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Abstract: The Continuous Viewing Zones of TESS represent regions with years of precise, space-based photometry. In
these regions, we have targeted the stars on the subgiant branch and lower giant branch, regions that were understudied
by the Kepler Mission. We show that the TESS data Is sufficient to measure asteroseismic parameters for more than 80
stars. We also show how these stars can be used to study TESS detection systematics, the quality of stellar evolution
models in this regime, the evolution of the galaxy with age, and the physics of internal angular momentum transport.
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We have fewer seismic detections than expected,
especially for fainter, bluer subgiants
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We get age distributions consistent with previous
work, and identify stars with potentially interesting
(binary?) evolution histories including the ‘young’
alpha-rich stars, and stars ‘older’ than the universe
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Stellar models don’t quite predict the right temperatures for
these stars, but all models have similar offsets.
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iIndividual modes, seen rotational splittings, and estimated
core rotation rates; they are in line with previous results.
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Combining our data with core and surface rotation rates
from the literature, we can start to compare rotational
evolution to various classes of models. Recent models
are much closer than before, but nothing is perfect yet.
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