
Suboptimal Minimum Cluster
Volume Cover-Based Method for

Measuring Fractal Dimension
Charles R. Tolle, Senior Member, IEEE, Timothy R. McJunkin, Member, IEEE, and David J. Gorsich

Abstract—A new method for calculating fractal dimension is developed in this paper. The method is based on the box dimension

concept; however, it involves direct estimation of a suboptimal covering of the data set of interest. By finding a suboptimal cover, this

method is better able to estimate the required number of covering elements for a given cover size than is the standard box counting

algorithm. Moreover, any decrease in the error of the covering element count directly increases the accuracy of the fractal dimension

estimation. In general, our method represents a mathematical dual to the standard box counting algorithm by not solving for the

number of boxes used to cover a data set given the size of the box. Instead, the method chooses the number of covering elements and

then proceeds to find the placement of smallest hyperellipsoids that fully covers the data set. This method involves a variant of the

Fuzzy-C Means clustering algorithm, as well as the use of the Minimum Cluster Volume clustering algorithm. A variety of fractal

dimension estimators using this suboptimal covering method are discussed. Finally, these methods are compared to the standard box

counting algorithm and wavelet-decomposition methods for calculating fractal dimension by using one-dimensional cantor dust sets

and a set of standard Brownian random fractal images.

Index Terms—Fractal dimension, Fuzzy-C means, suboptimal cover, box counting, clustering, texture analysis.

æ

1 INTRODUCTION

THIS paper extends prior work [1], [2], [3] on developing
more efficient and accurate methods for determining

fractal dimension. Our interest in fractal dimension is
primarily due to its ability to segment images into different
textural regions. Textural analysis of subregions is impor-
tant because it is connected to current models of the human
visual system (HVS). Texture perception and, more speci-
fically, texture roughness is a key cue feature used in
recognition of objects [4], [5]. In [2], we began investigating
the use of fractal dimension in segmenting images. Jardine
[4] found that the HVS perceives changes in roughness of
textures corresponding to the fractal dimension changes of
random fractal textures. Likewise, at Lincoln Laboratory,
the fractal dimension was shown to be one of the best five
cue features (out of 13 studied) for use in the automatic
target recognition algorithms of SAR imagery [5]. Moreover,
the calculation of fractal dimension has a natural extension
to the general sensor fusion problem. For example, once a
series of spectral images/signals for an area have been
registered (overlaid) within a fused high-dimensional space
the process of calculating the fractal dimension for that
space is clearly understood and easily accomplished. The
computational procedure discussed in this paper is also
used in obtaining an additional important textural feature

known as lacunarity [6], [7]. Lacunarity describes the spatial
gaps within a data set, i.e., how the space was filled, while
fractal dimension describes the space-filling nature/cap-
abilities of a data set, i.e., the amount of space filled [6], [7].

A fractal is a set that has a noninteger fractal dimension.
The fractal dimension is formally defined as the Hausdorff-
Besicovitch (HB) dimension. However, there are a number of
ways to estimate this fractal dimension, each of which uses a
slightly different definition of the dimension. A few of these
methods are: box algorithm, wavelet transform, power
spectrum method (using the Fourier transform), Hurst
coefficients, Bouligand-Minkowski [8], the variation method
[9], and capacity dimension. Recent work has investigated
which of these methods are efficient versus accurate [10]. In
addition, many works have pursued improving the accuracy
of these techniques [12], [13]. For the most part, these efforts
have been limited to improvements in efficiency and
accuracy for time varying signals as well as geometrically
produced images. We expand upon this body of work by
adding our suboptimal fractal dimension estimator, which is
extensible to any arbitrary L dimension space. Within this
paper, however, we focus on texture images with a known
fractal dimension. (For a quick and easy introduction to
calculating fractal dimension of images, we suggest that the
reader start with an online program Web hosted by Charles
Sturt University: http://life.csu.edu.au/fractop/.)

Although most commonly used fractal dimension approx-
imation methods run very efficiently [2], [6], [10], [14], the
actual estimates for these algorithms suffer from differing
amounts of inaccuracies. Due to these inaccuracies, we
decided to develop a new way of estimating the fractal
dimension that is much closer to the definition of the box
dimension than is the commonly implemented via the box
counting algorithm. Our hypothesis was that by obtaining a

32 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

. C.R. Tolle and T.R. McJunkin are with the Idaho National Engineering and
Environmental Laboratory, PO Box 1625, Idaho Falls, ID 83415-2210.
E-mail: {tollcr, mcjutr}@inel.gov.

. D.J. Gorsich is with the US Army Tank-Automotive, Research, Develop-
ment & Engineering Center Robotics Laboratory, MS 263, Warren, MI
48397-5000. E-mail: gorsichd@tacom.army.mil.

Manuscript received 14 May 2001; revised 13 Feb. 2002; accepted 28 June 2002.
Recommended for acceptance by A. Khotanzad.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114147.

US Government Work Not Protected by US Copyright Published by the IEEE Computer Society

better estimate of the optimal cover required for determining
the box dimension, the fractal dimension estimates would
become more accurate. To achieve this end, we introduce a
dual mathematical concept of solving the optimal cover
problem normally stated when defining the fractal dimen-
sion. Instead of choosing a fixed covering element size and
then estimating the positions and number of covering
elements that optimally cover the set of interest, we reverse
the process by first choosing the number of covering elements
and then solve for the covering element size. This initial
concept was presented with two possible solutions in [1]. The
first solution solved the covering problem via a Fuzzy-C
Means (FCM) clustering algorithm, while the second solution
utilized a genetic algorithm. To test the accuracy of these new
methods, a texture generation program given by Musgrave in
Ebert’s book [15] was used. The texture generator was
designed to generate random brownian fractal textures given
a fractal dimension and a lacunarity (see Fig. 2). The same
type of image will be used in this paper to check the accuracy
of our new fractal dimension estimator.

As in [1], we explore a method for using clustering
algorithms to determine a suboptimal cover which is then
used to estimate the fractal dimension of a data set. In this
paper, we introduce the use of a Minimum Cluster Volume
(MCV) clustering algorithm [18] for finding the suboptimal
cover. The MCV cost surface is more complex due to its
numerous local minima [18]. To overcome this limitation, we
have chosen to initialize the MCV center locations using a
modified FCM algorithm, instead of the more traditional
method of randomly selecting initial center positions (for
completeness the modified FCM algorithm is discussed in
Appendix A). A further evolutionary step beyond our initial
paper [1] is the use of singular values of the cluster scatter
matrices to better describe the size and shape of the covering
elements. Moreover, averages of these singular values are
used to estimate a more traditional covering element size
used within the calculation of the box dimension. A number
of element size measurements are considered, e.g., the
minimum of the maximum of the singular values for each
cluster (MIN-MAX) and the maximum of the maximum of the
singular values for each cluster (MAX-MAX).

In the section that follows, the Hausdorff-Besicovitch (HB)
dimension is defined, leading to a simpler definition of the
box dimension. From the detailed discussion of the box
dimension and its well-known algorithm, we develop a dual
mathematical method for obtaining an optimal cover that
will be used to estimate the box dimension with greater
accuracy. At that point in the paper, we introduce the new
MCV suboptimal fractal dimension estimators. Next, de-
tailed sets of results are presented for a series of cantor dust
sets and Brownian random fractal images. Finally, we close
with a description of the future directions of this research.

2 FRACTAL DIMENSIONS

The fractal dimension is most commonly defined as the
Hausdorff-Besicovitch (HB) dimension, DhðAÞ, where A
denotes the image/signal. In general, the HB dimension of
A is defined in the following manner [16].

Let

Rn ¼ fxjx ¼ ðx1; . . . ; xnÞ; xi 2 Rg; ð1Þ

for some natural number n. Then, define the diameter of
some cover C as

diamðCÞ ¼ supfdeðx; yÞjx; y 2 Cg; ð2Þ

where deðx; yÞ denotes the Euclidean distance function. An
open cover of A is defined by covers Ci such that

A �
[1
i¼1

Ci: ð3Þ

Then, let

hs�ðAÞ ¼ inf
X1
i¼0

diamðCiÞs
(�����of A with diamðCiÞ � �

fC1;C2;g open cover
)
; ð4Þ

so that the s-dimensional Hausdroff measure of A is

hsðAÞ ¼ lim
�!0

hs�ðAÞ: ð5Þ

Then, the Hausdorff-Besicovitch (HB) fractal dimension of
A is defined as

DhðAÞ ¼ inffsjhsðAÞ ¼ 0g ¼ supfsjhsðAÞ ¼ 1g: ð6Þ

Due to the complexity and impracticality of finding the
optimal cover defined by the HB dimension, we need a
different bounding estimate, i.e., one that is easily calculated.
One such upper bound estimation of the HB dimension is the
box dimension definition.

2.1 Using the Box Counting Algorithm and Other
Methods to Determine Fractal Dimension

The box dimension, DbðAÞ, which is normally estimated
using the box counting algorithm, is a commonly used
upper-bound estimator for the HB dimension. In general,
the box dimension can be defined as follows [16].

Let CdðAÞ be the smallest number of closed covering
elements of size d, see (2), that cover the set A. Then, DbðAÞ
is defined as

DbðAÞ ¼ lim
d!0

log CdðAÞ
log 1

d

: ð7Þ

It is important to note that the box dimension, DbðAÞ, does
not always equal the HB dimension, DhðAÞ. For example, it
can be shown that DbðAÞ ¼ n for any dense subset A such
that A � Rn ¼ fxjx ¼ ðx1; . . . ; xnÞ; xi 2 Rg. Likewise, for the
same A, DhðAÞ � n. Moreover, DhðAÞ ¼ 0 for any such
countable set A [16]. Therefore, given the set A of rational
numbers on ½0; 1�, the box dimension is DbðAÞ ¼ 1, while the
HB dimension is DhðAÞ ¼ 0. Although the box dimension
fails in some instances, the value it normally produces is
similar to the HB dimension.

The calculation of the box dimension is often difficult. One
must first find the optimal covering (smallest number of box
shaped covering elements) ofA for a given set of box covering
elements with edges of length d. Placing the covering
elements in an algorithmic way to minimize their total
number for a given size is easily achieved for low-dimen-
sional data sets. However, this process becomes much less
tractable in the case of more general forms of data. This also
requires algorithms to determine when and how to overlap
covering elements when a whole number of elements does
not “evenly” fit the space. Fig. 1 shows a simple example that

TOLLE ET AL.: SUBOPTIMAL MINIMUM CLUSTER VOLUME COVER-BASED METHOD FOR MEASURING FRACTAL DIMENSION 33

starts to express the difficulty of generating the box
dimension and its estimate via the box counting algorithm.
Note, even within this simple example, a grid-based place-
ment method such as the box algorithm can cause an increase
of 45 percent in the number of covering elements needed to
cover the set optimally. Even with these inaccuracies, the box
dimension is normally estimated using the box counting
algorithm because of its simplicity of implementation. In
short, the box counting algorithm places a standard grid of
boxes (or hypercubes) upon the image/signal and counts the
number of nonempty boxes as covering elements. These
boxes act as the required open cover, Ci. This count of
covering elements is then plotted on a log-log plot versus the
reciprocal of element size d in Fig. 3. Finally, the box
dimension estimate is taken from the monotonically rising
nonzero linear slope of the log-log plot. By examining this
procedure closely, one can see that the only difference
between the results obtained using the box counting algo-
rithm and the box dimension is due to the fixed location of the
potential covering elements as well as their inability to allow
for possible overlaps required to achieve an optimal covering,
see Fig. 1. In other words, the box counting algorithm does
not, in general, find the optimal cover. It has been shown that
the box counting algorithm needs at least 10DhðAÞ points to
determine the fractal dimension [17]. The key concept
underlying the box counting algorithm is: first, the box size
was chosen and then the number of boxes needed to cover the
set must be calculated in order to estimate the dimension.

Another common fractal dimension estimator is the
Bouligand-Minkowski [8] estimator. A concise overview of
this method is contained in [12]. It is traditionally defined
for use on R2 data sets. This estimator defines a cover
element size as a radius, �. The complete cover is the union

of all covering elements created by centering each element

on every point contained within the data set. The variation

of the area contained within the cover,Að�Þ, as � is decreased

then provides the measure of the fractal dimension:

D ¼ lim�!0

�
2ÿ lnAð�Þ

ln �

�
. Furthermore, as with the box algo-

rithm, the empirical estimates are found by calculating the

slope of the cover size Að�Þ with respect to the changing

element size �. However, as the dimensionality of the data

34 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 1. An example of two possible coverings of a geometric fractal using simple box covering elements; on the left is an optimal placement of the

elements requiring only 11 elements, and on the right is a typical box counting algorithm placement of the elements requiring 16 elements (a 45 percent

increase in the number of elements needed).

Fig. 2. An example of two Brownian motion fractal textures; the fractal dimension is 2.1 on the left and 2.7 on the right.

Fig. 3. The log-log plot of the results from the box counting algorithm for

the texture with a fractal dimension of 2.7 shown in Fig. 2. The linear

slope on the log-log plot indicates a fractal dimension of 2.5.

set grows estimating the hypervolume becomes exceedingly
difficult to achieve.

Next, we consider the variation method [8]. This method,
like the one developed below, provides a means to
estimating fractal dimension of an image, e.g., Fig. 2, where
the image intensity or amplitude can be written as a function
of a spatial coordinate, z ¼ fðx; yÞ. As before, this method
requires the choice of various size �. A covering element of
radius � is placed at each data point within the image. Next,
the variation at each point, vfðx; y; �Þ, within the element is
then measured by taking the difference between the
maximum, zmax, and minimum, zmin, functional values
contained within the covering elements region. These
variations are then averaged over the image to form the
�-variation, Vfð�Þ, for the image. Note, in the finite case, this is
a simple summing operation and, in the analytic or general
case, this becomes an integral. The fractal dimension
definition then takes the form: D ¼ lim�!0

ÿ
3ÿ lnVf ð�Þ

ln �

�
. In

order to estimate a finite sampled set, one takes the slope of
the plot of lnVfð�Þ=�3 versus ln 1=�. This method has many
conceptual overlaps with the method discussed below;
however, it is limited to functional hypersurfaces above a
coordinate hyperplane. Accuracy of this method for textural
fractals obtained by Summers et al. [11] is good about 2.5,
however, it varies significantly as the allowable extremes for
the method are approached, i.e., 2 and 3.

We now introduce what we will call a dual mathematical
form for the box algorithm: instead of finding the minimum
number of covering elements for a data set using a given
element size, we propose that one can choose the number of
covering elements then find the minimum size of each
element required to cover the data set. This method limits the
problem Zeng et al. [12] calls “Choice of sequence,” because
the choice of number of covers is strictly contained to the set of
natural numbers.

2.2 MCV Suboptimal Cover-Based Fractal
Dimension

We start our discussion of the MCV suboptimal cover
estimation of the box dimension by exploring the dual
mathematical solution. As was mentioned, instead of choos-
ing the covering element size and then finding the number of
covering elements for the image, one might just as well
choose the number of covering elements and then find the
smallest covering element size. Simple clustering methods
solve this problem.

Since we are interested in obtaining the smallest clusters
that will fully cover the data set, using a minimum cluster
volume optimization procedure seems logical. That proce-
dure has been resolved in the MCV clustering problem [18].
The algorithm is briefly described next and described in
slightly more detail in Appendix B.

The center positions are initialized using a modified
FCM algorithm [19], see Appendix A. The need for seeding
the center location for the MCV algorithm is also discussed
in Krishnapuram and Kim’s paper [18]. The MCV algorithm
minimizes the sum of the fuzzy covariance matrix determi-
nants, jCfij, with the same constraint on the membership
values, uik, as the FCM algorithm. This minimizes the sum
of products of the matrices’ singular values, which is
proportional to the hypervolume of the clusters

Jfv ¼ min
uij;vi

XC
i¼1

jCfij1=2; ð8Þ

where

Cfi ¼
PN

j¼1 u
m
ij ðxj ÿ viÞðxj ÿ viÞTPN

j¼1 u
m
ij

; ð9Þ

with the constraints of
PC

i¼1 uji ¼ 1 for each point xj for
j ¼ 1; . . . ; N ; uji 2 ½0; 1�; C is the number of clusters; N is the
number of points in the data set; vi is the center for cluster,Ci,
i ¼ 1; . . . ; C; and m 2 ½1;1Þ is a fuzzifying exponent. As m
increases, the clustering approaches the hard cluster limit. For
this paper, we chosem to be 2. One of the strengths of MCV is
that it more closely associates the center of the cluster with
points within its core, rather than allowing many points with
weak membership to effectively “pull” the cluster center
away from its natural core members, i.e., the points with
stronger membership values. This makes MCV robust to
outliers within the data set.

To obtain the cover found by solving the MCV algorithm,
each data point is assigned to the cluster in which its
membership value is highest, that is “hard” clustered. The
“hard” clusters define the covering elements. The next step is
to determine how best to find the size of each one of these
covering elements. The reader should note that, in general,
these covering elements are not hyperballs as the HB and box
dimension require. Instead, each cluster represents an
L-dimensional hyperellipsoid. How one best determines the
method for consolidating the L components of each cluster’s
hyperellipsoid size, as well as the total cover’s estimated “ball
size,” is an open problem. One such method, described in [1],
is to choose the average of the maximum distance from each
center to any point in that “hard” cluster. This method fits an
L-dimensional ball shaped covering element around each
center, even if the shape of the hyperellipsoid is not spherical.
This does not seem to be the best possible choice. Instead, we
suggest another method based on the singular values (SV) of
each cluster’s scatter matrix.

The average scatter matrix for cluster i is defined as

M̂Mi ¼ 1

Ni

X
xk2Ci

xk ÿ við Þ xk ÿ við ÞT ; ð10Þ

where Ni are the number of data elements covered by Ci.
This matrix can be decomposed into its principal compo-
nents using the singular value decomposition

M̂MI ¼WiQiGiH ð11Þ

¼WI

�i1 0 . . . 0

0 �i2 0

..

.

0 0 � � � �iL

266664
377775GiH ð12Þ

¼
XL
l¼1

�ilw
i
lg
i
l

H
; ð13Þ

where GiH denotes the Hermitian of Gi, �il are the singular
values, and Wi and Gi are unitary matrices, i.e., WiHWi ¼ I
andGiGiH ¼ I (which describe the singular value directions).

These singular values provide the size and shape of the
hyperellipsoid covering element located on each cluster

TOLLE ET AL.: SUBOPTIMAL MINIMUM CLUSTER VOLUME COVER-BASED METHOD FOR MEASURING FRACTAL DIMENSION 35

center. Each covering element can be measured in L
different component directions. A particular dimension of
the data vector x could be distributed such that one or more
SVs are significantly different in their magnitude from the
remaining dimensions. For the data sets investigated here,
we present three dimension estimators: the Max-Max
method, which estimates the ball size by maximizing over
all clusters, i, of the maximum directional SV, �i

l , for each
cluster; the Min-Max method; and Ave-Ave (AVE=average)
method. We highlight the Ave-Ave estimate because it has a
more linear logðCdÞ= logð1dÞ trend for highly ramified data

sets such as a cantor dust (see Fig. 4). The lack of such a
linear trend in the other estimators appears to be due to
poor clustering, produced when the number of true clusters
does not fit the data being clustered. Fig. 5 shows that in
nongeometrically self-similar fractal data sets, the Ave-Ave
estimate is not merely the only near linear function but the
only one which approaches the expected fractal dimension.

Figs. 4 and 5 present a typical logðCÞ-logð1dÞ graph, where d
is the size of the cluster as determined by the one of the
estimators discussed above, e.g., Ave-Ave. For the Ave-Ave,
d is calculated as

36 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 4. Typical logðCÞlogð1dÞ plots for the Max-Max, Min-Max, Min-Min, and Ave-Ave ball estimations are shown using a 1
7 th cantor set.

Fig. 5. Typical logðCÞ-logð1dÞ plots for the Max-Max, Min-Max, Min-Min, and Ave-Ave ball estimations are shown using a Brownian random texture with

fractal dimension 2.2 and a lacunarity of 2.

dAve-Ave ¼

ffi
1

CL
XC
l¼1

XL
i¼1

�il

vuut ; ð14Þ

where the square-root is necessary to retrieve a linear distance
measure from the singular values. Notice that, for the cantor
set, the Max-Max and Min-Min estimations appear to climb in
a step fashion, see Fig. 4. In fact, these steps occur with even
powers of 5, which corresponds to the number of division of a
1=7 cantor set at each successive resolution iteration (this
graph visually demonstrates the poor clustering problem).
Since no a priori knowledge about the structure of a data set is
assumed, the average appears to be the best choice.
Furthermore, notice that this qualitatively shows the effects
of poor clustering due to the natural internal structure of the
cantor dust for different resolution levels.

Although this method does not maintain a constant size
and shape for each covering element, one can contrive a cover
based on the Ave-Ave result that does accomplish this. In
order to do this, one must choose a � such that: one, when a
ball shaped covering element of radius �dAve-Ave is placed on
the calculated cluster center it completely encloses all of the
associated cluster members within that cluster; two, this �
must accomplish this for all clusters within a particular
covering; three, the � must further hold over all of the
coverings used within the fractal dimension estimation
calculation. It should be clear that by choosing such a �, it
also meets the requirement needed for all Cd, therefore, since
the slope log 1

�d ¼ ÿ log�ÿ log d and the slope of logðCÞ-logð 1
�dÞ

does not change with �, the fractal dimension estimate will
not change, thus this procedure is unnecessary. Moreover, by
using the Ave-Ave statistic for measuring the variation of the
SVs of the clustering elements, one obtains an implicit
smoothing function that overcomes misfit clusters that could
adversely affect the fractal dimension measurement. We
show in the next section, that the measurement of this statistic
of the covering element sizes (although not strictly in the
spirit of Hausdorff-Besicovitch) provides a tractable, reliable
method for approximating fractal dimension on many types
of data sets. We concede that a method for clustering while
maintaining strict size conformity of the clusters would give a
better upper bound for the box dimension, however, to date
the authors have not found a method to do this in general.
Even with this concession, this method finds a strong ally in
the variation method discussed earlier, in that both methods
conceptually measure the variation within the covering
elements to estimate the fractal dimension.

3 RESULTS

In the previous section, we introduced a new near-optimal
cover for estimating the box dimension. This new
MCV suboptimal cover will be shown to improve the
estimation of the box dimension over the traditional box
counting algorithm. However, what we gain in accuracy, one
might think we give up in computation requirements. The
results shown next quite clearly demonstrate that our new
method makes a much better upper-bound estimate of the
theoretical fractal dimension. Moreover, these computations
are the basis for another method of calculating lacunarity [7],
so they might not be so unreasonable when one is using both
fractal dimension and lacunarity to more fully describe the

textural qualities of a data set. With this in mind, the
computation-conscious reader should note that these algo-
rithms were run on a dual Intel Pentium III 450 Mhz platform
running Redhat 7.0 Linux using the CILK-5 [22], [23] compiler
out of Massachusetts Institute of Technology to provide
parallel thread management. On this platform, a typical
10,000 point image file took about 24 hours to complete. So,
the method discussed here is orders of magnitude more
computationally complex than the traditional box counting
algorithm. The same image file on the same platform, our own
highly computationally efficient box counting algorithm, also
written in CILK, took less then a minute. Even with this stark
difference in computation time, the accuracy achieved using
this new algorithm is well worth the computational costs
given the appropriate offline application (remember one can
also obtain lacunarity at the same time [7]). If speed is an issue,
one can use the FCM clustering algorithm to obtain the
desired cover and still achieve a high level of accuracy.

To show the accuracy of these new methods, we use a

standard set of Brownian random fractal texture images

produced using Musgrave’s texture generation program [15].

These images have theoretical fractal dimensions ranging

from 2.1 to 2.9 (an example is shown in Fig. 2). This texture

generation program also controls the theoretical lacunarity of

the images. As mentioned earlier, by changing the lacunarity

of a texture, one can further vary its appearance while

maintaining the fractal dimension. We provide fractal

dimension estimations for a number of lacunarities ranging

from 2 to 10 in the texture generation algorithm. In this paper,

we refer to the word virtual as a method of creating and

evaluating three-dimensional Brownian random textures

generated by the texture generation algorithm in their

nonscaled floating point form. With the use of these virtual

images, instead of gray-scale images such as shown in Fig. 2, it

is hoped that any effects that might change the theoretical

fractal dimension in the scaling and discretizing process used

to create the gray-scale image will be minimized. In addition

to the three-dimensional texture surfaces, one-dimensional

cantor sets are also used to test the algorithms. These were

chosen because the cantor set has a well-understood and

easily calculated theoretical fractal similarity dimension, i.e.,

the cantor set’s fractal dimension is defined as the logarithm

of the number of segments kept at each iteration, divided by

the logarithm of the number of subdivisions made at each

iteration as the set is created. For example, the 1
3 cantor set has

a fractal dimension of logð2Þ
logð3Þ . Tables 1, 2, and 3 show the results

for each of the methods that have been discussed thus far.
Notice that the results of the new algorithm fall within a six

percent band of the theoretical fractal dimension for all the
textures processed. In comparison, the box algorithm’s
accuracy decreases greatly as the fractal dimension increases.
In fact, even to get in the ballpark of the theoretical fractal
dimension as it approaches 3, the box counting algorithm
requires an additional scaling factor not included within the
theoretical derivation of the algorithm. The box counting
algorithm appears to vary greatly with changes in lacunarity.
(Note: the wavelet algorithm also requires scaling to provide
numerically accurate results.) It is true that a difference of
fractal dimension on the order of 0.1 is difficult to distinguish
either visually or via algorithm; however, this should be

TOLLE ET AL.: SUBOPTIMAL MINIMUM CLUSTER VOLUME COVER-BASED METHOD FOR MEASURING FRACTAL DIMENSION 37

expected given their closeness in roughness. Note: we
acknowledge that results of greater than 3.0 on a set with
topological dimension of 3 is impossible; however, the result
is within the typical percentage error and is thus accepted as a
reasonable result of the method.

For completeness, results of the fractal dimension calcula-
tion on clusters found using only the FCM algorithm are
included for some of the data. The FCM accuracy is
somewhat degraded compared to MCV. In some instances,
the results fall outside the six percent bin; however, because
the FCM algorithm does not require inverting covariance
matrices, FCM takes less than one hour to process for the
same data sets.

In the case of the much simpler cantor dust sets, both
algorithms appear to closely reproduce the theoretical
fractal dimensions. Based only on the heuristic results
within this study, one might expect that as the number of
dimensions within the data set increases, the accuracy gap
will also widen. Of course, we only present the results for
simple Brownian random fractal textures; however, within
the real world of target detection one is interested in much
higher dimensional fused multispectral images where this
widening gap might become a large stumbling block for the
use of traditional fractal dimension estimators as a quality
cue feature. This is something that the reader should

consider when choosing a method of calculating fractal
dimension within high-dimensional data sets.

4 CONCLUSIONS AND FUTURE DIRECTIONS

By re-examining the box dimension definition, a mathema-
tical dual problem for its estimation based on the box counting
algorithm was presented. This dual problem assumes the
number of covering elements (hyperballs) is known and one
only need to find the optimal placement and size of the
covering elements. This problem can be restated as the MCV
clustering problem. We have chosen to modify the FCM
clustering algorithm in order to obtain a better set of starting
conditions for use with the MCV algorithm. The MCV
algorithm is then used to obtain the near-optimal cover
needed to estimate the box dimension. Several methods for
estimating the covering elements’ ball sizes have been
developed for clustering-based algorithms such as FCM and
MCV, with the Ave-Ave method appearing to be the most
robust for general types of data. Most importantly, the
estimates made using the new MCV suboptimal fractal
dimension estimation algorithm presented here are signifi-
cantly more accurate than those of the traditional box
counting algorithm and the wavelet algorithm. This method
also provides a tractable solution for data sets, which do not
have a analytical solution using traditional methods like

38 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

TABLE 2
Estimated Fractal Dimensions for the Virtual Brownian Fractal Textures with Common Lacunarity

TABLE 3
Estimated Fractal Dimensions for the Virtual Brownian Textures with same Fractal Dimension and Varying Lacunarity

TABLE 1
Estimated Fractal Dimensions for Simple Cantor Dust Sets

Hausdorff-Besicovitch or Bouligand-Minkowski. Also, the
numerical accuracy of this new algorithm gives us confidence
to proceed into higher dimensional data sets, where an image
such as the Brownian textures is not a readily available for
scaling calibration. Although work continues to significantly
improve the computational speed of this new estimation
algorithm, it shares its computational load almost completely
with another important textural cue feature lacunarity [7].
This fact helps “pay” for the computational tradeoff and
should be considered for the appropriate offline classification
projects or real-time classification given powerful dedicated
hardware.

APPENDIX A

FINDING AN INITIAL SUBOPTIMAL COVER:

A MODIFIED FUZZY-C MEANS PICARD ITERATION

The Fuzzy-C Means (FCM) algorithm solves the following
problem:

JFCM ¼ min
uik;vi

XC
i¼1

XN
k¼1

u2
ikkxk ÿ vik2; ð15Þ

with constraints: uik 2 0; 1½ �,
PC

i¼1 uik ¼ 1 8k ¼ 1; 2; . . . ; N ;
and where C is the number of clusters, N is the number data
vectors fxkg being clustered, uik is the membership value of
the kth data vector in the ith cluster, and vi is center (mean)
vector of the ith cluster. The k � k is the Euclidean norm
operator. It has been shown [19] that this problem can be
solved using the Picard iteration [20], also known as the
method of successive approximations [21], as follows:

1. Choose the number of clusters, C. Select a maximum
change of membership between iterations, � > 0 and
a maximum number of iterations, Im >> C, as
ending conditions. Initialize an iteration counter to
zero, I ¼ 0. Finally, randomly initialize the centers of
the clusters, vi.

2. Solve for the memberships of each vector:

uik ¼ 1PC
j¼1

kxkÿvik
kxkÿvjk

h i2

where k ¼ 1; 2; . . . ; N
i ¼ 1; 2; . . . ; C:

ð16Þ

3. Solve for the centers for each cluster:

vi ¼
PN

k¼1
uik

2xkPN

j¼1
uij2

where i ¼ 1; 2; . . . ; C:
ð17Þ

4. Repeat Step 2.
5. Repeat Step 3.
6. If �uik > � & I < IM , then increment I, and loop

back to Step 4. Otherwise, stop.

Within our FCM clustering solution, we use this basic
iteration with a slight variation so that the Picard iteration
does not become as easily trapped in a poor local minimum
caused by ramified data sets like the cantor set. We achieve
this goal by eliminating a cluster center if the sum of the

squares of its membership values,Ui ¼
PN

k¼1 uik
2, is less than

a defined fraction, �U , of the average, Ui assigned to all the
clusters. Next, to keep the number of clusters constant, the
removed center is reinitialized with an arbitrary small
distance from the center with the largest Ui. In effect, this
modification attempts to prevent one cluster from containing
a grossly disproportionate number of associated data points
compared to the rest of the clusters. This modified
FCM algorithm then proceeds as normal. However, there
are some dangers using this method. Mainly, if one allows
this elimination and reinitialization procedure to occur on
every iteration, FCM does not have a chance to work before a
cluster is divided. In an attempt to eliminate such cycles, we
have empirically arrived at the following rules: the elimina-
tion/reinitialization procedure is executed only every 10th
iteration and elimination/reinitializations are only allowed C
times during the execution of the algorithm, giving each
center an opportunity to be eliminated. Therefore, the
following changes were made to the six steps listed above:
initialization of a variable called E ¼ 0 was added to Step 1,
and Step 3 was replaced with

If ðI mod 10 ¼ 0Þ & ðE � CÞ, then

If mini Ui < �U
PC

k¼1 Uk, then vi ¼ vj þ �, where j achieves
the maximum Ui and � is a small but numerically significant
randomly generated number to be added to each compo-
nent of vj to reinitialize the eliminated center near the
largest cluster (effectively dividing the jth cluster once the
membership values and centers are recalculated in the next
iteration). Increment E and proceed to Step 2.

Continuing on with the solution for the new centers of
each cluster

vi ¼
PN

k¼1 uik
2xkPN

j¼1 uij
2
; ð18Þ

where

i ¼ 1; 2; . . . ; C: ð19Þ

Although all the data in this paper were processed using

the above algorithm, a more efficient algorithm would detect

limit cycles when the same centers are eliminated and

reinitialized continuously. This suggests that continuing the

process does not improve the clustering solution. Also,

dividing the centers every 10th center appears to be excessive

for small numbers of clusters. A rule of thumb: let the number

of iterations between reinitializations be
ffiffiffi
N
C

q
, where N is the

number of points in the data set andC is the number of centers.

This allows more iterations between divisions for the

algorithm to stabilize if N is large and increases the division

rate when C is large.

APPENDIX B

FINDING THE DESIRED SUBOPTIMAL COVER:

MINIMUM CLUSTER VOLUME PICARD ITERATION

For completeness, we summarize the MCV algorithm by
Krishnapuram and Kim [18] here.

Due to the complexity of the MCV cost surface, numerous
local minima exist. To overcome this limitation, we have

TOLLE ET AL.: SUBOPTIMAL MINIMUM CLUSTER VOLUME COVER-BASED METHOD FOR MEASURING FRACTAL DIMENSION 39

chosen to initialize the MCV center locations using our
modified FCM algorithm, instead of the more traditional
method of randomly selecting initial centers, see Appendix A.
As with the FCM algorithm, the MCV algorithm is imple-
mented through Picard-style iteration. Likewise, the centers
are calculated using fuzzy membership values similar to the
FCM algorithm. However, the membership values are
determined through a more complex computation that is
based on the Mahalanobis distance, Mdji, which defines the
distance between the center of a cluster, vj, and a data point of
interest, xi, as:

Mdji ¼ ðxi ÿ vjÞTCÿ1
fj ðxi ÿ vjÞ: ð20Þ

The complexity of the update process used within the
MCV iteration is due to its hybrid nature. Basically, the
MCV algorithm is a hybrid of a fuzzy and hard clustering
algorithm. The first case is a simple fuzzy membership update
calculation, while the second case is a hard membership
update calculation. The membership update calculation is
chosen based on the value of the Mahalanobis distance,Mdji.
The fuzzy update process (Mdji > L8i) is performed using
the following calculation:

usj ¼
Dsj

ÿ �1=ð1ÿmÞPC
r¼1 Drj

ÿ �1=ð1ÿmÞ ; ð21Þ

where

Dsj ¼
jCfsj1=2ðMdsj ÿ LÞPN

j¼1 u
m
sj

: ð22Þ

For the hard clustering update (i ¼ ðkjminl¼1;...;CðMdjlÞ
¼MdjkÞ and Mdjk < L), the membership values are calcu-
lated as follows:ukj ¼ 1 fork such thatMdkj is the minimum of
Mdsj for all centers, s ¼ 1; 2; . . . ; C; and all other membership
values usj ¼ 0 for s 6¼ j. Please note that adding the hard
clustering procedure allows points close to the center to
achieve a full membership within that cluster which increases
their effect on the cluster’s volume. This full membership and
localization of each cluster’s volume is the difference in the
covers obtained using the FCM and MCV algorithms. With
these two update procedures in hand, we proceed as in the
FCM case with a Picard style iteration, alternating between
calculating membership values and center locations until the
maximum change in membership values is less than a defined
value �.

1. Select � > 0 (this is the ending condition). Finally,
initialize the centers, vi, to the results of FCM.

2. Calculate Cÿ1
fi and jCfij for each cluster i ¼ 1; . . . ; C:

Cfi ¼
PN

j¼1 u
m
ij ðxj ÿ viÞðxj ÿ viÞTPN

j¼1 u
m
ij

: ð23Þ

Use LU decomposition or your own favorite algo-
rithm for inverting and finding the determinant ofCfi.

3. Determine the new membership values, uij. For each
data point, xj, find the Mdji for all centers, vi and
determine if any Mdji < L for any center. If any
Mdji < L, find the index k such that Mdjk is the
minimum of Mdji over i ¼ 1; . . . ; C:

uij ¼

Dsjð Þ1=ð1ÿmÞPC
r¼1

Drjð Þ1=ð1ÿmÞ
Mdji � L; 8i ¼ 1; . . . ; C

1 i ¼ ðkjminl¼1;...;C
ðMdjlÞ ¼MdjkÞ and
Mdjk < L

0 i 6¼ k and Mdji < L
for any i ¼ 1; . . . ; C:

8>>>>>>>><>>>>>>>>:
ð24Þ

4. Update the location of the centers, vi:

vi ¼
PN

j¼1 u
m
ijxjPN

j¼1 u
m
ij

: ð25Þ

5. Repeat Steps 2 and 3 and find the change in
membership values, �uik.

6. If �uik > �, then loop back to step 4. Otherwise, stop.

APPENDIX C

NOMENCLATURE

. i; j; k; l; and s: used as counting indices throughout

. A: image or signal to be analyzed

. DhðAÞ: Hausdorff-Besicovitch (HB) dimension
definition

. DbðAÞ: box dimension definition

. xi: a component of a vector x

. xi: vector for the Ith data point

. vk: vector describing the center of the kth cluster

. uik: membership value for the kth point in the
ith cluster

. Ni: number of hard clustered points within the
ith cluster

. N : number of data points with the image of interestA

. hS : s-dimensional Hausdroff measure

. L: dimension of the image of signal to be analyzed (A)

. M̂Mi: scatter matrix for the ith cluster

. Qi: matrix of singular values

. �il : lth singular value of Qi

. Wi: directional unitary matrix on the left within the
singular value decomposition

. wil : lth column vector of Wi

. Gi: directional unitary matrix on the right within the
singular value decomposition

. gil : lth row vector of Gi

. C; Cd: number of covering elements for a given size,
d, of covering element

. d: size of a covering element

. deðx; yÞ: Euclidean distance function between x and y

. diamðCÞ: diameter of the covering element C

. Ci: cover of the ith cluster

. hSðAÞ: Hausdroff measure of A

. Jfv: cost function for the MCV problem

. JFCM : cost function for the FCM problem

. m: fuzzifying exponent for MCV

. �: maximum change in membership allowed for
conversion of the clustering methods

. E: number of elimination/reinitializations that have
occurred during FCM clustering

. I: iteration through the Picard iteration

40 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

. Mdji: Mahalanobis distance

. Dsj: used in the calculation of the MCV Picard
iteration—not related to DhðAÞ

. Cfi: cover of the ith cluster in the MCV

ACKNOWLEDGMENTS

This work was supported by the Tank-Automotive Re-
search, Development, Engineering and Center (TARDEC)
part of the Tank-Automotive and Armanent Command
(TACOM) within the US Department of the Army and by
the US Department of Energy, Office of Science, Office of
Basic Energy Sciences, under DOE Idaho Operations Office
Contract DE-AC07-99ID13727.

REFERENCES

[1] C.R. Tolle and D. Gorsich, “Sub-Optimal Covers for Measuring
Fractal Dimension,” Proc. Rocky Mountain NASA Space G.
Consortium Conf., 1996.

[2] D. Gorsich, C.R. Tolle, R. Karlsen, and G. Gerhart, “Wavelet and
Fractal Analysis of Ground Vehicle Signatures,” Proc. Seventh Ann.
Ground Vehicle Survivability Symp., Mar. 1996.

[3] D. Gorsich, C.R. Tolle, R. Karlsen, and G. Gerhart, “Wavelet and
Fractal Analysis of Ground Vehicle Images,” Proc. SPIE Symp.,
Aug. 1996.

[4] L.F. Jardine, “Fractal-Based Analysis and Synthesis of Multi-
spectral Visual Texture for Camouflage,” Applications of Fractals
and Choas, pp. 101-116, New York: Springer-Verlag, 1993.

[5] D.E. Kreithen, S.D. Halversen, and G.J. Owirka, “Discriminating
Targets from Clutter,” MIT Lincoln Laboratory J., vol. 6, no. 1,
Spring, pp. 25-52, 1993.

[6] B.B. Mandelbrot, The Fractal Geometry of Nature: Updated and
Augmented. New York: W.H. Freeman and Company, 1983.

[7] C.R. Tolle, T.R. McJunkin, D.T. Rohrbaugh, and R.A. LaViolette,
“Optimal Cover-Based Definitions of Lacunarity for Ramified
Data Sets,” Physica D, submitted for publication Dec. 2000.

[8] B. Dubuc and S. Dubuc, “Error Bounds on the Estimation of
Fractal Dimension,” Siam J. Numerical Analysis, vol. 33, no. 2,
pp. 602-626, Apr. 1996.

[9] B. Dubuc, “Evaluating the Fractal Dimension of Profiles,” Physics
Rev. A, vol. 39, no. 3, pp. 1500-1512, 1989.

[10] X.C. Jin, S.H. Ong, and Jayasooriah, “A Practical Method for
Estimating Fractal Dimension,” Pattern Recognition Letters, vol. 16,
no. 5, pp. 457-464, May 1995.

[11] R.M. Summers, L.M. Pusanik, J.D. Malley, and J.M. Hoeg, “Fractal
Analysis of Virtual Endoscopy Reconstructions,” Proc. SPIE Medical
Imaging: Physiology and Function from Multidemensional Images, C.-T.
Chen and A.V. Clough, eds., vol. 3660, pp. 258-269, 1999.

[12] X. Jeng, L. Koehl, and C. Vasseur, “Design and Implementation of
an Estimator of Fractal Dimension Using Fuzzy Techniques,”
Pattern Recognition, vol. 34, no. 1, pp. 151-169, Jan. 2001.

[13] K. Forotan-pour, P. Dutilleul, and D.L. Smith, “Advances in the
Implementation of the Box-Counting Method of Fractal Dimen-
sion Estimation,” Applied Math. and Computation, vol. 105, nos. 2-3,
pp. 195-210, Nov. 1999.

[14] S.G. Mallat, “A Theory for Multiresolution Signal Decomposition:
The Wavelet Representation,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. II, no. 7, pp. 674-693, July 1989.

[15] Texturing and Modeling: A Procedural Approach. D.S. Ebert, ed.,
pp. 256-260, Cambridge, Mass.: Academic Press Professional, 1994.

[16] H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New
Frontiers of Science. New York: Springer-Verlag, 1992.

[17] J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West, Fractal
Physiology. New York: Am. Physiological Soc., 1994.

[18] R. Krishnapuram and J. Kim, “Clustering Algorithms on Volume
Criteria,” IEEE Trans. Fuzzy Systems, vol. 8, no. 2, pp. 228-236, Apr.
2000.

[19] R.L. Cannon, J.V. Dave, and J.C. Bezdek, “Efficient Implementa-
tion of Fuzzy C-Means Clustering Algorithms,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 2, pp. 248-
255, 1986.

[20] P.V. O’Neil, Advanced Engineering Mathematics, pp. 57-61. Belmont,
Calif.: Wadsworth Publishing, 1987.

[21] P. Hartman, Ordinary Differential Equations. New York: John Wiley
& Sons, 1964.

[22] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” J. Parallel and Distributed Computing, vol. 37, no. 1, pp. 55-
69, Aug. 1996.

[23] M. Frigo, K.H. Randall, and C.E. Leiserson, “The Implementation
of the Cilk-5 Multithreaded Language,” Proc. ACM SIGPLAN ’98
Conf. Programming Language Design and Implementation (PLDI),
June 1998.

Charles R. Tolle received the BS degree in
electrical engineering from the University of Utah
in 1990, the MS degree from Arizona State
University in 1994, and the PhD degree from
Utah State University in 1998. He became an
Arizona State University Industrial fellow for
Honeywell Commercial Flight Systems Group
(CFSG) in June of 1990 and a Rocky Mountain
NASA Space Grant fellow in 1992. His research
interests have included reactor off gas, biome-

dical control systems, aircraft guidance, target detection, human vision,
fractals, signal motivation, and chaos theory. His research has been
supported by General Electric, Hamilton Ventilators, Honeywell CFGS,
Rocky Mountain NASA Space Grant Consortium, Tank Automotive
Research Development Engineering Center (TARDEC) part of Tank-
Automotive and Armaments Command (TACOM)-US Department of
Army, Basic Energy Sciences-US Department of Energy, and Office of
Industrial Technology-US Department of Energy. Dr. Tolle joined the
Idaho National Engineering and Environmental Laboratory (INEEL) in
1997. His current research focuses on control systems for biological,
welding, and high temperature processes, as well as complex/chaotic
system modelling and signal motivation. Dr. Tolle is the president of the
Rocky Mountain NASA Space Grant Consortium Fellows Association,
as well as a trustee of the Rocky Mountain NASA Space Grant
Consortium. He has authored/coauthored numerous papers in gui-
dance, control, fractal analysis, and chaos theory. In addition, Dr. Tolle
has two patents pending. He is a senior member of the IEEE, member of
the IEEE Controls Society, and a member of the American Welding
Society.

Timothy R. McJunkin received the BS and MS
degrees in electrical engineering from Utah
State University in 1992 and 1995. He was
awarded a Rocky Mountain NASA Space Grant
Fellowship in 1993. He was a design engineer
for Compaq Computer Corporation Industry
Standard Server Group from 1994 to 1999. Mr.
McJunkin joined the Idaho National Engineering
and Environmental Laboratory in 1999. His
research interests are in nondestructive evalua-

tion of materials, fuzzy logic, control systems, autonomous mobile
vehicles, and (most recently) fractal texture characterization. He is a
member of IEEE Control Systems Society, IEEE System, Man, and
Cybernetics Society, IEEE Robotics and Automation Society, and IEEE
Computer Society.

David J. Gorsich received the BSEE degree
from Lawrence Technological University, South-
field, Michigan in 1990, the MS degree in applied
mathematics, from Geroge Washington Univer-
sity in 1994, and the PhD mathematics from the
Massachusetts Institute of Technology, Cam-
bridge, in 2000. He is a senior research scientist,
US Army Tank-Automotive and Armaments
Command. Dr. Gorsich is currently a team
leader for Vehicle Intelligence and Safety,

director of TARDEC Robotics Laboratory, and director of the Automotive
Research Center (ARC). His current research interests are approxima-
tion and spatial statistics, robotics, and vehicle intelligence.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

TOLLE ET AL.: SUBOPTIMAL MINIMUM CLUSTER VOLUME COVER-BASED METHOD FOR MEASURING FRACTAL DIMENSION 41

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

