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Comparison of Monte Carlo Techniques for
Obtaining System-Reliability Confidence Limits

Albert H. Moore tion. O'Neil [22] examined some methods of estimating
Air Force Institute of Technology, lower s-confidence limits on system reliability for serial
Wright-Patterson AFB systems based on subsystem test data. Gatliffe [7] used a

H. Leon Harter log-gamma method to find system s-confidence limits. His
Wright State University, Dayton analysis goes beyond the original log-gamma method

Robert C. Snead which was designed solely for serial systems. Levy &
Tracor, Inc., Austin Moore [15] designed a digital computer process to obtain

system reliability s-confidence limits for a system com-
posed of different elements whose failures followed dif-

Key Words-Monte Carlo, s-Confidence limit, Gamma distribution, ferent probability distributions. The distributions of the
Weibull distribution, Logistic distribution. estimators of the parameters were assumed to be known

for the cases considered. Moore [21] discussed a general
Reader Aids- Monte Carlo technique to obtain system reliability

Purpose: Widen state of artPurpoe: i .den of at s-confidence limits when the distribution of the estimatorsSpecial math needed for explanations: Probability and statisticsisukonThdubeM teCromhdiseledo
Specil mahneeedfrreslts:StatiticsiS unknown. The double Monte Carlo method is related toSpecial math needed for results: Statistics

Results useful to: Reliability theoreticians the "bootstrap" method of B. Efron [6]. Another way to
approximate the distribution of the estimators is to use the

Summary & Conclusion-Digital computer techniques are developed asymptotic distribution of the estimators. Harter & Moore
using a) asymptotic distributions of maximum likelihood estimators, and [8-13] derived ML estimators and their covariance matrices
b) a Monte Carlo technique, to obtain approximate system reliability
s-confidence limits from component test data. 2-Parameter Weibull, gam- for complete and censored samples from the s-normal,
ma, and logistic distributions are used to model the component failures. Weibull, gamma, logistic, lognormal, and first asymptotic
The components can be arranged in any system configuration: series, distribution of extreme values. Bilikam & Moore [3, 4]
parallel, bridge, etc., as long as one can write the equation for system derived ML estimators and their covariance matrices for
reliability in terms of component reliability. Hypothetical networks of 3 multiple independent grouped censored samples from the
5, and 25 components are analyzed as examples. Univariate and bivariate
asymptotic techniques are compared with a double Monte Carlo method. Weibull distribution with failure times known and
The bivariate asymptotic technique is shown to be fast and accurate. It unknown.
can guide decisions during the research and development cycle prior to This paper compares three Monte Carlo techniques to
complete system testing and can be used to supplement system failure obtain system reliability s-confidence limits from compo-
data. nent test data. Two of the techniques use the asymptotic

s-normality property ofML estimators while the other uses
a Monte Carlo technique to obtain the approximate
distributions of the estimators. In addition, for systems

INTRODUCTION with three components, the true s-confidence levels are
compared for the two asymptotic methods with the desired

The problem of obtaining system s-confidence limits s-confidence levels.
from subsystem test data has been studied extensively.
Springer & Thompson [24-26] developed Bayesian limits
for serially connected subsystems whose failure models METHODOLOGY
follow the binomial or exponential distributions by using The two assumptions common to the three methods
Mellin transforms. Lannon [14] and Lutton [18] used a are:
technique based on the asymptotic s-normality of max- 1) The underlying life distribution family is known for
imum likelihood (ML) estimators. Mann & Grubbs [20]
discussed approximately optimum s-confidence limits for each component.. . . . ~~~~2) Components have been life tested. All unknown
series or parallel systems with binomial or exponentially
distributed failure times. For binomial failure data they fparameters of the life distributions have been estimated

also discussed an asymptotic technique for logically com- -

plex s-coherent systems. Berkbigler & Byers [2] compared i sue httelcto aaee skon
"two of the most widely used techniques for computing Notation
lower limits for the reliability of series subsystems, the ex-
act Bayesian limits of Springer & Thompson [24] and the DOU Double Monte Carlo Method
fiducial limits using Monte Carlo simulation [15]". Locks BIV Bivariate Asymptotic Method
[16, 17] developed Monte Carlo Bayesian programs for UNI Univariate Asymptotic Method
establishing interval estimates for reliability and the MTBF tm given mission time for system
for a large and complex system of any modular configura- n sample size for component test data
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(a, #) maximum likelihood (ML) estimates of the ILLUSTRATIVE SYSTEMS
parameters (a, P) obtained from component test Hypothetical networks of 3, 5, and 25 components are
data analyzed as examples with an assumed mission time of 100
ML estimate of reliability of component hours. Five network configurations were considered asV asymptotic covariance matrix of bivariate follows: 3 components in series; 1 in series with 2 indistribution of (a, parallel; 3 components in parallel; 5-component network

VAi, Var (a), Var (,) asymptotic variance of R, & and '3 (see Fig. 1); and 25-component network (see Fig. 2). The
Zi simulated realizations of s-independent standard life distributions are-

normal deviates
(ai, (3i) simulated realizations of parameter vector (a, )
(0, B) scale and shape parameters of Weibull distribu- System 1

tion
(y, a) scale and shape parameters of gamma distribution
(A,a) location and scale parameters of logistic distribu-

tion System 2

Other, standard notation is given in "Information for
Readers & Authors" at the rear of each issue. 1

Double Monte Carlo Method [21]. Samples are
generated whose failures have the same distribution and System 3
parameters as the estimated ones and the same number of
observations as the original test data. The parameters are
estimated from the simulated sample by the same method
as used on the original sample. The simulated values of the
parameters and the mission time are substituted in the life
distribution to obtain a simulated reliability for each com-
ponent.

Bivariate Asymptotic Method. The simulated values of System 4 2

the parameters of the failure model are generated by (1);

(ai) = VlI2( Zi) + (e) (1)
pIi 3i

5 L
The simulated values of the parameters and the mission 4

time are substituted in the life distribution to obtain a
simulated reliability for each component. Fig. 1. Systems 1, 2, 3, and 4.

Univariate Asymptotic Method. The variance of a
2-parameter function of ML estimators is asymptotically-

Subsvstem 1 Subsystem 3

Var{R(a, Pj)} = (SR/Sa)2Var{a} + (aR/a )2Var{ I
VJ \ J ~~~~~~Subsvstem 5

+ 2(SR/a a)(aR/3a)Cov{a, PI}. (2)

For a simulated value of the reliability we obtain an equa-
tion similar to (1)//

Subsvstem 2 Subsyster 4

Rj=(VR)hf2Zi+.. (3) /

By inserting the system reliability equation in terms of 1Lh
component reliabilities and using the univariate asymptotic \
distribution of each R i as the actual distribution, one could\ /
use the Monte Carlo method called "sample" (27] to ob-
tain the distribution of system reliability and hence system Each subsystemn confiquration
s-confidence intervals corresponding to those obtained by
the univariate asymptotic method. Fig. 2. 25 Component Network.
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Weibull: R(tm) = exp[-(tm/0)B]; location parameter = 0 intervals or lower s-confidence limits, since the order
statistics partition the range of reliability intoN + 1 equal-

(4) ly probable intervals. To increase accuracy, the three
Monte Carlo simulations were performed using N + 1 =

Logistic: R(tin) = 1 - [1 + exp{-ir(tm- IA)/(V a)m}] 1000 and the s-confidence limits obtained averaged.
(5) However this was not done for systems 4 and 5 for the dou-

ble Monte Carlo method because of computer-time limita-
Gamma: R(tm) = 1 ff r/ b(u) du. (6) tions.

Tables 1 and 2 compare central s-confidence intervals
b(u)-[ua- exp(-u)]/(a); location parameter = 0. for 50% to 99% s-confidence levels. The lower limit of a

99% s-confidence interval is also a 99.5%Vo 1-tailed lower
_ (tmy-a)12 s-confidence limit and similarly for the other lower

R(tm) 1 - gauf( tly-a ) + - 1/ s-confidence limits. Due to computational difficulties fora- ~~~a

the double Monte Carlo method the 5-component case was
3 W)exp[- I (t,,/y-a)2 ]/ (7) rerun for all three methods with components 2 and 5

2 - a following the same Weibull failure model (calling the
modification: system 6) with the results presented in Table

the Edgeworth expansion in terms of s-normal Cdf is used. 2. From Tables 1 and 2, the results of the two asymptotic
The components 1-5 have life distributions: methods tend to bracket those of the double Monte Carlo
1. Weibull: 0 = 400, B = 2, n = 30 method. In general the bivariate method is conservative
2. Gamma: y= 100, a = 3, n = 100 while the univariate asymptotic method is optimistic. To

3, 4. Logistic: ,u = 125, 6 = 20, n = 100. The 10 shed light on the Monte Carlo variability, Table 3 com-
smallest and 20 largest lives are censored. pares the ML point estimate of system reliability R5(tm)

5. Weibull: 0 = 210, B = 3, n = 100 with median values of the system reliability realizations.
To measure the accuracy of the asymptotic methods

The 3-component networks all used only components of each method is repeated many times with simulated test
type one. They were chosen to see the effect of increasing data from a component with known reliability. A single
system reliability. repetition is called a run. The percentage of times the

s-confidence intervals covered the true system reliability is
compared with the desired s-confidence level in Table 4.
For both methods all components were modeled by the

Monte Carlo lower s-confidence limits and central Weibull distribution with sample size for simulated com-
s-confidence intervals are derived as follows: ponent test data n = 20 for the univariate method and

The system reliability realizations obtained for each of average sample size of 20 for the three components for the
the above three methods are inserted in the equation for bivariate method. Table 4 indicates the bivariate method is
system reliability for each system to obtain a system conservative and in addition more accurate than the
reliability realization. The process is repeatedN times. The univariate method and much less sensitive to degradation
system reliabilities are arranged in order of increasing due to high system reliability.
magnitude. The ordered reliabilities partition the interval Table 5 compares CPU time for the three methods on
[0, 1] into N + 1 equally probable intervals. We usedN + the CDC 6600. Lannon [14] wrote computer programs that
1 = 1000 for simplicity. From the ordered simulated computed from sample data the parameter estimates,
reliabilities we can obtain any desired central s-confidence variance-covariance matrix, square root of variance

TABLE 1
Upper and Lower s-Confidence Limits for Reliability of 3-Component Systems

1 Component in Series
3 Components in Series with 2 in Parallel 3 Components in Parallel

s-Confidence Lower Limits Upper Limits Lower Limits Upper Limits Lower Limits Upper Limits

(%M) Biv Dou Uni Biv Dou Uni Biv Dou Uni Biv Dou Uni Biv Dou Uni Biv Dou Uni
99 .651 .692 .720 .913 .926 .947 .808 .822 .862 .982 .990 1.000 .9981 .9988 .9990 1.0000 1.0000 1.0000
95 .697 .730 .741 .898 .908 .914 .847 .865 .880 .973 .981 .992 .9989 .9992 .9993 1.0000 1.0000 1.0000
90 .731 .750 .756 .885 .898 .902 .863 .879 .889 .969 .976 .985 .9992 .9994 .9994 1.0000 1.0000 1.0000
80 .751 .772 .773 .871 .885 .887 .883 .896 .900 .964 .971 .971 .9994 .9995 .9995 .9999 1.0000 1.0000
70 .763 .785 .785 .860 .876 .877 .894 .906 .907 .960 .966 .965 .9995 .9996 .9996 .9999 .9999 1.0000
60 .774 .794 .793 .853 .867 .868 .903 .915 .912 .955 .961 .960 .9996 .9997 .9996 .9999 .9999 .9999
50 .783 .803 .800 .844 .861 .860 .910 .921 .916 .951 .958 .956 .9996 .9997 .9997 .9999 .9999 .9999
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TABLE 2
Upper and Lower s-Confidence Limits for Reliability of 5- and 25-Component Systems

5-Component System 25-Component System Modified 5-Component System

s-Confidence Lower Limits Upper Limits Lower Limits Upper Limits Lower Limits Upper Limits

(%) Biv Uni Biv Uni Biv Uni Biv Uni Biv Dou Uni Biv Dou Uni
99 .811 .859 .977 1.000 .805 .847 .967 .995 .811 .845 .859 .974 .980 1.000
98 .832 .865 .974 .998 .820 .854 .965 .984 .837 .851 .865 .972 .977 .998
97 .840 .869 .972 .991 .828 .858 .963 .982 .842 .855 .869 .970 .975 .991
96 .846 .872 .971 .987 .832 .860 .961 .978 .849 .860 .873 .969 .974 .987
95 .849 .874 .970 .984 .842 .862 .960 .977 .852 .862 .874 .968 .973 .984
90 .866 .882 .966 .975 .856 .871 .956 .966 .867 .875 .882 .964 .968 .975
80 .885 .893 .960 .965 .873 .882 .950 .956 .883 .888 .893 .958 .962 .965
70 .896 .901 .956 .957 .884 .890 .946 .949 .895 .896 .901 .955 .958 .958
60 .902 .906 .952 .952 .892 .895 .942 .943 .903 .903 .906 .951 .954 .952
50 .910 .911 .949 .948 .898 .900 .938 .939 .909 .910 .911 .948 .950 .948

TABLE 3 matrix, and resulting s-confidence intervals using the CDC
Median Value of Rs(t,m) Compared with 6600 for the bivariate asymptotic method when the failures
ML Estimate of System Reliability Rs(tm) were modeled by a 2-parameter Weibull. The total com-

Method putation time was 22.3 sec for 3 components and 29.5 sec
BIV DOU UNI for an 8-component system using a Monte Carlo sample

System System Type Rs(tm) Rs(tm) AS(t,,) Rs(tm) size of 1000. Extrapolating from these results we obtained
tle values for the complete job for the 25-component

1 3 in series .829 .815 ,832 .830 system.
2 parallel series .9998 .9998 .9998 .9998 The bivariate method is fast and accurate if the compo-

4 5 component .929 .931 - .929 nent failures are modeled by 2-parameter distributions
5 25 components .919 .921 - .920 with both parameters unknown. This method can use the
6 5 components (modified) .929 .931 .932 .930 exact distributions of parameter estimates when they are

known [15]. For very sparse sample data, the double
TABLE 4 Monte Carlo method can be used, and would be much

True s-Confidence Levels faster than indicated by Table 5 in this case.

3 in Parallel 3 in Parallel APPENDIX
Series Series Parallel Series The variances of R(tm) were calculated by using (2).

System .684 .843 .998 .963 For component #1
Rel. (600 Runs) (700 Runs)

VarfRi(tm, 0, B)} = Di Var{B} + E' Var{-}Input
s-Conf. + 2DlEl Cov{e, B} (8)

Level (07o) UNI [23] UNI UNI BIV [14]1 DE
99 96.2 93.8 90.2 99.6
90 86.2 80.8 70.5 92.6 DI - (tm/0)B1n (tm/0) R(tm)
80 78.0 72.0 57.3 82.6
70 68.2 64.7 46.2 73.0 F (i/D)(tm/0)Bk(tm).
60 57.0 54.3 36.5 60.4 El (I Rt)
50 48.3 47.0 27.7 49.0 Substituting the mission time, parameter estimates, and

asymptotic variances and covariances from Harter &
TABLE 5 Moore [11], we obtain a = .02877. Similarly for compo-

Comparison of CPU Times on the CDC 6600 nent #5 we obtain o = .02224.
for the Three Methods (1000 Monte Carlo Samples) For the two i.i.d. logistic components-

(25-Component System)

Method Monte Carlo Sampling Only Complete Job* Var{14(tm, jZ o) } = D2 Var{,u} + E2 Var{o}

BIV 22 sec. 50 sec. + 2D2E2 COV{,u, ?O}
DOU 22 min. 23 min.
UNI 11l sec. 40 sec. D2 [R(tm)V 211(1 - R(tm)Y't - 1JTc/(\fo)

*Including estimation of parameters and computation of variance- F_ [(m]2( -2^(m) -11 [A(t -
covariance matrices (rough estimate of time). =[(m] (1 Rt) l[(m-^)//0).



MOORE ET AL.: MONTE CARLO TECHNIQUES FOR OBTAINING SYSTEM-RELIABILITY CONFIDENCE LIMITS 331

Substituting the parameter values, mission time tlm and [14] R.G. Lannon, "A Monte Carlo technique for approximating
variances and covariances from Harter & Moore [12], we system reliability confidence limits using the Weibull
obtain a. = a3 = .01929. distribution", MS thesis (GAM/MA/72-2), AFIT, Wright-

Forthecomponent with a gamma failure distribution, Patterson AFB, Ohio, 1972, AD-743633. Available from NTISFor the component with a gamma failure distribution, (see [1]).
we use the Edgeworth expansion of the Cdf in terms of the [15] L.L. Levy, A.H. Moore, "A Monte Carlo technique for obtaining
s-normal Cdf to obtain system reliability confidence limits from component test data,

IEEE Trans. Reliability, vol R-16, 1967 Sep, pp 69-72.
Var1R1} ~ + (P) [2t2 /(I2 V-) [16] M.O. Locks, "Monte Carlo Bayesian system reliability-and

Van 21[2mY MTBF-confidence assessment", Air Force Flight Dynamics
Laboratory, Wright-Patterson AFB, Ohio, AFFDL-TR-75-144,
AD-A057068. Available from NTIS (see [1]).

- (2a - 1)(1 - 1/(2 \'a))(1 + 3(3/(2 \Va))] [17] M.O. Locks, "Monte Carlo Bayesian system reliability-and
MTBF-confidence assessment II", vol I: Theory, vol II:

(9) SPARCS-2 Users Manual, Air Force Flight Dynamics Laboratory,
Wright-Patterson AFB, Ohio, AFFDL-TR-78-18, AD-A025820.

where P = (tm/l - a). Substituting the mission time and Available from NTIS (see [1]).
parameter estimates, we obtain ak = .01638. [18] S.C. Lutton, "A Monte Carlo technique for approximating system

reliability confidence limits from component failure test data",
MS thesis (GRE/MA/67-9). Available from Air Force Institute of
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Book Review Ralph A. Evans. Product Assurance Consultant

Software Tools inexpensive (approx $3), short, and easy to read. It was
Brian W. Kernighan and P. J. Plauger, 1976, $10.95 reviewed in vol R-23, 1974 Dec, pp 342-343.
paperback, 338 pp. Even though the examples come largely from text
Addison-Wesley Publishing Company; Reading, Massa- processing, the principles apply widely. The book is not
chusetts USA. expensive, and you can learn alot from it. You can apply
ISBN: 0-201-03669-X. the principles and style the day you begin reading the

book. There is no need to turn the programming depart-
Table of Contents ment upside down with a complete reorganization. * **

1. Getting Started 28 pp
2. Filters 22 PP The C Programming Language
3. Files 38 pp Brian W. Kernighan and Dennis M. Ritchie, 1978,
4. Sorting 30 pp $10.95 paperback, 228 pp.
5. Text Patterns 18 PP Prentice-Hall, Inc.; Englewood Cliffs, NJ 07632 USA.
6. Editing 56 pp ISBN: 0-13-110163-3; LCCCN: 77-28983.7. Formatting 32 pp
8. Macro Processing 34 pp Table of Contents
9. A Ratfor-Fortran Translator 34 pp
Epilogue 4 pp 1. A Tutorial Introduction 27 pp
Appendix: Primitives and Symbolic Constants 2 pp 2. Types, Operators, and Expressions 18 pp
Indexes 13 pp 3. Control Flow 14 pp

4. Functions and Program Structure 24 ppThis is a good book. It teaches good programming by 5 Pointers and Arrays 30 pp
example rather than by listing a set of cookbook rules 6. Structures 24 pp
which must be followed. The more you study it, the 7 Input and Output 16 pp
better it becomes. It is not a textbook, although it could 8. The UNIX System Interface 20 pp
be used to supplement the teacher's role in a course on Appendix A C Reference Manual 42 pp
programming. In order to use the book effectively, one Index 7 pp
needs some experience in programming.
Virtually all of the material is related to text process- New small programming languages are being touted all

ing, rather than, say, to compilers or mathematical over the land. Pascal is receiving a big push, perhaps
problems. Some of this comes about because of the because of its suitability for microcomputers which are
authors close relation to "the C programming language" likewise becoming ubiquitous. This is THE book on the
(see the review, in this issue, of the book by that name) C language. Appendix A defines the language. "C" has
which has but few I/O facilities. The authors explain: "It not been used widely enough to become endowed with
might appear from this outline that we stress text all the variants which wide use creates.
manipulation too heavily. Yet computing is not all Some claim that "C" is much better than Pascal
number-crunching, nor is it the 'compilers, assemblers because it allows the programmer more flexibility and
and loaders' so hastily treated in many second courses in introduces some shorthand notation for widely used,
programming. A large part of what programmers do cumbersome operations (shades of APL). A favorable
every day is text processing - editing program source, review of "C", by Tim Chase, appeared in: Information
preparing input data, scanning output, writing docu- System News, Monday 1980 May 19, p 24. Chase states
mentation. ..." Some of the good points made by the that "C" can now be implemented on IBM/370, DEC
authors (sometimes implicitly) are: 1) A well written PDP/ 1, and the HP/1000.
program is its own documentation. And conversely, a Undoubtedly "C" will be a useful language for creating
program which requires extensive documentation prob- high quality programs. Just as undoubtedly, it can be
ably could be rewritten to be much clearer - without used to create very bad programs. There is a running
the extensive documentation. 2) Good programming argument (for reliable software) over how much flexi-
style, rather than blind application of particular rules or bility a programmer should be allowed by the program-
techniques, is what produces good programs. Bad pro- ming language, and how compact the language should
grams can be written which follow all the rules. 3) Don't be. APL is probably too compact. Whether the special
second-guess the computer, or yourself, on how to constructs in "C" will be a bane or boone, only contin-
create efficient code. Don't outsmart yourself trying to ued usage will tell. The C language does have many
create efficient code. First, write good understandable advantages; it does have some disadvantages (e.g. you
code. Then, let the computer tell you where it is have to create most of your own I/O routines, and it
spending most of its time - and thus where more- needs extending).
efficient code will help. If you want to learn about "C" from the horse's mouth,
Any programmer who is not familiar with another of this is the book to get. But beware about hoping that

the authors' books: The Elements of Programming Style the programming language you use will solve all quality
(McGraw Hill, 1974) ought to buy it and read it. It is problems in programs. It won't.***


