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Abstract—Wireless tomography, a novel approach to remote
sensing, is proposed in Part I of this series. The methodology,
literature review, related work, and system engineering are
presented. Concrete algorithms and hardware platforms are im-
plemented to demonstrate this concept. Self-cohering tomography
is studied in depth. More research will be reported, following this
initiative.
Index Terms—radio frequency tomography, remote sensing,

cognitive radar, cognitive radio.

I. INTRODUCTION

The ever increasing demand on remote sensing capabilities
directly conflicts with the accelerating awareness of loss of
spectrum allocation [1]. Increased spectral awareness and
waveform diversity can be applied to solve this problem.
The FCC recommends spectrum policy [2] that makes 500
megahertz of spectrum newly available for broadband within
10 years, of which 300 megahertz should be made available for
mobile use within five years. The need for dynamic spectrum
access using cognitive radio [3] is real and immediate. This
paper series [4], [5] is going to bring together wireless com-
munications with remote sensing, especially radio frequency
tomography. This is Part I.

A. Cognitive Radio and Cognitive Radar: A Convergence

Future applications demand that we limit the number of
radio platforms. There is a need to integrate cognitive radio
and cognitive radar into one flexible radio platform [6]. This
kind of convergence (for voice and data) has been the driver
in the wireless industry. This trend seems to be reasonable for
management of the next generation energy grid—the smart
grid. Cognitive radar (remote sensing) can be used for smart
grid applications as well. The idea of using cognitive radio in
the smart grid seems be proposed in the literature, for the first
time, in [7]–[10]1.

1In particular, one of the three objectives of the submitted proposal [7] in
2009 is “apply the proposed network testbed for the smart grid”. The two-
page white paper [11] is undated and was not brought to our attention (through
Qiu’s student) until June 2010.

B. Wireless Tomography—A Novel Approach to Remote Sens-
ing

Every radio frequency (RF) signal needs spectrum access.
The whole industry is around $700 billions in the US alone.
Wireless phone and Internet access consumes the lion’s share.
It is natural to leverage this huge investment in the wireless
industry. If the huge scale of the wireless market can be used to
replace Ad Hoc devices for RF tomography [12], the cost will
be driven down ruthlessly by Moore’s Law and Metcalf’s Law.
To reflect this vision, we are justified in coining a new acronym
“wireless tomography”, to differentiate between old and new.
More precisely, we argue that only COTS communications
components should be used for this purpose.
Ideally, necessary consideration for sensing needs should be

made in the initial design. This is not the case, however, in
the real world. Vendors want to reduce cost by avoiding multi-
functional radio applications. The advent of programmable
radio platforms, such as software-defined radio (SDR), makes
this vision more realistic. Today’s technology—using FPGA
and DSP—is still too costly for this purpose. Our focus is
to develop tomorrow’s technology, by using today’s science
to design and build a prototype and demonstrate the system
concept.

C. Software-Defined Radio Based System Testbed

A new generation of general purpose SDR, called universal
software radio peripheral (USRP2) provided by Ettus Re-
search [13], is currently available in the market. This platform
meets our needs. Hardware testbed development is on-going at
Tennessee Technological University (TTU). The initial results
will be released in several months. Part II [5] of this series
will address the key designs and algorithms.

II. LITERATURE REVIEW AND RELATED WORK

In the context of wireless tomography, it seems that only
two groups, [14]–[16] and [17], have conducted research on
incoherent tomography. In the following, the availability of
phase information, is used for classification in the literature.
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A. Incoherent Tomography
First generation computerized tomography (CT) algorithms

use attenuation only [18], [19]. ZigBee sensors (IEEE
802.15.4) are used in pairs to sense the attenuation between a
pair of sensors in [14]–[16] and [17].

B. Coherent Tomography
Diffraction tomography requires both phase and signal

intensity (amplitude) of the transmitted packets. Phase is not
easily obtained in the ZigBee-like network the above.
Wicks and his colleagues [12], [20]–[30] used tomography

for remote sensing, in particular, for tunnel detection [31],
[32]. Geometric diversity obtained through multistatic radar
operations is the central idea, especially for discrete ultra
narrowband (UNB) frequencies. The information content (or
degrees of freedom) of the temporal spatial signal is the
ultimate concern. So, spatial diversity can be traded for signal
bandwidth. For some special needs, such as noise radar, ultra-
wideband (UWB) waveforms are preferred.
A long line of research, called time reversal imaging,

addresses two basic ingredients: (1) multiple input, multiple
output (MIMO)—multistatic radar operations; (2) the method-
ology of treating sensors as part of propagation channel.
Time reversal imaging is analogous to wireless tomography
in the sense that MIMO lies at the heart of these two
distinct frameworks. The seamless combination of sensors and
radio propagation is made possible by low-cost computing
and exploited by waveform diversity through the use of
programmable waveform generators.
Indeed, MIMO ties together wireless tomography and time

reversal imaging, and includes the latter two as special cases—
in a mathematical framework. The three, however, have dif-
ferent meanings and implementations. MIMO radar or sensing
is analogous to MIMO wireless communication. MIMO radar
and communications requires the phase synchronization be-
tween different waveforms on transmit and receive. Wireless
tomography and time reversal imaging, on the other hand,
impose no such constraint. Also, the matrix size in wireless
tomography is much larger than that of traditional MIMO
communication and MIMO radar.

C. Self-Coherent Tomography—Phase Reconstruction
If we want to use communications components only, phase

information may be inaccurate or very difficult to obtain.
A different approach, called self-coherent tomography, is
required to acquire the phase information, through the pro-
cess of phase reconstruction. Two steps [33] are needed: (1)
Phase reconstruction and (2) standard coherent tomographic
processing, such as time reversal imaging, are used for image
formation.
An exhaustive search has been made in IEEE Xplore, using

the key words “amplitude only”, “intensity only”, “phaseless”,
“phase retrieval”, etc. A similar search has been made in optics
but the papers are not listed here. To highlight the evolution
of the central idea, all papers are sorted in chronological order
in [33]–[215]. In general, papers are traced back to 1981.

Earlier comparison of algorithms is made in [34], [35]. No
attempt is made herein to compare and treat these papers. We
comment, however, on the key conceptual development that is
relevant to our interest—the first self-coherent system using
wireless tomography. We do this in chronological order.
Practical considerations in microwave diagnostics are made

in [36], [39], [42]. A long line of work [77], [84], [90], [91],
[99], [104], [105], [108], [110], [128], [133], [216]–[218] has
led to algorithms that are practical. The algorithm, called
Fourier Harmonics Method proposed in [157], [166], [169],
[179], has been implemented and is reported in Section III-A.
Another algorithm, called Radiating Currents Method pro-

posed in [206], [213], is also implemented and is reported in
Section III-B. The goal is to find out if there is any practical
application.
The use of multi-frequency data [139], [143], [164], [166],

[187], [212] is an important idea relevant to our problem
at hand. Non-contiguous-orthogonal frequency division multi-
plexing (NC-OFDM) offers flexible spectrum access in cogni-
tive radio and cognitive radar: through the control of carriers
power allocation. The above multi-frequency formalism is
compatible with NC-OFDM. This line of thought will be
explored, in depth, in the next paper of this series.
The Born approximation and Rytov approximations [18],

only valid for weak scatterer assumptions, are the main stream
frameworks in the literature. Metallic targets are of our inter-
est, however, can not be treated using these frameworks. The
inverse problems of metallic targets have been treated in [198],
[219]–[225].
The use of phaseless tomography is reported in millimeter-

and sub-millimeter-wave [204], [214] and in terahertz frequen-
cies [177], [226]. The idea of compressed sensing is connected
to the phase retrieval problem in [177]. Sampling in space and
time is essential in tomographic imaging: compressed sensing
is essential. The low signal-to-noise-ratio (SNR) paradigm for
this problem is an unsolved problem.
Experimental data that is made available, online by [168],

has been used to test the algorithms in [33], [166], [193]. The
TE and TM database is from 2 to 10 GHz and even 18 GHz
for the most complex targets.

D. Time Reversal Imaging—A Coherent Tomography Ap-
proach
Once the phase is retraced during phase reconstruction,

standard coherent algorithms are applied. This two-step ap-
proach [33] facilitates the management of the non-linearity of
the inverse problem.
Time reversal imaging has been chosen for several reasons:

(1) Using a testbed, TTU has experimentally demonstrated (for
the first time) time reversal techniques in the context of ultra-
wideband communications. The hardware platform2 [227],
[228] can be leveraged for wireless tomography, especially in
the context of noise radar that is ultra-wideband in nature. (2)

2This work has been funded in the last seven years by ARL, ARO, NSF
and ONR.
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This technique has many advantages. For example, it can be
used for both weak scatterers and metallic scatterers. It uses
the active MIMO array, in which each element in the array
can both transmit a waveform and record a reflected signal—
enabling waveform diversity. Multipath can be exploited to
improve image resolution. It is valid for both point scatterers
and extended targets.
An attempt has be made to list all the papers that are sorted

in chronological order [143], [158], [184], [229]–[321]. We
know many papers are missing in this list. It is hoped that the
most significant papers have been included. Our selection of a
particular scheme for implementation is based upon this list.
We have taken a system engineering approach. No attempt has
been made to develop new algorithms. Our top concern is to
develop a first generation system that works.
The first paper is Prada and Fink [229]. The time re-

versal operator—a MIMO matrix or linear integral operator
(continuous-time case)—has all the information about the cir-
cuitry, antenna, background medium and scatterer (target). In
particular, the eigenvalue(s) of this (matrix) operator depends
on the reflectivity of the target, while its eigenvector provides
the phase and amplitude law to focus to the target. These
eigenvectors are important for low SNR such as -25 dB where
only the leading eigenvectors are reliable features [10], [322].
Cognitive radio and cognitive radar [3], [6] often exhibit low
SNR. The time reversal operator can be viewed as providing
cooperative sensing in cognitive radar. We will demonstrate,
elsewhere, that time reversal can be used in low SNR.
The second conceptual breakthrough [239], [240], [246],

[263], [269], [277], [284] is to tie together, in a closed
form, the target geometry and the eigenvalues/eigenvectors.
The eigenvalues/eigenvectors can be calculated from the time
reversal matrix that is formed, directly, from sensor mea-
surements. Experiments are reported in [315]. The advent
of cost-effective sensors and computing, especially robots as
distributed sensors [28], [323] and cloud computing [324],
makes this approach powerful.
The third conceptual breakthrough is to use a sub-space

based approach in time reversal MIMO to develop MUSIC-
like algorithms. This is achieved independently by [259] and
by [158], [253], [255], [265], [266], [272], [273], [292], [293],
[305], [317], [319]. The key is to treat this MIMO matrix
as a covariance matrix—random matrix theory (RMT) [310],
[313], [314], in general. The matrix size in traditional MIMO
communications and radar is small, typically two times four.
The matrix size of the time reversal imaging matrix is much
larger. Often, only the asymptotic limit of random matrix
theory is available in a closed form. As a result, random matrix
theory may be suitable for our problem at hand.
Interestingly, time reversal MUSIC is also valid for intensity

only (incoherent tomography) imaging [184].

III. PHASE RECONSTRUCTION
As mentioned before, phase reconstruction is the first step

in self-coherent tomography. In wireless tomography, phase
reconstruction means reconstructing the scattered field from

the information in the incident field and squared amplitude
of the total field. The problem considered herein differs from
the standard phase reconstruction problem [128] as both the
amplitude and phase information have to be reconstructed.

Fig. 1. Extended target.

The scenario in the problem considered, shown in Fig. 1,
has the following properties: the investigated domain Ω is a
circle with radius a which encloses one or more targets; the
incident TM wave from angle θi impinges on the investigated
domain Ω; the measurement domain Γ is a circle with radius
b; there are L receivers with angle θ0 on the circle; Ω and
Γ are concentric; the background medium is assumed to be
homogeneous with dielectric permittivity of εb and magnetic
permittivity of μ0. The scattering equations based on above
assumptions are [169]

E(r) = Einc,i(r) + k2 ×
∫
Ω

G(r− r′)χ(r′)E(r′)dr′

= Einc,i(r) +Ai [χE] , r ∈ Ω (1)

Etot(θ0) = Einc,e(θ0) + Ed(θ0)

= Einc,e(θ0) + k2 ×
∫
Ω

G(r− r′)χ(r′)E(r′)dr′

= Einc,e(θ0) +Ae [χE] , r ∈ Γ (2)

in which k = ω
√
μ0εb, Green’s function G(r − r′) =

−(j/4)H(2)
0 (k |r− r′|) ( H(2)

0 is a Hankel function of zero
order and second kind ) , contrast function χ(·) = [ε r(·)− 1]
and objects’ dielectric permittivity εr(r)εb . In the above two
formulas, Ed is the scattered field needed to be reconstructed.
Moreover, integral operators Ai , Ae, incident fields Einc,i ,
Einc,e and total fields E, Etot are the quantities evaluated in
Ω and observation circle, respectively.
The considered problem herein amounts to retrieving

Ed(θ0) from the knowledge of Einc,e(θ0) and |Etot(θ0)|2. In
order to solve the phase reconstruction problem, a sequence
of non-linear equations will be constructed. However if the
number of variables to be solved is similar to or larger than
the number of equations, the problem will be underdetermined,
which will make the solution non-unique. Thus, we should find
the key variables, which are called degrees of freedom, inside
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the equations to reduce the number of variables to be solved.
This is our way to deal with phase reconstruction.

A. Fourier Harmonics
The B(·) operator, related to the scattered field defined by

[169], is defined as:

B[Ed(θ0)] = |Ed(θ0)|2 + 2Re[Ed(θ0)Einc,e(θ0)
∗] (3)

in which ∗ stands for matrix conjugate, and can be rewritten
as

B[Ed(θ0)] = |Etot(θ0)|2 − |Einc,e(θ0)|2 . (4)

It has been thoroughly shown [113] that the scattered field
under the above scenario can be accurately represented with
2ka Fourier harmonics. Thus the scattered field

Ed(θ0) =

ka∑
n=−ka

cne
jnθ0 =

ka∑
n=−ka

(xn + jyn)e
jnθ0 (5)

in which cn = xn + jyn. The Fourier harmonic coefficients
xn and yn are the actual variables which are going to be
retrieved. A series of nonlinear equations will be established
by substituting Fourier series expansion Eq. (5) of scattered
fields into Eq. (3) with the equation number equal to L.
In order to make the problem overdetermined, the variable’s
number of 4ka + 2 should be less than L. The built-in
MATLAB function fsolve will be applied to give the solution
to the established non-linear equations.

B. Radiating Currents
The radiating currents exhibits finite degrees of freedom,

the number of which is bounded by the number of dominant
singular values of the Green’s function [213].
Define,

c (r) = χ (r)E (r) , r ∈ Ω (6)

The investigated domain is divided into N small areas. In
each small area ΔΩ, c (r) is assumed to be identical. Thus,
Eq. (2) can be represented as the matrix format,

Etot = Einc,e +Ed (7)

Ed =Gc (8)

and
(G)i,j = k2 ×

∫
ΔΩ

G
(
ri − r′j

)
dr′j (9)

where (G)i,j denotes the i-th row and j-th column in the
matrix G. ri denotes the i-th measurement and r ′j denotes the
j-th small area in the investigated domain Ω.
The singular value decomposition (SVD) of G is,

G = UΛVH (10)

where H means transpose conjugate operator.
Assume the number of dominant singular values of G is

M , then
G ≈ UMΛMVH

M (11)

where UM and VM are the first M columns of U and V
respectively. Besides,

ΛM =

⎡
⎢⎣

λ1

. . .
λM

⎤
⎥⎦ (12)

where λ1 ≥ λ2 ≥ · · · ≥ λM > 0.
Define

x = VH
Mc (13)

then
Ed ≈ UMΛMx (14)

It is easy to see that part of c contributes to the scattered
field, which can be called a radiating current [213].
Thus,

Etot ≈ Einc,e +UMΛMx (15)

and the non-linear equations can be obtained as,

|Einc,e +UMΛMx|2 − |Etot|2 = 0 (16)

There are L equations and M variables to be solved in the
above non-linear equations. Meanwhile M is less than L.
Besides, following [213], in order to solve the phase recon-

struction problem, a cost function can be defined as,

f (x) =

L∑
l=1

(∣∣∣(Einc,e +UMΛMx)l,1

∣∣∣2 −
∣∣∣(Etot)l,1

∣∣∣2
)2

(17)
The conjugate gradient method can be used to obtain the

optimal value of x [213]. Then the scattered field can be
reconstructed.

C. Numerical Results
The phase retrieval results obtained by aforementioned

algorithms will be shown. The experimental data is pro-
vided by Institute Fresnel in France [168]. The file name
is FoamDielIntTM.exp. The working frequency is 2GHz.
a = 0.15m. b = 1.67m. θi = 0o. θ0 is from 60o to 3000
with 1o interval. Thus, L is equal to 241 and M is chosen
to be 10. The reconstruction results are shown in Fig. 2 and
Fig. 3 for phase and amplitude respectively. The reconstructed
scattered field is very close to the true (measured) scattered
field.

IV. FUTURE WORK

This series [4], [5] describes a new initiative to bring
together two areas: wireless communications and radio fre-
quency tomography. Although this vision seems natural, a
systematic attack to this problem is for the first time presented
here. The focus is to design a system that works. No effort is
made to optimize this system design, or the algorithms. We
emphasize the system engineering approach in our work. The
architecture of a phase reconstruction algorithm to retrieve
the phase of a communications signal, combined with time
reversal imaging, seems promising at this point.
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Fig. 2. Phase reconstruction.
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Fig. 3. Amplitude reconstruction.

Experimental data for extended targets have been used for
phase retrieval in this paper. Also, two different algorithms
are implemented to test this concept. A literature and history
extending back more three decades has been exploited in our
research and system architecture.
What is missing is a software-defined radio to measure

the amplitude of the signal, and to confirm the phase re-
trieval algorithm. If the amplitude measurement is sufficiently
accurate, the algorithm is expected to work. If not, these
measurements errors must be accounted for, by regarding them
as “noise”. Very likely, the errors (noise) are so large that a
low signal to noise ratio is resultant. Fortunately, the time
reversal matrix (operator) has the capability to filter these
errors. The leading eigenvectors—obtained via principal com-
ponents using dimensionality reduction in machine learning—
are of interest. This practical system requirement ties together
machine learning and low energy signal detection problem.
Sampling is critical to tomography. Close-in sensing is

required to achieve high quality signal measurements [1].
Mathematically, the problem at hand is to retrieve the infor-
mational degrees of freedom. Compressive sensing is naturally
connected to this problem; Signal, noise, sampling, and com-
puting are all tied together.
On the other hand, wireless communication is moving to the

era of cognitive radio and the use of dynamic spectrum access.
Frequency diversity systems allow agile sensing in the pres-
ence of interference [1]. NC-OFDM is the scheme of choice
in cognitive radio. Future networks will use this scheme [10].

The system engineering challenges have been addressed in
Part II [5], of this series. In particular, NC-OFDM is used
for spectrum fragmentation of the transmitted waveform to
sense the environment. Waveform diversity and optimization
are needed to achieve optimal imaging formation—the use of
mutual information as the criteria simplifies the problem but
may be suboptimal in terms of imaging formation.
Once phase is retrieved, standard coherent tomographic pro-

cessing is followed. Time reversal imaging has been applied
for coherent imaging. We can apply the method in [199]
that exploits multipath in a wideband system. Ray-tracing
method [325] can be applied. Maximum likelihood estimation
of object location can be applied for strongly scattering
objects [326]–[330].
Time reversal imaging is valid for inhomogeneous random

medium. Basically, if the Green’s function of background
medium is known, the problem is solved. The phase retrieval
problem in inhomogeneous random medium seems be un-
solved. In principle, the two algorithms in Section III are valid
since only Green’s functions are used.
A hardware testbed is under development at TTU. Ul-

timately, wireless tomography will be implemented in this
cognitive radio testbed [10].

V. CONCLUSION

Wireless tomography is a novel approach to remote sens-
ing. This idea—combining wireless communications and re-
mote sensing—is based on many years research insight. The
methodology, literature review and related work, and system
engineering are presented. When only communications com-
ponents are used for system development, the phase of the
signal is either inaccurate or very expensive to obtain.
We suggest a self-coherent wireless tomography, which has

two steps. First, the phase retrieval is achieved using amplitude
only data that are obtained through wireless sensors. Second,
standard radio tomographic imaging algorithms are used. We
emphasize time reversal imaging for two reasons: (1) TTU has
a working experimental testbed; (2) this technique is the state-
of-the-art. Our goal is to demonstrate the concept as quick as
possible. No attempt has been made to optimize the system
design and the algorithms.
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