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ABSTRACT

This paper introduces a novel feature selection method called
Minimum Surface Bhattacharyya (MSB). The method is ap­
plicable for multiple class problems utilizing supervised train­
ing. The minimum surface method selects features by means
of inter-class separability. For the purposes of this paper, the
method is applied to a hyperspectral data set with high cor­
relations among the features. The method shows promise for
hyperspectral analysis due to its speed and demonstrated ca­
pacity to improve classification performance.

Index Terms- feature selection, dimensionality reduc­
tion, Bhattacharyya coefficient, machine learning

1. INTRODUCTION

Hyperspectral images require significant amounts of mem­
ory due to the passive recording of hundreds of image bands.
Pending one's application, storage, transfer and/or analysis of
hyperspectral images may be problematic due to their size. In
order to reduce the impact of high-dimensional data on trans­
fer rates and processing time, feature selection may be used to
determine a relevant feature set. Additionally, a small feature
subset may improve classification performance by maintain­
ing features pertinent to the classification task.

Feature selection methods typically suffer in two areas.
First, many have significant runtime time complexities, of­
ten making them impractical outside of a research environ­
ment. Second, some do not handle highly correlated data ef­
fectively. A common feature selection taxonomy (i.e., wrap­
per, filter and embedded methods) is fitting for categorizing
the observed trends in the compared methods [1]. For exam­
ple, one may search the feature subset space with a wrapper
method for well performing features utilizing classification
performance as an evaluation measure. Subset search utiliz­
ing heuristics (best first search) or stochastic (genetic algo­
rithm) search methods result in small subsets with good per­
formance for a given classifier, but require significant com­
putational resources for large feature sets [1]. Faster feature
selection methods (filter methods), such as RELIEF-F and
the weighted sum of Probability of Error and Average Cor­
relation Coefficient (POEACC), analyze features individually
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and not as subsets [1]. Filter methods significantly reduce
time complexity, but for some data sets, these methods do
not adequately handle dependency among features. Embed­
ded feature selection methods determine features as part of
a classification learning paradigm. Examples of embedded
methods include the C4.5 decision tree and Generalized Rel­
evance Learning Vector Quantization Improved (GRLVQI)
[1, 2]. C4.5 uses entropy for generating a decision tree classi­
fier and an error rate estimation method for pruning branches.
GRLVQI uses a prototype-based neural paradigm, while up­
dating the relevances of features in concert with evaluating
the classification performance and prototype learning.

Utschick [3] discusses feature selection based on the sep­
arability between classes for a given feature for a multiple­
class classification problem. The Bhattacharyya coefficient is
used as a measure of the separability of two classes, a and
b, for a given feature f. The Bhattacharyya coefficient for a
given feature, B I» is calculated by

(1)

where there are k bins of the data histogram, and Pi rep­
resents the probability (or contribution) of a bin in a fea­
ture's histogram in respect to samples of a given class, a or
b. The Bhattacharyya coefficient ranges from [0,1], where a
value of one indicates that the two histograms are identical
and zero indicates no overlap of the histograms. The mean
Bhattacharyya coefficient of all class pairs has been used as
the measure for comparing features among multiple classes.
Sorting by the mean is analogous to sorting by the median
Bhattacharyya coefficient, since both represent differing per­
spectives ofthe "center" of a sample set. Correlation is shown
between the predictive accuracy of a classifier and the Bhat­
tacharyya coefficient ofthe features used in training. Utschick
[3] assumes the distributions ofthe features among the classes
are Gaussian in order to utilize the Bhattacharyya coefficient.
Thacker, et al. [4] show the Gaussian assumption need not be
made; the Bhattacharyya coefficient may be used as a mea­
sure for a data set with any distribution of the features.

Utilizing the Bhattacharyya coefficient results in a O(S)
runtime in respect to the number of samples (S). This is due



2. FEATURE SELECTION METHODOLOGY

2.1. Minimum Surface Bhattacharyya

The mean or class-weighted Bhattacharyya methods for fea­
ture selection is lacking in finding the smallest set of features
for the multiple-class classification problem. The novel ap­
proach treats the Bhattacharyya coefficient for the C( C - 1)/ 2
pairs of C classes as a surface and sorts the features by itera­
tively selecting members consisting of the minimum surface.
For example, Fig. 1 depicts the surfaces ofthree features. The
mean of the features are 0.2, 0.5 and 0.6782 for features x , y,
and z , respectively. The mean ofthe three surfaces obfuscates

novel minimum surface Bhattacharyya (MSB) method.

Algorithm 1 Minimum Surface Bhattacharyya Pseudocode

Require: Array f [O,number_of_features -1]ofvaluear­
rays {a v alue array per feature}

Require: Arrays value[O, number .o].ciass.pairs - 1] of
real numbers {a Bhattacharyya coefficient per class pair}
sorte d. list f-- < em pt y list >
open.list f-- [1,number .o]-features] {feature indices}
while open.List is not empty do

min.siolue f-- min(f, open.lists {minimum Bhat­
tacharyya coefficients for each class pair in open_list}
m in.sur face f-- < em pt y list >
for i = a to number .o].clas s.pairs do {find the fea­
tures that generate the current minimum surface}

x f-- - 1
for each feature index, j , in open.list do

if j[j].v alue [i] = m in_value[i ] then
if x = -1 then

X f--j
else {multiple features have minimum value: se­
lect features by median and skewness}

if median(f [j ].value) < median(f [x ].value)
then

if skew(f [j ].value) > skew(f [x ].value)
then

X f--j
end if

end if
end if

end if
end for
min.surf ace f-- union(min_sur f ace , x)

end for
sort min.sur face from smallest to largest median
Bhattacharyya value and secondarily skewness
append m iti.surf ace to end of sorte d.l ist
open.list f-- seLdifference(open_list , min. sur face)
{remove features in m iri.su r jace from open_li st}

end while
return sorted.l ist {sorted list of feature indices}
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The feature selection methods discussed (genetic algorithm,
best first search, RELIEF-F, POEACC, C4.5, GRLVQI and
median Bhattacharyya) are compared to a novel feature selec­
tion method to determine their performance on a hyperspec­
tral data set. The feature selection methods are performed on
the data set using the training sets from a three-fold stratified
cross validation to provide unbiased feature evaluations. The
classification performance ofordered subsets from the feature
selection methods are used to compare performance. The or­
dered subsets for each feature selection method are generated
using the feature rankings created by a given feature selection
method. For the feature methods that generate subsets and
not inherent rankings (or weightings) the features are ranked
based on the number of folds that selects the feature. The
classification performance of a subset is determined with a
minimum euclidean distance (MED) classifier [2]. The Lunar
Crater Volcanic Field (LCVF) scene by AVIRIS is analyzed
for selecting relevant image bands and provides 23 and 35­
class problems [5]. This section continues by presenting the
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Fig. 1. The mean performance for this example is 0.2, 0.5, and
0.6782 for x , y, and z, respectively. The current minimum
surface consists mostly of feature x and two class pairs of
feature z (5 and 35).

to the fact that there is a constant number of passes through
all the data for the sake of generating counts and binning the
class histogram of the feature. The runtime in respect to the
number offeatures (N) would still be O(NlogN) due to the
sorting of the features by Bhattacharyya value. For the pur­
poses of this paper, this feature selection approach is referred
to as the mean or median Bhattacharyya method. The runtime
performance for this method is highly efficient in comparison
to the other feature selection methods discussed . The sorting
of features by the median Bhattacharyya coefficient does not
contribute to the worst case runtime performance as long as
the number of overall samples is significantly greater than the
number of features.
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Table 1. Comparison in GRLVQI and MSB Subsets
# of features in subsets 10 20 30 40 50
# of common features (23-class) 4 11 15 26 33
# of common features (35-class) 3 6 13 25 32
MSB subset EWA (23-class) 0.8963 0.8657 0.9239 0.9213 0.9304
GRLVQI subset EWA (23-class) 0.8987 0.9367 0.9409 0.9461 0.8757

methods provide the smallest subsets with the best perfor­
mance. Most of the filter methods provide inferior classifica­
tion performance for comparable sized subsets with less than
a hundred features. The MSB method is the only filter method
to provide comparable classification performance with its se­
lected subsets to those of the embedded and wrapper methods.
The MSB method operates at a significantly faster runtime
than the genetic and best first searches, and GRLVQI.

An interesting question to answer is whether the selected
subsets are consistent among well performing feature selec­
tion methods. Surprisingly, two feature selection methods
with similar performances of their subsets (MSB and GR­
LVQI) have strikingly different feature rankings. Table 1
shows the number of common features selected for a given
data set (i.e., the size of the intersection of the subsets) among
the two methods is relatively small. For the feature subsets
composed of 10 features for the 23-class problem, MSB and
GRLVQI have 4 features in common so many features are
unique to the given feature selection method. Table 1 high­
lights MSB and GRLVQI subset accuracies for the 23-class
problem.

As a maximum margin classifier, GRLVQI ranks features
based on maximizing the separation between the classes.
MSB utilizes overlap ofclass-based histograms (Bhattacharyya
coefficient) so the margin is not optimized. Even though some
features selected by GRLVQI and MSB are distinct, the fea­
tures may be "close" to each other in wavelength and provide
similar information. Fig. 2 (c) and (d) illustrates that many
of the highly ranked features are "close" to each other in
wavelength. The graph overlays sample spectra with GR­
LVQI relevances. The stems indicate the GRLVQI relevances
and the top 30 ranked wavelengths from MSB are red. The
graph indicates the two methods select similar wavelengths.
Longer wavelengths may not be preferred due to the noise
in reflectances of some materials as illustrated by material G
(green). Of note, the MSB feature rankings for this data set
suffer since a sufficiently large number of features, 33, reside
on the initial minimum surface.

A problem with feature selection method based on rank
or weightings such as the MSB is that a useful subset is not
intuitively obvious from the rankings. In the case of this pa­
per, useful subsets for the classification task are indicated
based on actually performing classification of ordered sub­
sets. Pending the method used, classification may be time
intensive. Future work entails selection of a subset from the
MSB method without performing feature selection or select­
ing an arbitrary number of features. One possible approach is

3. RESULTS & CONCLUSIONS

Fig. 2 (a) and (b) illustrates the classification performance
of subsets generated by a group of feature selection meth­
ods. The classification performance is denoted by the equal
weighted accuracy (EWA), which is the average of the accu­
racies of each class. In general, the embedded and wrapper

features with the best separability for a given class pair. That
is, the mean (or median) Bhattacharyya represents average (or
median) performance and has no intelligent way of adapting
to local "best performance" in its ordering process. By select­
ing the features creating the minimum surface (e.g., features
x and z in the first iteration), the separability for each class
pair is optimized in the feature ordering. Hence, features are
greedily selected in a manner that preserves the best separa­
bility without searching through all combinations of features.
The order ofthe features utilizing the minimum surface are x,
z, and then y. When all features lie on the initial minimum
surface, the minimum surface sort becomes a sort of median
values.

Algorithm 1 details the pseudocode for implementing the
sorting method based on the minimum surface. The MSB
method for sorting the features maintains an open list of all
features. It selects all features that have a minimum value
for a given class pair across the entire combinatorial space
of pairings. If there is a tie in the minimum value for a given
class pair, the feature with the smallest median Bhattacharyya
value and secondarily, the largest skewness is selected. The
selected features (composing the minimum surface) may then
be sorted in a similar fashion, added to the end of the sorted
list, and then removed from the open list. The method is per­
formed iteratively until all of the features have been removed
from the open list. The result of the method is an ordered
list of features, where a subset may be selected based on a
threshold or approach outlined in [6].

By sorting the features based on their minimum Bhat­
tacharyya coefficient, one will guarantee the features that pro­
vide the best separability for each class will be ordered first.
Assuming the correlation of separation and performance is
maintained for various classification problems, this method
should result in a smaller subset providing comparable perfor­
mance to that of the mean or median Bhattacharyya method.
Fundamentally, the Bhattacharyya coefficient bases a given
feature distribution on a sampling of data, not a model of the
data. The method assumes the sampling accurately represents
the data population in selecting features. Redundant features
will impact the capacity in obtaining the minimal set. Al­
though they will not lie on the same minimum surface, the re­
dundant features will be sorted in successive surfaces. Hence,
the method does not have a mechanism for handling highly
correlated data. For features that are highly correlated, one of
the features may be removed from the open list in advance of
the sort to minimize the feature set.
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Fig. 2. Classification performance of subsets generated by a grouping of feature selection methods on hyperspectral data sets:
(a) 23 and (b) 35-c1ass problems. Plots (c) and (d) show representative spectra with normalized reflectance values on the left
axis: A (blue), G (green) , H (red) , L (cyan), 0 (purple), Q (orange), and R (black). The stem plot indicates GRLVQI relevances
on the right axis. For GRLVQI, the top 30 ranked features have relevances greater than hori zontal dotted line . The red stems
denote the top 30 ranked features for MSB. The features for the (c) 23 and (d) 35-class problems are illustrated.

to determine where the medi an Bhattacharyya coefficient of
the multidimensional histograms gen erated for each ordered
subset plateaus.
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