The basic structure of a CREST system enables to express a large number of constructs.
However, in some situations some modelling patterns re-occur many times. One example
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is the static linking of two ports with an update function. This update function is
continuously triggered in every automaton state and represents constant, state- and
time-independent behaviour, such as the conversion of values. Another pattern that one
repeatedly comes across is the need to execute an update when a transition is triggered.
Both these patterns are easy to express in CREST, however they lead to unnecessary
repetition.

In this section two additional syntactic concepts are introduced: influences and tran-
sitions with actions. Both of these concepts translate naturally into the CREST basic
system structure. Hence, these additions are purely syntactic and do not add further
new modelling power and expressivity. For each of these concepts, the formal definition
(translation) is provided and all constraints are provided.

4.1 Influences

As previously mentioned, CREST uses the notion of influences are used to statically
link the values of two ports. In the GrowLamp example, fahrenheit to celsius is an
example for such an influence. This influence continuously reads the room-temperature
port, executes a transformation and sets its target ports value to the calculated result,
independent of the current automaton state.

Hence, an influence is the equivalent of a set of updates (which use the same update
function) that are defined for each of the entity’s states.

The benefit of influences are that CREST diagrams are more legible and an overload
of update functions is avoided.

Syntax Formally, an entity’s influences are defined as follows:

∀e ∈ Entities, Influencese ⊆ sources(e)× targets(e)× U

All of a CREST system’s influences are defined as the distinct union of the entities’
influences.

Influences =
⊔

e∈Entities

Influencese

The above definition of influences implies that for each influence there is an update
related to each state of the influence’s entity. Formally, the constraint is expressed by
the following implication:

∀e ∈ Entities, 〈p1, p2, u〉 ∈ Influencese =⇒ ∀s ∈ Statese, ∃〈s, p2, u〉 ∈ Updates

For the calculation of the modifier precedence, we have to provide the function’s
dependencies. An influence’s dependency is only the source-port.

∀〈p1, p2, u〉 ∈ Influences =⇒ dependencies(u) = {p1}
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Semantic constraint On the semantic side we require that an influence function’s out-
put is only influenced by the source-port’s value. This is achieved by the following
requirement. We assume that for any two bindings and two pre-bindings whose val-
ues are, respectively, equal for the influence’s source port. The returned value of the
influence’s function needs to be the same, even if there exists a port where binding or
pre-binding values differ.

∀e ∈ Entities,∀〈p1, p2, u〉 ∈ Influences,∀b1, b2, pre1, pre2 ∈ Bindings, b1(p1) = b2(p1) ∧ pre1(p1) = pre2(p1)
∧

∃p ∈ Ports, p 6= p1, b1(p) 6= b2(p) ∨ pre1(p) 6= pre2(p)

 =⇒ υ(u)(b1, pre1, δt) = υ(u)(b2, pre2, δt)

4.2 Transition actions

In some situations it is convenient to execute an update only once when a transition is
triggered. The concepts introduced before suffice to express such behaviour. An example
for such a situation is a counter that increments a value every time a transition is fired
as displayed in Figure 2a. Instead of passing directly from Off to On, an intermediate
state Count is added. After transitioning to this intermediate state, the plus one up-
date performs the value increment. The Count-state is however left immediately upon
completion of the updates, since the next transition is guarded by guard that always
evaluates to True and hence is triggered immediately. The semantics in the next section
will elaborate on CREST’s eager transition firing concept and the exact reasons why the
update function is triggered.

Here we address the syntactical problem of having to define an intermediate state for
each such action-update. In order to alleviate this burden, the CREST syntax is extended
to include transitions with actions. The graphical syntax of such an action-transition
is shown in Figure 2b. Actions are defined as updates connected to a transition, rather
than a state.

Structurally, each action-transition defines a guarded transition extended by a set of
〈target-port, update function name〉 tuples:

TransitionsAct ⊆
⋃

e∈Entities

(
Statese × Statese × T × P(targets(e)× U)

)
As explained above, the introduction of actions is syntactic sugar, added to the lan-

guage to increase usability. This means that each transition with action can be also
expressed through an extra state, two transitions and a set of updates (one update per
action).

This translation is formalised by the following implication: For each action-transition
quadruple that was defined, there exists a an extra state t′, a transition from the source-
state s to t′ that is guarded by the transition guard and another transition from t′ to
the target-state t that is guarded by true, a guard function that always returns True.
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(a) Transition counter without actions
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On Offon-guard

off-guard

count:
0 (NCount)
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e

(b) Transition counter with actions

Figure 2: Two equivalent models of a counter entity. The models count the number of
times their Off-to-On transition is triggered. On the left, a classical imple-
mentation without transition actions. The model on the right uses transition
actions. plus one reads the value in count and increments it by 1.

For each target-port – action couple, a new update is introduced that is linked to t′

so that it is executed when the state is entered.

∀e ∈ Entities,∀s, t ∈ Statese

〈s, t, g, pas〉 ∈ TransitionsAct =⇒

∃t′ ∈ Statese, 〈s, t′, g〉, 〈t′, t, true〉 ∈ Transitions
∧

∀〈p, a〉 ∈ pas, 〈t′, p, a〉 ∈ Updates



Semantic constraint Note that transition actions are always called with δt = 0. This
is because transitions are instantaneous and hence time can also not pass during the
execution of the update. Hence, actions should hot be influenced by the δt value they
are called with.

Formally we require that an action always returns the same value, independent from
the time step it is called with. We assume that for any two time steps δt1, δt2,∈ T the
action’s return value does not change.

∀e ∈ Entities,∀〈s, t, g, pas〉 ∈ TransitionsAct ,∀〈p, a〉 ∈ pas,

∀bind , pre ∈ Bindings,∀δt1, δt2,∈ T, υ(a)(bind , pre, δt1) = υ(a)(bind , pre, δt2)

5 Semantics

CREST’s purpose is to facilitate the modelling of cyber-physical systems. CPS are often
dominated by parallel events such as the concurrent modification of inputs and state
changes based on passed time. An example would be the automated turning off of a
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growing lamp after a certain time, while also reacting to changes in temperature. It is ev-
ident that the propagation of resource influences is instant (or with negligible delay). The
flipping of an electrical mains-switch cuts the power supply that leads to a lamp being
turned off, with (almost) no noticeable delay. In order to explicitly model time-spanning
behaviour, such as the propagation of heat in a large room, modellers can use delaying
components. CREST’s instantaneousness warrants the use of a synchronous modelling
language. Despite the concurrency of actions and influences on one another, the sys-
tem’s components are individual units that each have their own behaviour. Interactions
between the components only come into effect after the time of assembly. Therefore, the
model should reflect this attribute and upkeep the behavioural locality. These properties
are also reflected in CREST’s core principles: 1. synchronism, 2. locality, 3. concurrency
and parallelism, 4. reactivity, 5. precision and 6. non-determinism.

We see the support of these as a main objective of the CREST language and therefore
require the semantics to support them.

In general, CREST supports two basic forms of system interaction:

- modifying the root entity’s input ports, and

- advancing the global system time.

After each interaction the system has to be stabilised. Stabilisation refers to the process
of bringing a system into a state where all influences and updates have been executed,
and no transitions are enabled. In the process of stabilising a system, the CREST
simulator ensures that the system input modifications are propagated throughout the
system, i.e. that affected entities react to these changes. If this process enables any
transitions, they will be triggered, due to CREST’s eager transition firing concept.

5.1 Modifiers and precedence

CREST’s operational semantics make use of the precedence operator≺, that expresses an
order between ports, updates and child-entities that arises from the updates’ dependen-
cies. Further a function active-modifiers identifies the set of updates and child-entities
that have to be executed to stabilise a CREST system and to recursively propagate
time advances throughout an entity. Due to potential interdependencies between up-
date functions, i.e. one update might read a port which is written by another update, it
is necessary to execute the stabilisation in a specific order.

This subsection defines functions and operators that are used the semantic rules for
this stabilisation process.

Port precedence The ≺ operator is used to create a partial order between ports, based
on dependencies and the input and output port information. We say that for any two
ports p1, p2 ∈ Ports p1 ≺ p2 iff one of the following cases applies:

1. there exists an update whose target is p2 and p1 is a dependency;

2. there exists an entity, p1 is an input and p2 is an output of that entity;
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3. there exists a port p′ so that p1 ≺ p′ ≺ p2.

Formally:

∀p1, p2 ∈ Ports, p1 ≺ p2 iff


∃〈s, p2, u〉 ∈ Updates, p1 ∈ dependencies(u)

∃e ∈ Entities, p1 ∈ PortsIe, p2 ∈ PortsOe
∃p′ ∈ Ports, p1 ≺ p′ ∧ p′ ≺ p2

active-modifiers When executing an update within a CREST entity, it is important
to execute all updates that are linked to the current state and to propagate the update
“down-stream” towards the entity’s children. The function active-modifiers returns these
updates and child-entities as a heterogeneous set.

active-modifiers : W × Entity → P(Entity ∪Update)

active-modifiers(〈current, bind, pre, time〉, e) =

{〈s, p, u〉 ∈ Update | s = current(e)∧} ∪ children(e)

Note, that instead of considering CREST influences as specific case, active-modifiers
return the equivalent update from the current state.

In the growing lamp example above, the active modifiers of the GrowLamp entity in
Figure 1 are the following:

active-modifiers(w0,GrowLamp) = {LightElement, HeatElement,

〈Off, electricityL, light electricity zero〉, 〈Off, electricityH , heat electricity zero〉,
〈Off, light, forward light〉, 〈Off, heat-in, forw heat〉,
〈Off, temperature, forw temp〉 〈Off, temp-in, fahrenheit to celsius〉
}

Modifier precedence The previous function identified the modifiers that need to be
executed when advancing the time and propagating updates through the system state.
However, it is very likely that a CREST system defines “chained ports”, whose values are
linked by update functions and subentity behaviour. This means that the modification
of one port will trigger the change of another port.

When looking at the GrowLamp example, we can see that the GrowLamp’s light

output depends on the light-element’s lightL output. Abstracting over the internal
behaviour of LightElement we can say that the LightElement’s lightL output depends
on the electricityL input2, which is set by the update light electricity update

2Due to CREST’s locality principle, child-entities are treated as “black boxes”. Hence it is assumed
that all of a child-entity’s outputs depend on all its inputs
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that reads the electricity input. In order to calculate the correct port values, we need
to take these dependencies into account and execute them in the correct order.

For this reason the ≺ operator is adapted to also compare modifiers (i.e. updates and
child-entities). Given two modifiers ≺ establishes if there is an influence between these
modifiers, i.e. if one modifier’s output/target ports influence linked the other modifiers
input. Formally, ≺ over modifiers is defined using the following four definitions:

1. one entity precedes another iff (at least) one output of the former precedes one
input of the latter:
e1 ≺ e2 =⇒ ∃p1 ∈ PortsOe1 , ∃p2 ∈ PortsIe2 , p1 ≺ p2

2. a entity precedes an update iff one of the entity’s outputs precedes one f the
update’s dependencies:
e ≺ up =⇒ ∃p1 ∈ PortsOe , up = 〈s, p, u〉, p2 ∈ dependencies(u), p1 ≺ p2

3. an update precedes a entity iff the update’s target precedes one of the entity’s
inputs:
up ≺ e =⇒ up = 〈s, p1, u〉,∃p2 ∈ PortsIe, p1 ≺ p2

4. an update precedes another update iff the former’s target precedes one of the
latter’s dependencies:
up1 ≺ up2 =⇒ up1 = 〈s, p1, u1〉, up2 = 〈s, p′, u2〉, ∃p2 ∈ dependencies(u2), p1 ≺ p2

enabled-transitions A CREST entity can define guarded transitions between its states.
In order to evaluate which transitions are enabled, a function enabled-transitions is used
that, given a current state and an entity returns the set of transitions whose guard
functions return True.

enabled-transitions : W × Entity → P(Transitions)

enabled-transitions(〈curr, bind, pre, time〉, e) =

{〈s, t, g〉 ∈ Transitions | s, t ∈ Statese ∧ s = curr(e) ∧ τ(g)(bind, pre) 7→ True}

5.2 Operational Semantics

CREST’s semantics describe modifications to the global system state w. System mod-
ifications are executed and the modifications are propagated “downstream” from the
root entity towards the leafs of the CREST entity hierarchy. The locality principle de-
mands that an entity is responsible for the upkeep of its own state and can only access
the interfaces of its subentities. Hence an entity does not know about its hierarchical
“ancestors”.

CREST’s semantics are based on the concept of reaching a fixed point (“fixpoint”)
after each system modification. Fixpoints are states in which the system is stable, i.e.
the system does not change unless time passes or external factors modify the system.
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set-values The fixpoint concept is applied for example when modifying the value of
ports, as shown in Rule 1, below. We see that setting values (specified using a port-
value mapping) requires the execution of an update-and-stabilise procedure after the
modification of the port values. This routine triggers an entity’s updates and automata
transitions until a fixpoint is reached. In the process it also recursively propagate the
modifications to its child-entities.

w1 = w[vs], 〈w1, root, 0〉 update-and-stabilise−−−−−−−−−−−−−−→ w2

〈w, vs〉 set-values−−−−−−−→ w2

(1)

update-and-stabilise The propagation of system changes (i.e. port values or time
advance) throughout a CREST system is based on the concept that after a change, all
updates of an entity should be executed and then trigger updates and stabilisation in the
child-entities. Rule 2 is called on a specific entity e whose updates are to be triggered and
a size of time step δt that should be executed. For stabilisation of the system without
time advance, such as after the external setting of port values (see Rule 1 above), this
rule can be called with δt = 0, which will propagate values but not trigger an advance
of time with in the system.

After the update propagation phase has finished, CREST looks triggers transitionfp
to advance the automaton state until no further transitions are enabled.

Specifically, the rule first gathers all enabled modifiers (updates from current state
and child-entities) and triggers their execution in the update-all rule, followed by the
stabilise rule.

mods = active-modifiers(w, e),
〈

set-pre(w, e), e,mods, δt
〉

apply-all−−−−−−→ w1 〈w1, e〉
stabilise−−−−−→ w2

〈w, e, δt〉 update-and-stabilise−−−−−−−−−−−−−−→ w2

(2)

The above rule uses a function set-pre that, given a state w = 〈curr, bind, pre, time〉
and an entity e creates a new state, where pre is modified. The return value’s pre is set
to bind for all ports in targets(e). This function is used before executing any modifiers of
this entity to assert that the modifiers have access to the port’s previous values (i.e. the
values before the updates). and before t values or advancing time, so that the update
functions that are defined in the system can access the value before the update (and
hence operate incrementally). Note, that set-pre only modifies the pre-bindings of an
entity’s target ports, in order to maintain consistency with the rest of the formalisation.
This means that an entity is responsible for setting the pre values of its subentities’
inputs.

set-pre
(
〈curr, bind, pre, time〉, e

)
= 〈curr, bind, pre’, time〉

where pre ′(p) =

{
bind(p) if p ∈ targets(e)

pre(p) otherwise
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apply-all This rule is responsible for identifying one modifier within a set of modifiers
mods that does not have any preceding modifiers and executing it. Formally, it employs
the ≺ operator to evaluate this condition. After such a modifier is found, it is exe-
cuted (see apply-one below) before recursively calling apply-all on the rest of the set.
Using this approach, CREST propagates value changes iteratively, taking dependencies
between ports into account.

Rule 4 is the break-condition of the recursion. It is called when the list of modifiers is
the empty-set ∅, i.e. all applicable modifiers have been executed and removed. In this
case, no action is taken and the system state remains unchanged.

@m′ ∈ (mods \m1),m′ ≺ m1, 〈w,m1, δt〉
apply-one−−−−−−−→ w1,

〈w1,mods \m1, δt〉
apply-all−−−−−−→ w2

〈w,mods, δt〉 apply-all−−−−−−→ w2

(3)
〈w,∅, δt〉 apply-all−−−−−−→ w

(4)

apply-one The two apply-one functions (Rule 5, Rule 6) execute the modifier (update
or child-entity) based on their type. If the modifier is an update, the execution of the
update is relayed to the specific update function. Otherwise (if it is a child-entity), it
calls update-and-stabilise on the child-entity to propagate the changed system state
and triggering updates within the children.

mod ∈ Update, 〈w,mod , δt〉 update−−−−−→ w1

〈w,mod , δt〉 apply-one−−−−−−−→ w1

(5)
mod ∈ Entities, 〈w,mod , δt〉 update-and-stabilise−−−−−−−−−−−−−−→ w1

〈w,mod , δt〉 apply-one−−−−−−−→ w1

(6)

It is important to understand that the similar treatment of updates and child-entities
is a significant feature of CREST. CREST sees child-entities as a complex form of update
which reads input values and writes output values. This black-box concept encapsulates
all child behaviour and allows every CREST entity to always rely on the fact that its
children are in a stable state3.

update The execution of an update is relatively simple. The premises of Rule 7 extract
the update function’s name u, current port bindings bind and previous port bindings
pre. The new system state is the old state where the update’s target port p is set
to the value returned by the update function implementation υ(u) executed with the
parameters bind, pre and δt.

〈s, p, u〉 = mod , w = 〈curr, bind, pre, time〉,

〈w,mod , δt〉 update−−−−−→ w[p 7→ υ(u)(bind , pre, δt)]
(7)

Update functions have access to δt, the time that has passed since the current state was
activated. This allows the modification of port values over time and thereby potentially
enabling transitions. Figure Figure 3 shows such an enabling over time. It displays a
water tank system that contains a pump. When the pump is turned on, the volume
of water is calculated by an update function which continuously evaluates as follows:

3Child-entities can become un-stabilisable due to a e.g. cycle of transitions that are continuously
enabled
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volume =
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Figure 3: A water tank

volume = volume + in ∗ δt − out ∗ δt, where in is the amount of water being pumped
into the tank per time unit and out the water leaving the tank. The pump transitions
to Off when the water volume exceeds 75 (guard volume above 75 ). In Off the update
subtracts out ∗ δt from the volume. The pump starts as soon as the volume drops below
25. We see that – assuming reasonable in and out flows – over time the pump will
change regularly between the On and Off state. Note, that for simplicity reasons in this
example we chose to annotate the updates and transitions with their implementations,
rather than their names. While this “shortcut” allows for more expressive diagrams, it
is important to understand that these annotations are mathematical syntax, and not
part of CREST.

stabilise The stabilise rules are responsible for triggering transitions. In case a
transition was executed (i.e. the global system state w changed, Rule 8), it executes
update-and-stabilise to trigger the update functions which are connected to the new
automaton state.

If no transition was executed, no further action is taken (Rule 9).

〈w, e〉 transitions−−−−−−−→ w1, w 6= w1, 〈w1, e, 0〉
update-and-stabilise−−−−−−−−−−−−−−→ w2

〈w, e, δt〉 stabilise−−−−−→ w2

(8)
〈w, e〉 transitions−−−−−−−→ w

〈w, e, δt〉 stabilise−−−−−→ w
(9)

CREST implements eager transition evaluation. This means that a transition must
be fired if (at least) one is enabled. It is essential that update functions are triggered
immediately after the transition phase, as they otherwise risk to be executed at the
wrong moments or not at all. A simple example visualising this behaviour in Figure 2a
visualises this by showing an on/off automaton with a transition counter. By adding
an intermediate state Count between Off and On, it is possible to count the number
of times the automaton switched from off to on. The function plus one is evaluated
immediately after entering Count. On the next iteration of stabilise (which is called by
update-and-stabilise) the automaton switches to state On because of the transition
guard that always evaluates to True.

If CREST were to first execute all enabled transitions and only then trigger the updates
when the automaton cannot not advance anymore, plus one would never be executed
and it would be impossible to implement a counter such as this one.
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Figure 4: A non-deterministic state automaton

This particularity is the basis for CREST’s syntactic extension for transitions with
actions.

transitions The execution of transitions itself is based on two rules. First, Rule 10
describes the case where no transitions are enabled. In this case there are no effects to
the system state. Second, in case there are enabled transitions, Rule 11 selects one of
them and changes the automaton’s state.

enabled-transitions(w, e) = ∅

〈w, e〉 transition−−−−−−−→ w
(10)

〈s, t, g〉 ∈ enabled-transitions(w, e)

〈w, e〉 transitions−−−−−−−→ w[e 7→ t]
(11)

It is noteworthy that CREST does not prescribe a strategy in the event where more
than one transition is enabled. Thus this is the place where non-determinism is possible,
e.g. if guard conditions “overlap”.

Figure Figure 4 displays the state automaton of a non-deterministic entity. We assume
our system to be a watering unit which is connected to two plants. If a plant’s soil is
dry, the watering unit automatically waters that plant (Water Plant X ). We can easily
imagine a scenario where both plants are dry at the same time (e.g. just after starting
the system). Since CREST does not dictate any strategy, the decision which plant to
water first is non-deterministic. This non-determinism is an important property to model
many software systems.

Time advance We see from the above rules that updates allow the modification of a
system over time. The semantics of these time advances are defined below. The decision
of which rule to apply depends on the amount of time to advance δt. CREST only
supports positive δt-values, meaning that it is not possible to “step back in time”. In
the semantics, such actions have no effect. Further, an advance of δt = 0 does not affect
the system state either, as shown in Rule 12.

δt 6 0

〈w, δt〉 advance−−−−−→ w
(12)

The advance of time relies on the availability of next transition time(w). Given a
CREST system’s current state w this function tries to calculate the precise amount of
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time δt that has to pass until updates enable any transition’s guard condition. The
calculated value is in the range [0, . . . ,∞), where 0 states that a transition is already
enabled (and implying that the system is not in a stable state) or ∞, meaning that no
transition can be enabled by just advancing time. CREST’s implementation uses for ex-
ample an SMT solver that transpiles the update functions’ source codes into constraints
that can be solved by a minimum next transition time, although other strategies are
possible. A detailed discussion about the strategies of next transition time(w) exceeds
however the scope of this report.

CREST distinguishes between two cases of time advances:

1. If the time we plan to advance δt is less than or equal to the next transition time,
Rule 13 applies. Since no transition can become enabled before a time step of δt,
CREST can safely advance. Before the advance, the rule sets the pre values of the
current binding, so they are available for the updates.

Subsequently update-and-stabilise is called on the root entity with parameter
δt, in order to trigger all system updates and stabilisation of entities (including
transition triggering). Lastly (in the rule’s conclusion) the system’s global time is
updated.

δt 6 next transition time(w), 〈w, root , δt〉 update-and-stabilise−−−−−−−−−−−−−−→ 〈curr, bind , pre, time〉

〈w, δt〉 advance−−−−−→ 〈curr, bind, pretime + δt〉
(13)

2. If the next transition time ntt is less than δt, Rule 14 will split the advance into two
steps: First, it will trigger advance with the value ntt , which activates Rule 13 and
a stabilisation (including transition firing). Next, CREST recursively advances the
remaining time (δt− ntt).

ntt = next transition time(w), δt > ntt, 〈w,ntt〉 advance−−−−−→ w1, 〈w1, δt− ntt〉 advance−−−−−→ w2

〈w, δt〉 advance−−−−−→ w2

(14)

CREST’s time semantics allow for the simulation and verification based on real-valued
clocks with arbitrarily small time advances. This feature is essential for the precise
simulation of cyber-physical systems without the need for an artificial base-clock.

6 Conclusion and Future Work

This report presents the formal aspects of CREST, a novel, domain-specific language for
the modelling of cyber-physical systems (CPS). CREST is designed for small, custom
CPS such as home and office automation applications or automated gardening. The
language’s syntax and semantics were developed to support the six key aspects that
are required by such applications: synchronism, locality, concurrency and parallelism,
reactivity, continuous behaviour, and non-determinism. In order to support these prop-
erties, the syntax is based on continuous data transfer between the ports of a hierarchical
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entity system. Each entity additionally specifies its behaviour using a finite-state au-
tomaton and can hence modify and adapt its behaviour based on port value changes.
CREST features update functions which allow a modification of port values over time
and hence model continuous evolutions. The operational semantics are formally de-
fined and revolve around concept of stabilisation after each system modification. This
stabilisation is achieved by fixpoint searches.

The formalisation is extensively used by the CREST implementation4 for the simula-
tion and verification of CPS. In future, we plan to extend CREST to additionally support
other forms of behaviour specification, such as Petri nets. Petri nets have been shown
to be highly usable for concurrent systems and allow the modelling of non-deterministic
systems. A next version of CREST will support this specification by linking the execu-
tion of value updates to the marking within a Petri net place, rather than an automaton
state. We additionally plan to translate CREST systems to other formalisms that have
extensive verification and validation tool support. Formalisms such as hybrid systems
and DEVS seem to be suitable transpilation targets.

4https://github.com/stklik/CREST
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