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Distribution of LRT for Testing the Equality
of Several 2-Parameter Exponential Distributions

Brahmanand N. Nagarsenker This paper obtains the exact distribution of the LRT
Air Force Institute of Technology, for the case of equal sample sizes in a computational form
Wright-Patterson AFB and presents a table of selected s-significance points of

Panna B. Nagarsenker LRT. It is of considerable interest to obtain the exact
Air Force Institute of Technology, distribution of LRT for the case of unequal sample sizes
Wright-Patterson AFB and its non-null distribution in a form suited for s-power

studies.

Key Words-Exact distribution, Likelihood ratio test; Exponential
distribution. 2. PRELIMINARIES

Reader Aids- Notation
Purpose: Widen state of art
Special math needed for explanations: Complex analysis and statistics
Special math needed to use results: Statistics p number of samples
Results useful to: Reliability theoreticians and statisticians i samples serial number, i = 1, ..., p

n number of observations in a sample
Abstract-Exact distribution of the likelihood-ratio-test (LRT) x observon jbsesample in a s1., i ..,

criterion for testing the equality of several 2-parameter exponential -=
distributions is obtained for the first time in a computational closed form. xi mean of observations in sample i
This is then used to obtain the s-significance points of the LRT. Xi (i) lowest observation in sample i

x0 mean of observations xi1
X(M) smallest of the p lowest observations x1(i)
X likelihood ratio

1. INTRODUCTION L Xl Ifl
There are several practical situations where data Lo XI/ (pn)

analysts are confronted with the problem of testing as to Ho null hypothesis
whether there are s-significant (s- implies statistically) dif- Ili product over i from 1 to p
ferences among various groups (populations) when the
underlying distribution is 2-parameter exponential [9, 15]. Other, standard notation is given in "Information for
This paper addresses the problem of testing the equality of Readers & Authors" at rear of each issue.
several 2-parameter exponential distributions. Paulson
[141 considered the likelihood-ratio-test (LRT) criterion
for testing the equality of the location parameters only, Assumptions
while Epstein & Tsao [3] considered the LRT for testing
the equality of two 2-parameter exponential distributions 1. p s-independent samples are available and sample i has
and showed that they can be reduced to equivalent tests been drawn from a 2-parameter exponential distribution
which are expressed in terms of F-distributions when the with pdf:
null hypothesis is true. However no such results are
available for more than two populations. Jain, Rathie, expc(x; 61, A,i) m 61 exp[-(x - A i)/6j], for x > Ai, 6i > 0
Shah [8] obtained the distribution of LRT for testing the
equality of several 2-parameter exponential distributions = 0, otherwise (i = 1, .. . p) (2.1)
for the case of equal sample sizes but it is rather unwieldly
and does not lend itself readily to practical use. 2. Each sample has the same number of observations.

Hogg & Tanis [6] considered an iterative procedure
(IP) suggested by Hogg [4, 5] for this problem. Mathai [10] The LRT for testing the hypothesis
obtained the non-null distribution of the LRT in the form
of an integral and in a form not suited for s-power studies. Ho: 61=602=..... = 6ap andA1l = A2 = .........= Ap .(2.2)
Because the s-power functions of both the LRT and IP are
not available in explicit form, Hsieh [7] used Monte Carlo against the general alternatives, was derived by Sukhatme
simulation to approximate the s-power for selected sample [15] in the form-
sizes and alternatives. He concluded that overall, LRT has
a higher s-power than IP. X = Hl1(x, - x(1i)1)/(x0 - x(1))Pn- (2.3)
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Then Sukhatme [15] has shown that moment h of Lo is- v 3(p - 1)/2. (3.7)

E{LO} = K.ph{r(n - I + h/p)}l/r(pn + h - 1) (2.4) The coefficients q, are recursively determined using (3.8):

K =r(pn - 1)/{r(n - 1)}P. (2.5) q = EkAkqr-k/r, qo = 1 (3.8)
k=1

It therefore follows from (2.5) that moment h of L is
[rBr+I(Pb- 1) -PBr+i(6 - l)]/r(r + 1).

E{Lh} = K pph[r(n - 1 + h)]Pr/(pn + ph - 1). (2.6)
(3.9)

3. EXACT DISTRIBUTION OF L Equation (3.5) shows that:

Notation 0(t)/K1 = 0(tV) (3.10)

6 adjustment factor with real part of t tending to infinity; 0(t) has therefore the
m n - 6 following exact representation as a factorial series [12, 13]:Br(') Bernoulli polynomial of degree r and order one

x

betf(.; c, d) beta Cdf, betf(x; p, q) = 50/Y(1 - Y)q 4(t) = K . S Rk{P(z + a)/(t + a + V + k)}, Ro=
dy/B(p, q) k=O

(3.11)

Nomenclature where a is a convergence factor chosen such that R1 = 0

Mellin transform The Mellin integral transform of a func- and the coefficients Rk are obtained using the followingMelln tansfrmhe Mlli intgra trasfom ofa fnc-recurrence relations [II]:tion f(x), defined only for x > 0, is
00 k

M{f(x) Is} = E(Xs1) = J xS 1f(x)dx E Rk ,dk jj = qk (k = 1, 2, ...) 3.12)
j=0

where s is any complex variable. = E kCkdk/r d. =1 3.13)
0(t) f(t) is 0(t) if the functionf(t) is bounded ir k=1

by some constant multiple of t, for large
t. Cir = (-l)r [Br+i(cy)-Br+i(C + a + i)]/r(r + 1). 3.14)

Using the Mellin transform of the moment function of Using (3.11) in (3.3) and noting that term by term integra-
L in (2.7), pdf{L} is [16]: tion is valid since a factorial series is uniformly convergent

c+ioO in a half-plane [2], pdf {L} is [11l:
f(f) = K * (2-1) c-ioX fgPh[{F(n - 1 + h)}/

(p-l)/2 3/2-pm
0

)+-

F{p(n + h)-1}]dh (3.1) fl) =K.(2w) ' ERef+('-1(1 QV+-l/

Define: I(v + i). (3.15)

t m + h (3.2) We now proceed to choose the convergence factors 6 and
a. Using the asympotic expansion for the logarithm of the

Equation (3.3) results from (3.1) and (3.2): gamma distribution, we write:

f(f) = K .p PmfmC 1(27rv) c-Iioo f
t (t)dt (3.3) K (27r) (p-/2 3/2-pn = Mv[l + T1/m + T2/m2 + . lJ

k(t) =pPt{F(t + 6 - 1)}P/F{p(t + 6)-1} (3.4) (3.16)
We choose 6 such that T1 = 0 and this gives-

Use the asymptotic expansion for the logarithm of the
gamma function [1, pp 204]. Then - 6 = 13(1 + p)/18p. (3.17)

¢(t) = K, . Fy11l + q1/t + q/ + ...] (3.5) Now we choose ax such that R1 = 0 and this gives -

K1 (2r)(p-l)/2.3-P (3.6) a = (1 - v)/2. (3.18)
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TABLE 1
Percentage Points of L _ X"/

p=2 p=3 p=4 p=5
n 1%o 5% 1% 5% 1% 5% 1% 5%

6 .3157 .4519 .1879 .2860 .1186 .1894 .7705 .1281
7 .3835 .5168 .2480 .3520 .1685 .2491 .1173 .1794
8 .4405 .5684 .3025 .4084 .2168 .3031 .1586 .2285
9 .4885 .6105 .3511 .4566 .2620 .3514 .1990 .2741
10 .5294 .6452 .3943 .4981 .3036 .3943 .2376 .3159
15 .6653 .7552 .5494 .6385 .4636 .5486 .3954 .4751
20 .7409 .8134 .6430 .7184 .5670 .6421 .5039 .5772
25 .7889 .8493 .7049 .7696 .6379 .7039 .5808 .6468
30 .8219 .8736 .7486 .8051 .6891 .7477 .6376 .6970
35 .8460 .8912 .7812 .8311 .7278 .7803 .6811 .7349
40 .8644 .9045 .8063 .8511 .7580 .8054 .7153 .7644
50 .8905 .9232 .8425 .8795 .8020 .8417 .7658 .8074
60 .9082 .9358 .8673 .8988 .8325 .8666 .8012 .8371
70 .9210 .9449 .8854 .9128 .8549 .8848 .8273 .8589
80 .9306 .9517 .8891 .9234 .8720 .8986 .8473 .8756
90 .9382 .9570 .9099 .9317 .8855 .9094 .8632 .8887
100 .9443 .9613 .9186 .9384 .8964 .9182 .8761 .8994

p number of samples
n size of each sample
X likelihood ratio

From (3.15) the Cdf {L} is: f 3(p - 1)

F(Q) = K.(2zr)(t)/2p3/2-pn , R betd(e;m + + ) Q 1 - 13(1 + p)/18 pn
i=O 1

(3.19) w2 -6 [B2{np(1 - Q)-l} - p B2{n(1 -

Rz' --Rj{(m + ao)/r(m + a + v + I)}. (3.20)
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