Published November 30, 2020 | Version v1
Journal article Open

Seasonality and Longevity of the Functional Chloroplasts Retained by the Sacoglossan Sea Slug Plakobranchus ocellatus van Hasselt, 1824 Inhabiting A Subtropical Back Reef Off Okinawa-jima Island, Japan

Description

Chihara, Shu, Nakamura, Takashi, Hirose, Euichi (2020): Seasonality and Longevity of the Functional Chloroplasts Retained by the Sacoglossan Sea Slug Plakobranchus ocellatus van Hasselt, 1824 Inhabiting A Subtropical Back Reef Off Okinawa-jima Island, Japan. Zoological Studies 59 (65): 1-19, DOI: 10.6620/ZS.2020.59-65, URL: http://dx.doi.org/10.5281/zenodo.12823367

Files

source.pdf

Files (1.6 MB)

Name Size Download all
md5:353ec0e8e1938e0c541731bae29b531e
1.6 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:353EFFE8FF938E0C5417FFBAFF9B531E

References

  • Adachi A. 1991. Morphological study on sacoglossan opisthobranch Plakobranchus spp. Dissertation (Master of Science), University of Ryukyus. (in Japanese)
  • Akimoto A, Hirano YM, Sakai A, Yusa Y. 2014. Relative importance and interactive effects of photosynthesis and food in two solar-powered sea slugs. Mar Biol 161:1095-1102. doi:10.1007/ s00227-014-2402-1.
  • Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME. 2013. Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol 30:1843-1852. doi:10.1093/molbev/mst084.
  • Brandley BK. 1984. Aspects of the ecology and physiology of Elysia cf. furvacauda (Mollusca: Sacoglossa). Bull Mar Sci 34:207- 219.
  • Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, Shibata T, Feng M, Maeda T, Schwartz JA, Shigenobu S, Lundholm N, Nishiyama T, Yang H, Hasebe M, Li S, Pierce SK, Wang J. 2019. Data descriptor: A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci Data 6:1-13. doi:10.1038/ sdata.2019.22.
  • Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. 2019. The photon menace: Kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol 222:3-6. doi:10.1242/ jeb.202580.
  • Cartaxana P, Morelli L, Quintaneiro C, Calado G, Calado R, Cruz S. 2018. Kleptoplasts photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis. J Exp Biol 221:1-23. doi:10.1242/jeb.180463.
  • Cartaxana P, Trampe E, Kuhl M, Cruz S. 2017. Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci Rep 7:7714. doi:10.1038/s41598-017-08002-0.
  • Chan CX, Vaysberg P, Price DC, Pelletreau KN, Rumpho ME, Bhattacharya D. 2018. Active host response to algal symbionts in the sea slug Elysia chlorotica. Mol Biol Evol 35:1706-1711. doi:10.1093/molbev/msy061.
  • Christa G, Handeler K, Kuck P, Vleugels M, Franken J, Karmeinski D, Wagele H. 2015. Phylogenetic evidence for multiple independent origins of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda). Org Divers Evol 15:23-36. doi:10.1007/s13127- 014-0189-z.
  • Christa G, Putz L, Sickinger C, Melo Clavijo J, Laetz EMJ, Greve C, Serodio J. 2018. Photoprotective non-photochemical quenching does not prevent kleptoplasts from net photoinactivation. Front Ecol Evol 6:1-11. doi:10.3389/fevo.2018.00121.
  • Christa G, Wescott L, Schaberle TF, Konig GM, Wagele H. 2013. What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding. Planta 237:559-72. doi:10.1007/s00425-012-1788-6.
  • Christa G, Zimorski V, Woehle C, Tielens AG, Wagele H, Martin WF, Gould SB. 2014. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc R Soc B Biol Sci 281:20132493. doi:10.1098/rspb.2013.2493.
  • Clark KB, Jensen KR, Stirts HM. 1990. Survey for functional kleptoplasty among West Atlantic Ascoglossa (Sacoglossa) (Mollusca: Opisthobranchia). Veliger 33:339-345.
  • Demmig B, Bjorkman O. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171-184. doi:10.1007/BF00391092.
  • de Vries J, Christa G, Gould SB. 2014. Plastid survival in the cytosol of animal cells. Trends Plant Sci 19:347-350. doi:10.1016/ j.tplants.2014.03.010.
  • Donohoo SA, Wade RM, Sherwood AR. 2020. Finding the sweet spot: Sub-ambient light increases fitness and kleptoplast survival in the sea slug Plakobranchus cf. ianthobaptus Gould, 1852. Biol Bull 238:154-166. doi:10.1086/709371.
  • Evertsen J, Burghardt I, Wagele GJH. 2007. Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean. Mar Biol 151:2159-2166. doi:10.1007/s00227- 007-0648-6.
  • Gimenez Casalduero F, Muniain C. 2008. The role of kleptoplasts in the survival rates of Elysia timida (Risso, 1818): (Sacoglossa: Opisthobranchia) during periods of food shortage. J Exp Mar Bio Ecol 357:181-187. doi:10.1016/j.jembe.2008.01.020.
  • Handeler K, Grzymbowski YP, Krug PJ, Wagele H. 2009. Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life. Front Zool 6:28. doi:10.1186/1742-9994-6-28.
  • Hayashi E, Suzuki A, Nakamura T, Iwase A, Ishimura T, Iguchi A, Sakai K, Okai T, Inoue M, Araoka D, Murayama S, Kawahata H. 2013. Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment. Earth Planet Sci Lett 362:198-206. doi:10.1016/j.epsl.2012.11.046.
  • Hirose E. 2005. Digestive system of the sacoglossan Plakobranchus ocellatus (Gastropoda: Opisthobranchia): light- and electronmicroscopic observations with remarks on chloroplast retention. Zool Sci 22:905-916. doi:10.2108/zsj.22.905.
  • Jensen KR. 1980. A review of sacoglossan diets, with comparative notes on radular and buccal anatomy. Malacol Rev 13:55-77.
  • Krug PJ, Vendetti JE, Rodriguez AK, Retana JN, Hirano YM, Trowbridge CD. 2013. Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Mol Phylogenet Evol 69:1101-1119. doi:10.1016/j.ympev.2013.07.009.
  • Laetz EMJ, Wagele H. 2018. How does temperature affect functional kleptoplasty? Comparing populations of the solar-powered sisterspecies Elysia timida Risso, 1818 and Elysia cornigera Nuttall, 1989 (Gastropoda: Sacoglossa). Front Zool 15:17. doi:10.1186/ s12983-018-0264-y.
  • Maeda T, Hirose E, Chikaraishi Y, Kawato M, Takishita K, Yoshida T, Verbruggen H, Tanaka J, Shimamura S, Takaki Y, Tsuchiya M, Iwai K, Maruyama T. 2012. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7:e42024. doi:10.1371/journal.pone.0042024.
  • Marin A, Ros JD. 1992. Dynamics of a peculiar plant-herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Mar Biol 112:677- 682. doi:10.1007/BF00346186.
  • Meyers-Munoz MA, van der Velde G, van der Meij SET, Stoffels BEMW, van Alen T, Tuti Y, Hoeksema BW. 2016. The phylogenetic position of a new species of Plakobranchus from West Papua, Indonesia (Mollusca, Opisthobranchia, Sacoglossa). Zookeys 594:73-98. doi:10.3897/zookeys.594.5954.
  • Middlebrooks ML, Curtis NE, Pierce SK. 2019. Algal sources of sequestered chloroplasts in the sacoglossan sea slug Elysia crispata vary by location and ecotype. Biol Bull 236:88-96. doi:10.1086/701732.
  • Mujer CV, Andrews DL, Manhart JR, Pierce SK, Rumpho ME. 1996. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Proc Natl Acad Sci USA 93:12333-12338. doi:10.1073/pnas.93.22.12333.
  • Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. doi:10.1093/jxb/ert208.
  • Muscatine L, Pool RR, Trench RK. 1975. Symbiosis of algae and invertebrates: Aspects of the symbiont surface and the hostsymbiont interface. Trans Amer Microsc Soc 94:450-469. doi:10.2307/3225518.
  • Pelletreau KN, Bhattacharya D, Price DC, Worful JM, Moustafa A, Rumpho ME. 2011. Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Physiol 155:1561-1565. doi:10.1104/pp.111.174078.
  • Pierce SK, Curtis NE, Middlebrooks ML. 2015. Sacoglossan sea slugs make routine use of photosynthesis by a variety of speciesspecific adaptations. Invertebr Biol 134:103-115. doi:10.1111/ ivb.12082.
  • R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • Rauch C, de Vries J, Rommel S, Rose LE, Woehle C, Christa G, Laetz EM, Wagele H, Tielens AGM, Nickelsen J, Schumann T, Jahns P, Gould SB. 2015. Why it is time to look beyond algal genes in photosynthetic slugs. Genome Biol Evol 7:2602-2607. doi:10.1093/gbe/evv173.
  • Rauch C, Jahns P, Tielens AGM, Gould SB, Martin WF. 2017. On being the right size as an animal with plastids. Front Plant Sci 8:1-8. doi:10.3389/fpls.2017.01402.
  • Rauch C, Tielens AGM, Serodio J, Gould SB, Christa G. 2018. The ability to incorporate functional plastids by the sea slug Elysia viridis is governed by its food source. Mar Biol 165:1-13. doi:10.1007/s00227-018-3329-8.
  • Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR. 2008. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA 105:17867-17871. doi:10.1073/pnas.0804968105.
  • Tanamura D, Hirose E. 2016a. Population dynamics of the sea slug Plakobranchus ocellatus (Opisthobranch: Sacoglossa: Elysioidea) on a subtropical coral reef off Okinawa-jima Island, Ryukyu Archipelago, Japan. Zool Stud 55:42. doi:10.6620/ ZS.2016.55-43.
  • Tanamura D, Hirose E. 2016b. Seasonal fluctuation of opisthobranchs in the shallow reef lagoon at Zanpa (Okinawajima Island, Ryukyu Archipelago, Japan). Biol Mag Okinawa 54:17-25. (in Japanese)
  • Tanamura D, Hirose E. 2017. Seasonal occurrence of gastropterids (Gastropoda: Cephalaspidea) and their habitat selection in a subtropical back-reef on Okinawajima Island (Ryukyu Archipelago, Japan). Zool Stud 56:34. doi:10.6620/ZS.2017.56- 34.
  • Trowbridge CD, Hirano YM, Hirano YJ. 2011. Inventory of Japanese sacoglossan opisthobranchs: Historical review, current records, and unresolved issues. Am Malacol Bull 29:1-22. doi:10.4003/006.029.0201.
  • Wade RM, Sherwood AR. 2017. Molecular determination of kleptoplast origins from the sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) reveals cryptic bryopsidalean (Chlorophyta) diversity in the Hawaiian Islands. J Phycol 53:467-475. doi:10.1111/jpy.12503.
  • Wade RM, Sherwood AR. 2018. Updating Plakobranchus cf. ianthobapsus (Gastropoda, Sacoglossa) host use: Diverse algalanimal interactions revealed by NGS with implications for invasive species management. Mol Phylogenet Evol 128:172- 181. doi:10.1016/j.ympev.2018.07.010.
  • Wagele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G, Pinzger B, Gould SB, Dagan T, Klussmann-Kolb A, Martin W. 2011. Transcriptomic Evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol 28:699-706. doi:10.1093/molbev/ msq239.
  • Williams SI, Walker DI . 1999. Mesoherbivore-macroalgal interactions: Feeding ecology of sacoglossan sea slugs (Mollusca, Opisthobranchia) and their effects on their food algae. Ocean Mar Biol Annu Rev 37:87-128.
  • Yamamoto S, Hirano YM, Hirano YJ, Trowbridge CD, Akimoto A, Sakai A, Yusa Y. 2013. Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs. J Mar Biol Assoc United Kingdom 93:209-215. doi:10.1017/S0025315412000628.