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Abstract—The fast-paced growth of 5G networks, along
with the emergence of 6G technology, has emphasized the
crucial importance of strong security measures to safeguard
communication infrastructures. A key security issue in 5G
data networks is Distributed Denial-of-Service (DDoS) at-
tacks, which specifically target the GTP-based protocol which
is a significant threat. However, network telemetry data
provides a rich source of information about the nature of net-
work traffic, which can be used to detect and predict DDoS
attacks. We propose a novel framework for collecting and
processing large amounts of telemetry data in 5G networks
leveraging state-of-the-art technologies, including data-plane
programmability in P4-based User-Plane Function (UPF) and
Data Processing Unit (DPU). Furthermore, we propose an
anomaly-detection method for performing live deep learning
analysis on network traffic using a Convolutional Neural Net-
work (CNN) to detect DDoS attacks. Our results demonstrate
the effectiveness of our framework, achieving an impressive
98.6 % accuracy and 98% F1-score.

Index Terms—Network, DDoS, Detection, P4Lang, Teleme-
try, Traffic Analysis

I. INTRODUCTION

With the rapid growth and deployment of telecommu-
nication networks, there is a pressing need to address
the escalating network security attacks [1]. DDoS attacks
are a major threat to the security of 5G networks. These
malicious attacks aim to disrupt network services by
overwhelming network resources with excessive traffic.
Developing effective defense mechanisms is crucial to
mitigate the risk of DDoS attacks and ensure accessibility
of network services [2]. The increasing prevalence and
severity of DDoS attacks pose significant challenges to
the security and stability of 5G networks [3]. These attacks
exploit the vulnerabilities of network infrastructures, caus-
ing service disruptions and financial losses for businesses
and organizations [4]. To effectively counter these threats,
developing robust and proactive defense mechanisms that
can detect and mitigate DDoS attacks in real-time is
crucial [5].

Before talking about our contributions ??, we would
like to highlight some of the interesting works that are
relevant to our research topic. Paolucci et al. [6] explored
integrating the P4 language into SDN/NFV networks to
address their complexity and heterogeneity. They explored
the Programmable Data Plane (PDP) with P4 language in
the context of 5G networks to enhance the functionality of
many networking aspects, including monitoring, security,
network slicing, and traffic engineering.

On the other hand, the authors in [7] proposed a vEPC-
vSDP framework to secure communication within virtual-
ized mobile core networks. By virtualizing Software De-
fined Perimeter (SDP) components, it is possible to estab-
lish a zero-trust environment, allowing only authenticated
and authorized network elements to access each other. The
framework demonstrated resilience against various attacks
and effectively protected core network traffic. Further-
more, the authors in [8] proposed a framework for trust-
worthy Self-Driving Networks (SelfDNs) across multiple
domains. They leverage programmable data planes, P4
language, AI, blockchain, and federated learning to enable
real-time telemetry collection and automatic translation of
policy intents into executable actions. In their work [9], the
authors extensively compared attack detection methods in
Software Defined Networks (SDN), employing a Mininet
test bed to simulate real-world SDN environments. They
evaluated various Artificial Intelligence techniques for
detecting common attacks on transport and application
layers, utilizing an architecture comprising an OpenFlow-
based flow collector, an ONOS SDN controller, and pre-
processing/detection modules. However, their approach
involved extracting a limited set of features from flow
data, which may restrict the capacity of analysis and
detection abilities. Finally, the DDoS Attack Detection
(DAD) described in our previous paper [10] focused on
leveraging the capabilities offered by the programmable
data plane to build a comprehensive framework for DAD
in various cases. This work is also particularly interesting
to our research topic due to its use of PDP with the P4
language for collecting and mitigating DDoS attacks. In
this paper, we aim to improve the data collection process
by introducing preprocessing of telemetry data and using
a CNN for the flow analysis. In this paper, we extend our
prior work [10] on DDoS attack detection frameworks,
particularly in the context of 5G networks, leading to the
development of our proposed framework named 5G DDoS
Attack Detection (5GDAD). While it is acknowledged
that prior research has explored ideas surrounding P4
telemetry data for traffic analysis, our work distinguishes
itself through several key contributions. Our framework
5GDAD offers the following contributions:

1) We propose a novel framework for predicting DDoS
attacks in 5G networks using P4 telemetry data and
CNNs.



2) We develop a CNN model specifically designed to
detect and predict DDoS attacks on 5G networks
to handle the unique characteristics of P4 telemetry
data.

3) We evaluate our framework using real-world 5G
traffic data and demonstrate its effectiveness in pre-
dicting and mitigating DDoS attacks.

The rest of this paper covers the background, methodology,
experimental setup, and analysis techniques employed for
DDoS attack detection using P4 telemetry data in 5G
networks. The findings, conclusions, and future research
directions are also presented.

II. PROPOSED ARCHITECTURE

In this section, we present the architecture of our pro-
posed framework and topology in Figure 1. The framework
is designed to leverage 5G telemetry data for predicting
DDoS attacks using a CNN approach. Our architecture for
DDoS attack detection in 5G networks integrates various
components to effectively mitigate and respond to DDoS
attacks. The detailed flow of the 5GDAD is presented
in Figure 2, while the deep learning-based DDoS attack
detection algorithmic details are outlined in Algorithm 1.

A. P4-based UPF

The framework implements the UPF within a pro-
grammable P4 switch [6], endowing the system with the
flexibility of PDP. SmartNiCs integrated into the gNodeB
enhance performance by offloading resource-intensive net-
working functions from the CPU and contribute to im-
proved monitoring capabilities.

B. Telemetry Collector

Telemetry is collected using a Two-Stage P4 telemetry
collector [11]. The first stage collects and compresses
network telemetry data to reduce bandwidth usage, while
the second stage performs rapid packet processing on a
dedicated server that runs on a Linux Operating System,
utilizing the Fastcapa framework [12]. This stage exam-
ines telemetry packets, extracts relevant information, and
efficiently stores it in InfluxDB.

C. Telemetry Dataset

The transformed telemetry dataset is used to train a
CNN-based detector, which learns to identify patterns
indicative of DDoS attacks. Once trained, the detector can
analyze telemetry flows in real-time and trigger alerts upon
detecting potential attacks.

D. Database

The framework includes a database for storing flow
information and visualization tools for presenting per-
formance metrics to human operators. Including these
components gives the framework additional functionality.

Our proposed framework incorporates programmable
switches, SmartNICs, and a two-stage telemetry collection
process, culminating in a CNN-based predictive system
for identifying DDoS attacks in a 5G network. The sys-
tem’s analytical capabilities are enhanced by an integrated
database and visualization tools, which allow for in-depth
network analysis.

III. IMPLEMENTATION OF 5GDAD

Our experimental setup comprises four physical servers,
each equipped with two Intel(R) Xeon(R) Gold 6238R
processors, 256 GB of RAM, and 100 Gbps Nvidia DPU
network interface cards. One server hosts a group of 4
Docker containers representing network hosts, including
2 malicious nodes. A second server runs two 5G UPFs
in a P4 software switch for traffic forwarding, telemetry
generation, and exportation, while a third server handles
telemetry aggregation. We conducted experiments using
Docker containers to evaluate the effectiveness of our
proposed DDoS detection system. Each container was
configured with a P4 switch, enabling us to control the
behavior of malicious nodes responsible for DDoS attacks.
The P4 switches were programmed with flow rules to
manage network traffic, leveraging existing GTP tunnels
within the simulated 5G network for communication chan-
nels between the malicious nodes and the gNodeB. Our
experiments created various attack scenarios by config-
uring the malicious nodes to generate DDoS attacks and
adjusting the intensity and duration to simulate real-world
scenarios. DDoS flooding traffic was directed toward the
gNodeB using GTP tunnels. Our DDoS detection system,
based on CNN, analyzes telemetry data from P4 switches
to identify attacks by monitoring network traffic patterns,
packet flow, rates, and other metrics. We evaluated the
performance of our DDoS detection system with another
state-of-the-art system, 5GAD2022 [13] dataset.

A. Telemetry Collection

Telemetry collection uses Nvidia Bluefield-2 DPU net-
work interface cards. DPU can access the stream of
telemetry packets generated by the network’s P4 switches
and perform unrestricted processing and modifications.
In the initial version of the system, a telemetry packet
carrying a telemetry record is generated by the p4 switch
for each observed packet. These telemetry packets can be
forwarded through the control plane by incorporating valid
network layer headers. Given the average packet size at
ESnet [14] of approximately 1512B, it is crucial to note
that generating 72B telemetry digest packets instead of
capturing and processing the entire packets significantly
reduces the data rate of the original traffic. With a packet
length of 1512 bytes (1440 payload), 100 Gbps of traffic
was generated. The telemetry packets were produced at a
rate of 8.8 million per second, corresponding to a telemetry
data rate of 8 Gbps.

B. DPDK-based telemetry packet process

The packets are initially received from the wire and
then passed to the open-source software of the Fastcapa
[12]. Fastcapa, implemented using the DPDK (Data Plane
Development Kit), facilitates reading telemetry from the
wire-speed and directing it to the appropriate Kafka topic
based on each flow. Before reaching the Kafka topics,
the packets undergo preprocessing, which may include
sampling and histogramming, to achieve fast and scalable
telemetry packet processing while maintaining packet or-
dering at 100 Gbps. For example, for 100 Gbps traffic



Fig. 1: Proposed Framework Network Topology

Fig. 2: Detailed 5GDAD Architecture for DDoS Detection

with 1512B MTU, more than 8 million telemetry packets
will be generated per second by each P4 switch. Our
telemetry processing system takes 120 ns to process each
packet. With a DPDK-based telemetry worker system,
we use up to 5 CPU cores to process telemetry packets
within a single pipeline designed to handle 100 Gbps. A
modern multi-core server with Smart Network Interface
Card (SmartNiC) can also handle telemetry packets from
multiple 100 Gbps links. The Fastcapa server provides five
types of DPDK workers on each CPU core to handle tasks
such as pulling packets, ACL control, flow handling, Kafka
topics handling, TCP connection maintenance, and CSV
file generation.

C. Dataset

The dataset for evaluating the CNN-based DDoS attack
detection system consists of 420,000 samples of normal
traffic and 520,950 samples of malicious traffic. The
dataset was collected from a 5G network testbed and
included traffic from various devices, including DataNET
hosts, GNodeBs, and UPFs. The normal traffic samples
were collected from outgoing traffic captures from all
nodes connected to the network design. The normal traffic
dataset consists of 420,000 samples of 24 hours of traffic.
The traffic was collected from four containers acting as
DataNET hosts in the 5G data center network. The traffic
captures were separated into 1, 2, 6, and 12 hours, resulting
in 20,000 samples per duration. The malicious traffic
dataset comprises 520,950 samples of 24 hours of traffic.
The traffic was generated by launching various DDoS
attacks against gNodeB with the four docker containers
acting as DataNET hosts. The normal traffic data was

collected using a telemetry collector. The malicious traffic
data was generated using tools specifically designed for
launching DDoS attacks tools [15]. The traffic captures
were stored in a CSV for easy processing and analysis.
The dataset was split into training, validation, and testing
sets. The training set was used to train the CNN-based
DDoS attack detection system. The validation set was used
to tune the hyperparameters of the system. The testing set
evaluated the system’s performance on unseen data. The
feature selection in the context of CNN-based 5G-based
DDoS detection involves various techniques [16]–[20]. We
consider the following key features source and destination
IP addresses, ports, protocol type, TTL, total length, TCP
flags, flow duration, total packets, bytes, packet length
mean, flow byte, packet rates, flow inter-arrival time mean,
Window size, flags, and retransmissions.

These features, selected through rigorous analysis, con-
tribute to accurately identifying DDoS attacks in 5G
networks and serve as the basis of our CNN model training
and evaluation.

D. CNN-based DDoS Detection Model

The architecture consists of three convolutional lay-
ers for spatial feature extraction, two pooling layers for
spatial down-sampling, and three fully connected layers
for high-level abstraction, working together to capture
intricate patterns within network traffic data. Each layer
is crucial in processing and extracting relevant features
from the input traffic data. The model experiences rigorous
hyperparameter tuning, optimizing parameters by using
learning rate, batch size, and optimizer settings using grid
search and random search techniques, to ensure superior



Algorithm 1 5GDAD: CNN-based DDoS Attack Detec-
tion Algorithm

Require: Telemetry data from UPF and other network
devices

Ensure: DDoS attack detection results
1: Capture telemetry data from UPF and other network

devices
2: Extract raw telemetry data packets from UPF and

other network devices
3: Perform initial preprocessing steps (packet dissection,

header extraction)
4: Reshape packet data into a suitable format for CNN

input, converting to a sequence of 8-bit integers
5: Further preprocess the data to enhance spatial repre-

sentation into a three-dimensional array
6: Normalize and standardize the preprocessed data to

ensure consistent input ranges (using Min-Max scaling
or Z-score normalization)

7: Padding the preprocessed data to ensure uniform sam-
ple lengths and associate flow-level labels with the
preprocessed samples

8: Return the preprocessed telemetry data with relevant
features and labels

9: Train 5GDAD CNN model using labeled telemetry
data

10: Classify telemetry data as normal or malicious based
on the 5GDAD CNN model

11: Detect anomalies in telemetry data by analyzing de-
viations from expected patterns

12: if Anomalies are detected then
13: Mitigation Process is started
14: if Anomalies exceed predefined thresholds then
15: Trigger alerts to network operator
16: else
17: Log anomalous events for further investigation
18: end if
19: else
20: No action required
21: end if

accuracy, precision, recall, and F1 score compared to
conventional approaches. Using binary cross-entropy, the
model is trained on a labeled dataset consisting of normal
and malicious traffic samples, involving iterative weight
and bias updates to minimize a chosen loss function.
Validation using a separate set ensures its generalization
capability across different network conditions.

1) Network Traffic Preprocessing: Network Traffic Pre-
processing Algorithm 2 outlines the preprocessing steps
for network traffic data. This algorithm aims to preprocess
raw network traffic data, making it suitable for further
analysis and classification by our machine learning model.
The algorithm takes as input the network traffic trace
(NTT), flow-level labels (L), a time window (t), and the
maximum number of packets per sample (n). It outputs
a list of labeled samples (E), containing preprocessed
network traffic data.

Algorithm 2 Network Traffic Preprocessing Algorithm

Require: Network traffic trace (NTT), flow-level labels
(L), time window (t), max packets per sample (n)

Ensure: List of labeled samples (E)
procedure PREPROCESSING(NTT,L, t, n)

Initialize an empty dictionary to store preprocessed
samples (E)

Initialize the current time window start time (τ ) as
−1

for each packet pkt in NTT do
Extract flow identifier (id) from the packet
Calculate the time difference between the current

packet’s timestamp and the current time window start
time (∆t)

if τ == −1 or ∆t > t then
Update the current time window start time

(τ ) to the current packet’s timestamp
Initialize an empty list to store packet fea-

tures for the current flow within the current time window
(E[τ, id])

end if
if Length of E[τ, id] < n then

Preprocess the packet’s data (pkt.data) to
obtain packet features (pkt features) using the PRE-
PROCESSING((pkt.data)) function

Append the preprocessed packet features
(pkt features) to the list of packet features for the
current flow within the current time window (E[τ, id])

end if
end for
Normalize and pad the preprocessed samples using

the NORMALIZEANDPADSAMPLES((E)) function
Apply the corresponding flow-level label (L[id]) to

each sample (e) in the preprocessed samples (E)
return the preprocessed samples (E)

end procedure

2) CNN Architecture: The CNN architecture described
in Table I uses a sequence of layers to extract features
and make classifications. The architecture is optimized to
handle packets of length 1512 bytes, which are commonly
used packet sizes in network traffic analysis. At the core
of the CNN architecture are convolutional layers, which
play a crucial role in capturing local patterns within
the input data. Learnable filters are used in these layers
to extract features that distinguish between normal and
malicious traffic. By employing three convolutional layers,
the network model can automatically learn hierarchical
features, progressively capturing more abstract represen-
tations of the data. Activation functions, Rectified Linear
Unit (ReLU) and Leaky ReLU, introduce non-linearity
to the model, enabling it to learn complex relationships
between 5G network traffic features.

ReLU is defined as:

ReLU(x) = max(0, x)

Leaky ReLU, which allows a small, non-zero gradient



when the input is negative, is defined as:

Leaky ReLU(x, α) =

{
x if x ≥ 0

αx if x < 0

The CNN model is optimized using a categorical cross-
entropy loss function, which is well-suited for multi-
class classification tasks. Mathematically expression for
the cross-entropy loss is:

Cross-Entropy Loss = −
∑
i

True Classi · log(Predictedi)

where True Classi represents the true label of the i-th
class, and Predictedi represents the predicted probability
of the i-th class.

TABLE I: CNN Model Architecture

Layers Filters Kernel Size Activation Function
Convolutional 32 3× 3 ReLU
Max Pooling - 2× 2 -
Convolutional 64 3× 3 ReLU
Max Pooling - 2× 2 -
Convolutional 128 3× 3 ReLU
Flatten - - -
Fully Connected 128 - ReLU
Fully Connected 64 - ReLU
Output 1 - Sigmoid

3) Model Evaluation: The model’s performance is eval-
uated using standard metrics of accuracy, precision, recall,
and F1-score. We performed fine-tuning of hyperparame-
ters by adjusting the learning rate and batch size to achieve
optimal performance. The model is also optimized using
backpropagation and gradient descent-based optimization
algorithms. In this sensitivity analysis, Figure 3 showcases
the impact of varying the hyperparameter n, representing
the number of packets, on the F1 score of our CNN-
based DDoS detection model. The blue line illustrates
the model’s F1 score, revealing a consistent increase in
performance as n grows, leveling off after reaching a
saturation point. The analysis suggests that, for our model,
higher n values contribute to improved accuracy, with
stability achieved beyond a certain threshold. This balance
is crucial for optimizing the trade-off between detection
accuracy and computational efficiency, a key consideration
in real-world applications.

(a) F1 Score vs. Number of
Packets

(b) F1 Score vs. Time Windows

Fig. 3: The model’s sensitivity to the hyperparameter n
for F1 score.

E. Experimental Results

The performance metrics were measured during our ex-
periments, and the results are presented in Figure 4. Figure
4 illustrates the performance metrics of the proposed CNN
model for DDoS attack detection in 5G networks. The
model achieves high accuracy (98.6%), precision (99.9%),
recall (97%), and F1 score (98%). Additional metrics
include the normal detection rate (98.6%), attack detection
rate (98%), true negative rate (TNR - 98%), true positive
rate (TPR - 98.3%), false negative rate (FNR - 0.022), and
false positive rate (FPR - 0.018). Figure 4 displays the
accuracy and loss of the CNN model throughout training
on the P4 telemetry data. The model achieves an accuracy
of over 98.6% after nine epochs of training, with a loss of
less than 0.001. Figure 5 is a heatmap representation of a
confusion matrix depicting the performance of our CNN
model. The matrix shows the counts of TN, FP, FN, and
TP.

Figure 6 illustrates the start and end instants of the
DDoS attack (e.g., with vertical line). The attack is indi-
cated by a sudden increase in traffic, followed by a sharp
decrease due to intervention from the control plane. The
traffic then goes below its pre-attack level as the con-
troller reconfigures the network to block malicious traffic.
Finally, the traffic recovers to its original level as the
controller finishes the network configuration. These results
demonstrate that our DDoS detection system is highly
accurate and effective in mitigating attacks while maintain-
ing low latency and packet loss. The system also utilizes
resources efficiently, ensuring optimal performance. This
table II compares key performance metrics between our
telemetry dataset and another 5G dataset [13]5GAD2022.
The telemetry dataset demonstrates superior performance
across all metrics, showcasing the robustness and efficacy
of our proposed DDoS detection system.

a)

b)

Fig. 4: Performance Metrics and Loss: a) Performance
metrics of the CNN model for DDoS attack detection. b)
Accuracy and loss of the CNN model throughout training
on P4 telemetry data.



Fig. 5: Confusion matrix showing the classification per-
formance of CNN model for distinguishing between ”Nor-
mal” and ”DDoS” instances.

Fig. 6: Traffic pattern captured before, during, and after a
DDoS attack.

TABLE II: Performance Metrics Comparison

Metric Telemetry Dataset [13]5GAD2022 Dataset

Accuracy 98.60% 98.49%
Precision 99.9% 99.14%
Recall 97.0% 96.72%
F1-score 98.00% 97.90%

IV. CONCLUSION

This paper presented a novel and effective approach
for DDoS attack detection in 5G networks utilizing P4
telemetry data. The proposed method used the P4 pro-
grammable data plane and the rich information embedded
in P4 telemetry data to identify and mitigate DDoS attacks
accurately. The experimental results demonstrated the ef-
fectiveness of the proposed method, achieving an accuracy
of 98.6%, F1 score 98%, and a precision of 99%. These
results highlight the potential of the proposed method for
practical DDoS detection in 5G networks. As future work,
we aim to develop a hybrid P4-based Native AI 6G UPF
with a Bluefield-2 DPU to optimize hardware offloading
for AI tasks and enhance security against other types of
attacks in 5G and 6G Networks.
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