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Abstract— We consider a channel with N parallel sub-bands.
There is a single user that can access exactly k channels, while
maintaining some minimum rate at each accessed channel. The
transmission takes place in the presence of a jammer which can
access at most m channels. We cast the problem as an extensive-
form game and derive the optimal power allocation strategies for
both the user and the jammer. We present extensive simulation
results regarding convergence of rates, effect of changing the
number of accessed bands for the user and the jammer, and the
minimum rate constraint.

I. INTRODUCTION

Reliable communication in the presence of a malicious

jammer has attracted considerable amount of research. [1]

finds the worst additive noise for a communication channel

satisfying a covariance constraint and derives the saddle points

corresponding to equilibrium distribution of noise and trans-

mitted signals. For the special case of memoryless channels,

[2] shows that Gaussian codebooks for both jammer and user

satisfy the equilibrium conditions based on min-max problem.

[3] considers the case where the jammer can eavesdrop on

the channel and use the information obtained to perform

correlated jamming. Consequently, [3] examines the existence

of a simultaneously optimal set of strategies for the users

and the jammer. A multiuser, multi-tone version of [1] is

considered in [4], where a generalized water-filling algorithm

is proposed for the user and the jammer power allocation.

In [5], the authors consider a jammed single-hop wireless

network with N independent channels, n non-cooperating

users and m non-colluding jammers. The transmission is

assumed to be noiseless and non-faded. The model assumes

that whenever a jammer hits an occupied channel, the rate of

this channel drops directly to zero. Depending on whether each

occupied channel is jammed or not, the jammers and the users

change their frequency bands according to a fixed transmission

strategy. [5] calculates the steady state normalized rate by

formulating the system model as a Markov chain, where the

throughput can be obtained from the stationary distribution.

In this paper, we consider an extension of the work in [5].

We consider a noisy, fading channel model of N parallel

channels. Our system has one user that can access exactly

k channels subject to the constraint that the minimum rate at

each accessed channel should at least be θ. The motivation of
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the minimum rate constraint is that in some communication

systems like broadcasting systems, the system may be forced

to convey information for specific number of channels and

the rate of transmission may be lower bounded by service

requirements. Consequently, the communication system may

not be able to simply switch off some channels in order to

maximize its rate, but rather it may be forced to use exactly k

channels with individual rates of at least θ in each channel. The

transmission is disrupted by a jammer who is able to access at

most m channels. Although our model deals with a single user

and a single jammer, it can be thought of as a generalization of

the work in [5], since it permits cooperation in the transmitter

and jammer sides. Instead of fixing the strategies of the

jammer and the user and analyzing the corresponding rate as

in [5], we derive the optimal power allocation policies for

the jammer and the user under transmission and jamming

power constraints and a minimum rate constraint for each

used channel. We cast the problem as an extensive-form game,

where the jammer and the user take turns to respond to each

other’s strategy. Our model admits a softer version of the

jamming effect, where the jammer decreases the rate of a

channel down to a level θ. Once the rate decreases to this

level, this sub-channel contributes zero rate to the throughput,

and therefore, there is no need for the jammer to expend any

more jamming power to decrease the rate to zero.

In this paper, we first show that the problem under the

minimum rate constraints is concave in the user power al-

location policy and convex in the jammer power allocation

policy. Next, we determine the optimal channel selection

strategy for the transmitter, and derive the corresponding

optimal user power allocation strategy over the selected set

of channels. The optimal allocation strategy is a modified

water-filling algorithm where weaker channels are provided

with sufficient power to maintain the minimum rate constraint.

We show that the optimal power allocation strategy for the

jammer is a generalized water-filling algorithm. We observe

that the jammer does not target channels that barely satisfy

the minimum rate constraint. We provide the conditions under

which the jammer chooses not to jam a specific channel. We

verify our theoretic findings with extensive simulation results.

We observe that an equilibrium may not be obtained in case of

partial band utilization. We discuss also the effects of changing

the number of accessed bands for the user and the jammer, and

the minimum rate constraint, on the system performance.
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II. SYSTEM MODEL

Consider a system with N parallel channels. Assume that

there is a user who can access exactly k of these channels to

send its message to the receiver in the presence of a malicious

jammer who can access at most m channels to inflict the

maximum hurt on this transmission. We consider the case

where the user and the jammer encode their signals in response

to each other, i.e., they are involved in a perfect information

extensive-form game [6].

The user begins its transmission by choosing the best

possible k channels to send its message with the highest

possible rate. The user has a minimum rate constraint θ on

each channel it uses. The user performs power allocation along

the set of channels Su that it chooses for transmission.

The jammer chooses a jamming power allocation strategy

ji such that the jammer pulls the rate of the k channels below

θ, and hence these channels are no longer active and the

user is forced to leave these channels for worse channels.

Consequently, the jammer performs the following optimization

problem subject to the total jamming power constraint J

min
ji,Sj

∑

i∈Su

[

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

− θ

]+

s.t.
∑

i∈Sj

ji ≤ J

|Sj | ≤ m (1)

where hi, gi are the channel gains from the user and the

jammer, respectively, to the receiver over the ith channel, pi
is the power of the user in the ith channel, and |Su|, |Sj | are

the sizes of the transmission set Su and the jamming set Sj ,

respectively.

Whenever the rate of any channel is below θ, the user

chooses another channel to replace the failed channel. That

means that the user considers channel i completely jammed

whenever Ri < θ, where Ri is the rate of the ith channel. Thus

the set Su should be updated by replacing channel i ∈ Su

by a new channel from Sc
u. The user performs the following

power allocation strategy over the updated Su set of channels

in response to the jamming strategy {ji}i∈Sj

max
pi,Su

∑

i∈Su

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

s.t.
∑

i∈Su

pi ≤ P

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

≥ θ, i ∈ Su

|Su| = k (2)

where P is the total power of the user.

III. OPTIMALITY CONDITIONS

In this section, we derive the optimality conditions for the

transmitter and jammer optimization problems. Consequently,

we provide some structural properties of the optimal solution.

A. Convexity-Concavity Property

We start our discussion by considering the objective (payoff)

functions of both the transmitter and the jammer. Although the

objective functions of the two problems are different, we can

cast the transmitter’s payoff function to have the same optimal

solution as the jammer’s payoff function under the minimum

rate constraint. Define the following objective R(p, j)

R(p, j) =
∑

i∈Su

[

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

− θ

]+

(3)

where p = (p1, . . . , pN ), and j = (j1, . . . , jN ) are the

power allocation strategies for the transmitter and jammer,

respectively.

Lemma 1 Maximization of R(p, j) is equivalent to maximiza-

tion in (2) under the minimum rate constraints.

Proof: Since subtracting a constant term
∑

i∈Su
θ = |Su| · θ

does not change the optimal solution of the problem, the

optimal power allocation strategy of the problem in (2) is

the same as the optimal power allocation of the objective

function
∑

i∈Su

[

1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

− θ
]

. From the mini-

mum rate constraints 1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

− θ ≥ 0, i ∈

Su. Consequently,
∑

i∈Su

[

1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

− θ
]+

=
∑

i∈Su

[

1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

− θ
]

, and the two objective func-

tions are equivalent. �

The following lemma states the convexity-concavity prop-

erty of the payoff function R(p, j).

Lemma 2 R(p, j) is concave in p and convex in j under the

minimum rate constraints.

Proof: For the convexity in j, we do not need the minimum

rate constraint. Consider the following function f(j)

f(j) =
1

2
log

(

1 +
h2p

1 + g2j

)

− θ (4)

The function f(j) is convex in j for j ≥ 0 [2]. Define

g(j) = max{f(j), 0}. Since, the maximum of two convex

functions is convex [7], g is convex in j. Since the sum of

convex functions is convex, R(p, j) is convex in j. In addition,

since
[

1

2
log
(

1 + h2p
1+g2j

)

− θ
]+

= 1

2
log
(

1 + h2p
1+g2j

)

− θ

under the minimum rate constraint as in Lemma 1, it is

concave in p. Thus, R(p, j) is concave in p. �

B. Transmitter Side Problem

In this section, we consider the solution of the transmitter’s

optimization problem in (2). We begin by identifying Su in

the next lemma.

Lemma 3 The transmitter chooses Su such that it includes

the highest k channels in the normalized signal to jamming

and noise ratio (SJNR) sense.



Proof: We define the normalized SJNR at the ith channel as

qi =
h2
i

1 + g2i ji
(5)

Now, without loss of generality assume that the channels are

ordered in the sense of normalized SJNR. Assume for the sake

of contradiction that S∗
u = {1, 2, . . . , k − 1, k + 1}, i.e., we

choose the (k + 1)th instead of the kth largest SJNR, with

optimal power distribution p∗. Since log(1 + x) is monotone

in x, it is clear that with the same power p∗k, we have

log

(

1 +
h2
kp

∗
k

1 + g2kjk

)

> log

(

1 +
h2
k+1

p∗k

1 + g2k+1
jk+1

)

(6)

If p∗k is feasible when using the (k+ 1)th channel, it satisfies

the minimum rate constraint when using the kth channel.

Hence, the total rate can be increased with the same optimal

power allocation and this contradicts the optimality of S∗
u. �

The next theorem characterizes the optimal strategy of the

transmitter in response to the jammer’s strategy.

Theorem 1 The optimal power allocation strategy p∗ of the

transmitter in response to the jammer’s strategy j under the

minimum rate constraint θ is given by

p∗i =







1

qi
(e2θ − 1), i ∈ Su, qi ≤ 2λe2θ

1

2λ
− 1

qi
, i ∈ Su, qi > 2λe2θ

0, i ∈ Sc
u

(7)

where qi =
h2

i

1+g2

i
ji

is the normalized SJNR at the ith chan-

nel, Su is the set of channels corresponding to the highest

normalized SJNR, and λ is chosen such that
∑

i∈Su
pi = P .

Proof: The optimal Su is obtained by Lemma 3. The La-

grangian of the optimization problem in (2) is given by

L =−
1

2

∑

i∈Su

log

(

1 +
h2
i pi

1 + g2i ji

)

+ λ

(

∑

i∈Su

pi − P

)

+
∑

i∈Su

µi

(

θ −
1

2
log

(

1 +
h2
i pi

1 + g2i ji

))

(8)

=−
1

2

∑

i∈Su

log (1 + qipi) + λ

(

∑

i∈Su

pi − P

)

+
∑

i∈Su

µi

(

θ −
1

2
log (1 + qipi)

)

(9)

The optimality conditions are given by

−
1

2

qi

1 + qip
∗
i

+ λ−
µi

2

qi

1 + qip
∗
i

= 0 (10)

If on the ith channel the minimum rate constraint is satisfied

with equality, i.e., 1

2
log(1 + qipi) = θ and p∗i = 1

qi
(e2θ − 1).

Since µi ≥ 0 from (10), we have

−
1

2

qi

1 + qip
∗
i

+ λ =
µi

2

qi

1 + qip
∗
i

(11)

Hence, the condition of satisfying constraint with equality is

−
1

2

qi

1 + qip
∗
i

+ λ ≥ 0 (12)

which further implies qi ≤ 2λe2θ. On the other hand, if the

minimum rate constraint is a strict inequality, then µi = 0 in

(10), we have

qi

1 + qip
∗
i

= 2λ (13)

which implies

p∗i =
1

2λ
−

1

qi
(14)

and this occurs if qi > 2λe2θ. �

We note that for the special case of k = N, θ = 0, (7)

reduces to the classical water-filling strategy in [2].

C. Jammer Side Problem

In this section, we consider the jammer side optimization

problem in response to the transmitter power allocation strat-

egy. The epigraph form of the jammer’s problem (1) is

min
ji,Sj ,ti

1

2

∑

i∈Su

ti

s.t. ti ≥ 0

ji ≥ 0

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

− θ ≤ ti

∑

i∈Sj

ji ≤ J

|Sj | ≤ m (15)

For a fixed Sj , (15) becomes a convex optimization problem.

The following theorem derives the optimal power allocation

strategy for the jammer in response to the transmitter strategy.

Theorem 2 The optimal power allocation strategy j∗ of the

jammer in response to the transmitter’s strategy p under the

minimum rate constraint θ is given by

j∗i =

{

− 1

g2

i

+ wi

2

(√

1 + 2µi

λwi
− 1
)

, i ∈ Sj , µig
2
i ri ≤ 2λ

0, otherwise
(16)

where wi =
h2

i pi

g2

i

is the to signal to jamming ratio (SJR) of

the ith channel, ri =
h2

i pi

1+h2

i
pi

is the useful signal ratio, µi is

the Lagrange multiplier corresponding to the rate constraint

and λ is chosen such that
∑

i∈Sj
ji = J .

Proof: The Lagrangian of the optimization problem is

L =
∑

i∈Su

ti +
∑

i∈Su

µi

(

1

2
log

(

1 +
h2
i pi

1 + g2i ji

)

− θ − ti

)

+ λ

(

∑

i∈Su

ji − J

)

−
∑

i∈Su

νiti −
∑

i∈Su

ηiji (17)



The optimality conditions are

µi + νi = 1 (18)

µi

2

[

g2i
1 + h2

i pi + g2i ji
−

g2i
1 + g2i ji

]

+ λ− ηi = 0 (19)

When the jammer does not jam a channel, i.e., ji = 0, then

ηi ≥ 0, and from (19) we have

µi

2

[

g2i
1 + h2

i pi
− g2i

]

+ λ = ηi ≥ 0 (20)

which implies

µig
2
i

h2
i pi

1 + h2
i pi

≤ 2λ (21)

which further implies

µig
2
i ri ≤ 2λ (22)

On the other hand, if the jammer jams the ith channel, then

ηi = 0 and hence (19) becomes

µi

2

[

−g2i h
2
i pi

(1 + h2
i pi + g2i ji)(1 + g2i ji)

]

+ λ = 0 (23)

which is equivalent to

2λ(1 + h2
i pi + g2i ji)(1 + g2i ji) = µig

2
i h

2
i pi (24)

which is quadratic in ji. By expressing the roots of this

quadratic equation in explicit form, we obtain

ji = −

(

1

g2i
+

h2
i pi

2g2i

)

+

√

h4
i p

2
i

2g4i
+

µih
2
i pi

2λg2i
(25)

= −
1

g2i
+

wi

2

(
√

1 +
2µi

λwi

− 1

)

(26)

with wi =
h2

i pi

g2

i

. �

In the following lemmas, we investigate some properties

of the jammer’s constraints. The first lemma deals with the

constraint of 1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

− θ ≤ ti.

Lemma 4 The constraint 1

2
log
(

1 +
h2

i pi

1+g2

i
ji

)

−θ ≤ ti should

be satisfied with equality and hence µi 6= 0.

Proof: There are two cases to be considered. The first case is

t∗i > 0. Assume for sake of contradiction that the constraint is

strict for the optimal j∗, t∗i , i.e., 1

2
log
(

1 +
h2

i pi

1+g2

i
j∗
i

)

− θ < t∗i
and t∗i > 0. In this case, we can decrease the value of ti until

the equality holds. This is feasible and decreases the objective

function and hence we have contradiction that t∗i is optimal.

On the other hand, if t∗i = 0, then if the constraint is also

strict, then one can decrease j∗i such that 1

2
log
(

1 +
h2

i pi

1+g2

i
j∗
i

)

−

θ = 0. This is feasible under the total jamming power

constraint, while the objective function will not increase.

Hence, the constraint is satisfied by equality in all cases. �

The following lemma concerns about the total jamming

power constraint.
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Fig. 1. Channel gains.

Lemma 5 The total jamming power constraint should be

satisfied with equality.

Proof: First, if J−
∑

i∈Sj
j∗i = ∆ > 0 and there exists t∗l 6= 0

for some l ∈ Sj , we let jl = j∗l +∆, which is a feasible power

allocation strategy. Then, by the monotonicity of log, we can

have tl < t∗l . Moreover, if t∗i = 0, ∀i ∈ Sj , then any power

allocation strategy is optimal and hence we restrict ourselves

to satisfy the jamming power constraint with equality. �

The following lemma states the conditions under which the

jammer does not jam the ith channel.

Lemma 6 The jammer chooses not to jam the ith channel if

the SNR of the channel is low or the jammer’s channel gain

is low. More specifically, j∗i = 0 if µig
2
i ri ≤ 2λ.

Proof: The proof follows from the optimality conditions de-

rived in Theorem 2. ri =
h2

i pi

1+h2

i
pi

= 1

1+ 1

h2

i
pi

, which is a

monotone function in h2
i pi, i.e., the SNR of channel i. The

SNR also controls µi, since from (18) we have µi + νi = 1.

If t∗i = 0 (which corresponds to the case where the channel

barely satisfies the θ constraint), then νi ≥ 0, which means that

µi ≤ 1 (in contrary to µi = 1 for the channels that exceed rate

θ). Hence, if channel SNR or jammer’s channel gain decrease,

the product µig
2
i ri also decreases and the jammer chooses not

to jam this channel, since it carries little rate or does not hurt

the main link as much. �

IV. SIMULATION RESULTS

In this section, we present some simulation results for the

presented system model. In all simulations, we fix N = 10.

The user and the jammer repeat their encoding over 10
transmission blocks each, i.e., 10 encoding frames. We use

fixed channel gains, which are shown in Fig. 1.

A. Power Allocation Results

We choose m = k = N = 10, and θ = 0.1. In this

case, we have an equilibrium in the sense that neither the

user nor the jammer changes its power allocation, since the
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Fig. 2. Equilibrium of achievable rates under P = J = 10, θ = 0.1, and
m = k = N = 10 at each encoding frame for the user and the jammer.

strategies achieve their optimal payoff functions as shown in

Fig. 2. In Fig. 3, we show the power strategies of the user

and the jammer at each channel. The colored bars represent

the encoding frame power. We note that for the channels

{3, 6, 9, 10}, the user applies ordinary water-filling in the sense

that the higher the channel gain, the higher the transmitted

power. We see slight variations in power distribution along

these channels over time, because the noise levels change

due to the jamming power. For the rest of the channels, i.e.,

channels {1, 2, 4, 5, 7, 8}, we see an inverse behavior, where

the worse the channel gain, the higher the power injected by

the user to maintain the required minimum rate θ. Hence, we

have fixed power distribution along these channels. We note

that the jammer does not waste its power on the channels that

barely achieve θ, since any power ǫ > 0 drives the rate on

these channels to zero. Consequently, the jammer concentrates

on good channels, i.e., the set {3, 6, 9, 10}. However, for

channel 6, we note that the channel quality from jammer

to receiver is bad. Hence, jammer uses channel 2 instead

which has the maximum channel gain and in the meanwhile

carries rate larger than θ for the first two encoding frames.

The corresponding rates of every channel is given in Fig. 4.

We note that not all model settings lead to equilibrium.

More specifically, when m, k < N , the user can possibly move

from the jammed band to other channel which was initially

worse in order to increase its rate. This potentially leads to an

oscillations between multiple sets of channels with different

payoffs and hence no equilibrium can be achieved. Figs. 5,

and 6 show an example of this non-equilibrium case with N =
10,m = k = 2 with same channel gains. The figures show

that the user and jammer jump between two set of channels

S1 = {2, 3} and S2 = {9, 10}. Hence, we have missing bars

in the power allocation and the achievable rates oscillate.

B. Effect of the Minimum Rate Constraint

In Fig. 7, we investigate changing the minimum rate con-

straint θ. We consider the achievable rate after jammer deter-

mines its encoding strategy. We choose that m = k = N = 10
for θ = {0.05, 0.1, 0.13}. We note at first that if we increase
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Fig. 3. Equilibrium power allocation for the user and the jammer under
P = J = 10, θ = 0.1, and m = k = N = 10.
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Fig. 4. Equilibrium achievable rates for P = J = 10, θ = 0.1, and
m = k = N = 10.

θ > 0.13, the problem becomes infeasible for the channel

gains under discussion. We also note that as θ increases,

the achievable rate decreases. This is because the user must

provide excessive power in the bad channels to maintain rate

θ at each bad channel. This decreases the available power for

other channels.

C. Effect of the Number of Channels

In Fig. 8, we investigate the effects of changing the number

of accessed channels by the user and the jammer. We consider

the case where m = k. In another words, we consider the

special case where the jammer has the ability to jam all the

channels of the user. Since equilibrium may not be obtained,

we use the average rate over all encoding intervals, i.e.,

R̄ = 1

T

∑T
t=1

R(t) where T is the total encoding intervals

for the user and the jammer, we take T = 20, and R(t) is the

achievable rate in the tth encoding interval. From Fig. 8, we

note that the average rate increases until k = 5, because the

dominant effect until that point is that we are adding channels

to Su that can achieve rates larger than θ. However, after we

reach k = 5, the problem is more confined since we are

forcing the user to inject power in bad channels to barely

achieve rate θ and this sacrifices from the maximum rate that
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Fig. 5. Achievable rates at every encoding frame for the non-equilibrium
instance m = k = 2, N = 10 and θ = 0.1.
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Fig. 6. Non-equilibrium power allocation for the case N = 10,m = k = 2

and θ = 0.1.

the user can achieve if it follows the ordinary water-filling and

switches off these bad channels. In Fig 9, we fix k = 6 and

we investigate the effect of changing the number of accessed

channels for the jammer. We note that the as m increases,

we have monotone non-increasing graph which shows the fact

that as m increase, the degrees of freedom of the jammer to

hurt the user increases.

REFERENCES

[1] S. Diggavi and T. Cover, “The worst additive noise under a covariance
constraint,” IEEE Trans. on Info. Theory,, vol. 47, no. 7, pp. 3072–3081,
Nov 2001.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2012.

[3] S. Shafiee and S. Ulukus, “Mutual information games in multiuser
channels with correlated jamming,” IEEE Trans. on Info. Theory,, vol. 55,
no. 10, pp. 4598–4607, Oct 2009.

[4] R. Gohary, Y. Huang, Z.-Q. Luo, and J.-S. Pang, “A generalized iterative
water-filling algorithm for distributed power control in the presence of a
jammer,” IEEE Trans. on Signal Processing,, vol. 57, no. 7, pp. 2660–
2674, July 2009.

[5] P. Wang and B. Henz, “Performance analysis of jammed single-hop
wireless networks,” in IEEE MILCOM, November 2013.

[6] S. Tadelis, Game Theory: An Introduction. Princeton Univ. Press, 2013.
[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ.

press, 2004.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

encoding frame index for the jammer

a
ch

ie
v
a
b
le

ra
te

(b
it
s/
ch

a
n
n
el

u
se
)

 

 

θ = 0.05
θ = 0.1
θ = 0.13

Fig. 7. Effect of changing θ for m = k = N = 10.
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Fig. 9. Effect of changing m with fixed k = 6.


