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Abstract. We propose 6DGS to estimate the camera pose of a target
RGB image given a 3D Gaussian Splatting (3DGS) model represent-
ing the scene. 6DGS avoids the iterative process typical of analysis-by-
synthesis methods (e.g . iNeRF) that also require an initialization of the
camera pose in order to converge. Instead, our method estimates a 6DoF
pose by inverting the 3DGS rendering process. Starting from the object
surface, we define a radiant Ellicell that uniformly generates rays depart-
ing from each ellipsoid that parameterize the 3DGS model. Each Ellicell
ray is associated with the rendering parameters of each ellipsoid, which in
turn is used to obtain the best bindings between the target image pixels
and the cast rays. These pixel-ray bindings are then ranked to select the
best scoring bundle of rays, which their intersection provides the camera
center and, in turn, the camera rotation. The proposed solution obviates
the necessity of an “a priori” pose for initialization, and it solves 6DoF
pose estimation in closed form, without the need for iterations. Moreover,
compared to the existing Novel View Synthesis (NVS) baselines for pose
estimation, 6DGS can improve the overall average rotational accuracy
by 12% and translation accuracy by 22% on real scenes, despite not re-
quiring any initialization pose. At the same time, our method operates
near real-time, reaching 15fps on consumer hardware.

1 Introduction

Neural and geometrical 3D representations for Novel View Synthesis (NVS) have
recently surged in popularity [18,33], and they have been quickly integrated into
daily applications, e.g . mapping services [1]. The change in 3D representation
creates new challenges on how to solve classical problems, such as 6D pose esti-
mation, and on how to leverage NVS implicit advantages [25,29,34,44,46].

The method of iNeRF [46] pioneered 6D pose estimation using an NVS model
by proposing an iterative analysis-by-synthesis, as illustrated in the left panel
of Fig. 1. Given a nearby pose initialization (iteration #1 ), the NVS model
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Fig. 1: Our 6DGS method introduces a novel approach to 6DoF pose estimation, de-
parting from conventional analysis-by-synthesis methodologies. Standard NeRF-based
methods (left) employ an iterative process, rendering candidate poses and comparing
them with the target image before updating the pose, which often results in slow per-
formance and limited precision. In contrast, 6DGS (right) estimates the camera pose
by selecting a bundle of rays projected from the ellipsoid surface (a radiant Ellicell)
and learning an attention map to output ray/image pixel correspondences (based on
DINOv2). The optimal bundle of rays should intersect the optical center of the camera
and then are used to estimate the camera rotation in closed-form. Our 6GDS method
offers significantly improved accuracy and speed, enabling the recovery of the pose
within a one-shot estimate.

is used to render the image related to the initial pose. Then iteratively, the
rendered image is compared with the target image using a photometric loss, and
the initial pose guess is updated so that the two views achieve the best image
overlap at the final step (iteration #N ). The authors in iNeRF [46] use the
popular NeRF [33] NVS model where backpropagation updates every new pose
guess. This procedure leverages the remarkable NeRF capabilities in synthesizing
realistic novel views, however, at the computational expense of synthesizing a
newly rendered image at each iteration. This limitation restricts iNeRF to offline
use while requiring a close initial pose estimate for a successful convergence.

Recent works in 3D Gaussian Splatting (3DGS) [18,28,45] are an alternative
to Neural NVS models, providing fast rendering speed through the use of explicit
geometric primitives that do not require the optimization of a neural network.
3DGS represents a 3D scene as a set of ellipsoids paired with photometric in-
formation, such as color and opacity. The ellipsoids are first initialized using
Structure from Motion (SfM), and then they are optimized to reduce the photo-
metric error between the rasterized ellipsoids and a set of known images. During
the rasterization stage, the 3DGS model is projected onto the image plane as
ellipses and for each pixel the algorithm computes its photometric contribution.

By leveraging the 3DGS model properties, we design a novel 6DoF pose esti-
mation method (6DGS) that surpasses the limitations of NeRF-based iterative
approaches. 6DGS does not require any pose initialization, and it estimates the
camera translation and rotation without an iterating analysis-by-synthesis walk-
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through. This is a key factor for achieving near real-time performance (15fps),
also due to the quick rendering capabilities of 3DGS. The right panel of Fig.
1 presents the gist of our approach for 6DoF pose estimation. If we knew the
camera pose, the first NVS step of 3DGS would be to project the ellipsoid cen-
ters onto the image plane. Practically, this is a ray casting through the camera’s
optical center. Our 6DGS attempts to invert this process and, by doing so, to
estimate the camera pose. If the target image camera pose is unknown, and thus
neither where the optical center is, we are unable to cast the single ray from
each ellipsoid that passes through the correct target image pixels. For this rea-
son, instead, we radiate uniformly distributed rays from each ellipsoid through
the introduction of a novel casting procedure named Ellicell. Only one radiated
ray per ellipsoid would be accurate, i.e., the one that renders the pixel photo-
metrically by projecting the correct ellipse onto the target image plane.

Now, the 6DGS problem is to select, given all the casted rays from the El-
licells, the correct bundle of rays that can generate most of the target image
pixels with high confidence. This selection stage is addressed by binding pixels
and rays through the learning of an attention map. Notice that this step is also
unsupervised, as it leverages the known camera poses and images used to com-
pute the 3DGS model to obtain the pixel and ray pairs used for training. After
the bundle of rays is selected, the intersection of these rays identifies the camera
center, which is solved using weighted Least Squares (wLS), with the weights
being the scores from the previous selection stage. After the optical center is
estimated, the optical axis can be used to obtain the camera rotation degrees
of freedom from the rays bundle, thus solving the 6DoF pose. By design, 6DGS
eliminates the need for an initial camera pose, which is one of the limitations
of analysis-by-synthesis pose estimation methods [34, 44, 46], as well as the ten-
dency to converge to local minima during the iteration procedure, especially if
the initial pose is initialized far from the optimal position.

We evaluate 6DGS on datasets featuring real-world objects and scenes, com-
paring against the current NVS state-of-the-art approaches such as iNeRF [46],
Parallel iNeRF [25] and NeMO + VoGE [44]. Our experimental results show
that 6DGS is competitive, especially if the initial pose is not provided “a priori”.
Finally, we achieve near real-time 6DoF pose estimation on consumer hardware,
which is one rather challenging limitation in the practical application of NVS-
based approaches for camera pose estimation. To summarize, 6DGS contribu-
tions are threefold:

– Our approach for 6DoF camera pose estimation eliminates the need for an
initial camera pose and iterations to converge, which is typically required in
analysis-by-synthesis approaches;

– 6DGS employs a novel ray casting pipeline, i.e. Ellicell, and an attention-
based mechanism that efficiently matches pixel-level image information with
3DGS ellipsoids;

– The proposed method is state-of-the-art in the NVS benchmarks for camera
pose estimation both for accuracy and real-time performance.
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2 Related works

We review relevant works on 6DoF camera pose estimation based on Neural
Radiance Fields (NeRF) models, ellipsoid-based approaches, and correspondence
matching methods that are related to key components of 6DGS.
Pose estimation from neural radiance fields. iNeRF [46] pioneered NeRF-
based 6D camera pose estimation, using iterative alignment of target and ren-
dered images based on photometric error. However, iNeRF is prone to local
minima in the optimization function, leading to recent developments like Par-
allel iNeRF [25], which employs parallel optimization of multiple candidate
poses. While these approaches rely on NeRF-based models, NeMo+VoGe [43,44]
have explored 6D camera pose estimation using object models based on volu-
metric Gaussian reconstruction kernels as geometric primitives. The rendering
strategy (VoGE) differs from 3DGS as it is based on ray marching. Therefore,
NeMo+VoGe iteratively aligns learned features from target and rendered im-
ages. Notably, NeMo+VoGe’s training requires multiple objects, in contrast to
our method, which leverages a single object 3DGS model. Alternatively, CROSS-
FIRE [34] addresses the local minima issue by integrating learned local features,
which describes not only the visual content but also the 3D location of the
scene in the NeRF model. Despite these advancements, analysis-by-synthesis
approaches often struggle with inefficient pose updates due to the nature of
the optimization refinement and the dependence on accurate initial pose priors.
These factors can limit their real-world applicability. Recently, IFFNeRF [6] uti-
lized a method that inverts the NeRF model to re-render an image to match a
target one. However, unlike our approach, it does not consider the specificities
of 3DGS, which include ellipsoid elongation and rotation, and their non-uniform
distribution across the scene surface.
Pose estimation from ellipsoids. Recovery of the camera pose from ellipsoids
has been explored for both SfM [8, 9, 12–14, 37] and SLAM [11, 16, 21, 24, 32, 47]
scenarios, where methods frequently recover the object’s ellipsoid representation
as well as the camera 6DoF. Such approaches typically solve linear systems
to recover the pose, most commonly minimizing a loss of the projection to and
from an object detection. However, this methodological framework often presents
limitations when confronted with large numbers of ellipsoids, as they are more
indicated for handling few large ellipsoids that model a single object occupancy,
3D position and orientation.
Correspondences Matching. In traditional 6DoF image matching, feature-
based approaches are used, which often rely on hand-crafted features, e.g .,
SIFT [27] or more recent deep approaches such as SuperGlue [36] and Transfor-
Matcher [19]. SuperGlue utilizes a Graph Neural Network (GNN) for feature at-
tention and Sinkhorn [39] for matching, while LightGlue replaces the GNN with
a lightweight transformer. Unlike these, TransforMatcher [19] performs global
match-to-match attention, allowing for accurate match localization. In addition,
there is a body of work around feature equivariance [22,23] for improving the ro-
bustness of matching. However, these methods rely on the hypothesis that both
feature sets exist in a homogeneous feature space, i.e. extracted from the image,
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while in 6DGS we have the specific problem to match pixel to rays emitted from
the Ellicells. Therefore, we rely on the proposed attention model to handle these
ray-to-pixel bindings. OnePose++ [15] instead adopts a multi-modal approach
matching a point cloud with an image. Another proposed alternative is to regress
directly the pose parameters, as in CamNet [10]. Nevertheless, these approaches
require a large amount of training data (≈ 500 or more images), sometimes
across multiple scenes and, like with CamNet, these need to be available also
at inference time. 6DGS however, requires only ≈ 100 or less images, which are
utilized only once during training.

3 Preliminaries

We first review 3D Gaussian Splatting (3DGS) [18] to understand the underly-
ing principles and provide the mathematical formalization of the model. 3DGS
objective is to synthesize novel views of a scene by optimizing the position, the
orientation and the color of a set of 3D Gaussians approximated as ellipsoids
Q = {Q}Ki=1 from a given set of input images I = {I}Ji=1 and their correspond-
ing camera projection matrices P = {P}Ji=1 ∈ R3×4. A point d for being on
the surface of an ellipsoid must satisfy the equation (d − x)Σ(d − x)T = 1,
where x ∈ R3 is the ellipsoid center and Σ ∈ R3×3 its covariance matrix. We
can further decompose the covariance of the ellipsoid Σ as:

Σ = RUUTRT , (1)

where R ∈ R3×3 is the ellipsoid rotation matrix and U3×3 denotes the scaling
matrix. The projection matrix P ∈ R3×4 allows the projection of the ellipsoid
Q onto the image plane generating the corresponding ellipse representation:

y̆ = Px̆T , Ĕ = PΣPT , (2)

where y ∈ R2 and y̆ ∈ R3 correspond to the Euclidean and homogeneous coordi-
nates of the ellipse center point. The homogeneous coordinates y̆ originate from
the projection of the corresponding ellipsoid center in the homogeneous coordi-
nates x̆ ∈ R4. The matrix Ĕ ∈ R3×3 is the ellipse covariance in homogeneous
space. The covariance of the ellipse E ∈ R2×2, is derived by selecting only the
first two rows and columns of Ĕ and dividing by the last element on Ĕ diagonal.

The splatted ellipses, denoted as B = {⟨y,E⟩}Ki=1, generate a pixel color with
the rendering function ϕ using rasterization techniques [2, 18]. The function ϕ
acts independently on every single pixel of the image p. The pixel value depends
on the neighboring projected ellipses, taking into account their center points’
distances to the pixel coordinates, as well as their orientations and scales. ϕ
assumes that the ellipses are ordered based on the depth, so they should be
sorted. Formally, ϕ can be expressed as:

ϕ(B,p) =
K∑
i=1

ρiαie
−τ(Bi,p)γ(i,p), (3)



6 M. Bortolon et al .

Target Image

3DGS Model

Visual feature backbone

HxWxC

Matching by 
attenuation Camera pose 

estimation

Estimated camera pose

Ntop 
matches

Inputs

Output

Ray generation through 
“Radiant Ellicell”

ViT-32

FxC

(a)

(b)

(c)
(d)

Fig. 2: The figure illustrates the pipeline of our 6DGS methodology. The image is
encoded using a visual backbone (a). Concurrently, rays are uniformly projected from
the center of the 3DGS ellipsoids (b), and their corresponding color is estimated.
Subsequently, an attention map mechanism is employed to compare the encoded ray
and image features (c). Following this comparison, the Ntop matches are selected via
attenuation, and the camera location is estimated (d) as the solution of a weighted
Least Squares problem, resulting in a distinct 6DoF pose for the image.

where ρ and α represent the color and opacity attributes associated with the
ellipsoid, which are inherited by the splatted ellipse. Similar to the volumet-
ric rendering equation in NeRF, γ denotes the inverse of the volume density
accumulated up to the ith ellipse on pixel p and is defined as:

γ(i,p) =

i−1∏
j=1

(1− αje
−τ(Bi,p)). (4)

The purpose of τ is to determine the light absorption by the ellipse when rep-
resented as a 2D Gaussian. Light absorption depends on the orientation and
distance between the ellipse center, denoted as y, and the pixel location, ex-
pressed as d = p− y. Consequently, we can formally define τ as:

τ(B,p) =
1

2

(
12d

TEd1T
2

)
, (5)

where 12 ∈ R2 denotes a vector filled with ones. Following the processing of
all pixels onto the image plane, the rendering function ϕ generates an image
Î ∈ RH×W

+ , where W and H represent the width and height of the image.

4 Our approach

4.1 Overview

6DGS estimates the camera pose P̂ ∈ R3×4, given a target image It and a set
of ellipsoids Q from a pre-computed 3DGS model (Fig. 2). To solve for the
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(a) Ellicell components (b) 3D Ellicell grid (c) 3D radiant Ellicell

Fig. 3: The illustration depicts the three primary stages involved in the radiant Ellicell
generation. Firstly, (a) delineates the formulation of components required to compute
the geometric information for each cell. Secondly, (b) shows the resulting Ellicell grid
positioned on the surface of the ellipsoid along with their respective center points.
Finally, (c) demonstrates the generation of rays originating from the center point of
the ellipsoid going through the Ellicell center.

camera pose, we propose a casting method from the ellipsoid’s surface, called
Ellicell, that divides it in equal area cells (Sec. 4.2). The ellipsoids cast a set
of N rays, denoted as V = {⟨vo,vd,vc⟩}Ni=1, one for each of the generated cell
(Fig. 3c). Each ray is identified by i) the origin vo ∈ R3, ii) the center point
of each ellipsoid, iii) the direction vd ∈ R3 originating from the ellipsoid center
to the cell center and through the space, and iv) the color information vc ∈
R3 as RGB values. We synthesize the rays’ color using the 3DGS rendering
function ϕ (Eq. 3). A subset of these rays, depending on the view perspective,
may intersect the camera’s optical center. For binding the rays to the image
pixels we compute the target image pixels features ψ(It) (Fig. 2a) and the rays
features ψ(V) (Fig. 2b). These features are used to identify the intersecting rays
by using an attention map A (Fig. 2c), see Sec. 4.4. The higher the attention
value for a ray-pixel pair is, the more likely the intersection on the image plane
is a valid one. Lastly, we determine P̂t (Fig. 2d) by computing the intersection
point of rays using the weighted Least Squares algorithm (Sec. 4.5).

4.2 Radiant Ellicell

We create rays spanning in every direction allowing 6DGS to recover the camera
pose. We introduce the concept of radiant Ellicell for generating rays that uni-
formly emanate from the ellipsoid surface, as illustrated in Fig. 3. Ellicell gener-
ation is deterministic [5,31] and achieves higher precision with fewer rays [17,42]
compared to other sampling methods like Monte-Carlo [30].

First, we compute the area of each Ellicell. This is achieved by calculating
the ellipsoid surface area, using a computationally efficient approach, namely
Ramanujan approximation [3]:

h = 4π

(
(ab)1.6 + (ac)1.6 + (bc)1.6

3

) 1
1.6

, (6)

where a, b, c = diag(S) are the ellipsoid axis scales. Each Ellicell cell’s target
area equals µ = h/G, with G being the number of cells dividing each ellipsoid.
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Approximating each cell as a square with side z = √
µ we slice the ellipsoids along

the major axis into ribbons, each as wide as z (Fig. 3a). The extremity of each
ribbon is called a ring. The total number of rings is e = ⌊κ(a, b)/(2z)⌋ ∈ N, where
κ(a, b) computes the ring perimeter. Ignoring ellipsoid’s rotation, we compute
the ring perimeter by treating them as 2D ellipses, thus defining κ(a, b) as:

κ(a, b) = π

(
(a+ b) +

3(a− b)2

10(a+ b) +
√
a2 + 14ab+ b2

)
. (7)

Given the total number of rings e it is possible to compute the ribbon’s
centerline geometric parameters. In particular, we compute the scale parameter
of each ribbon as:

ϱ(n,∆r, a, b) =

√
1− (0.5∆r + n∆r − a)2

b2
, (8)

where ∆r = a/e is the distance between two consecutive rings. This equation
derives from the manipulation of the standard ellipse equation. While ribbon size
z should be equal to ∆r, these two values will likely differ due to the need for
the number of rings being a natural number. Eq. 8 is also used to compute the
other ribbon scaling parameter by replacing b with c. ϱ is then used to compute
the number of cells inside each ribbon as:

ξ(n, e, a, b, c) =

⌊
κ (ϱ(n, e, a, b), ϱ(n, e, a, c))

z

⌋
, (9)

where ξ is the number of cells inside the ring. We compute the center of each cell,
equally spaced along the ribbon’s centerline, by sampling ξ points along it. This
is challenging as the perimeter distance does not linearly correlate with the x and
y variations. However, we can solve this by using a statistical method. Knowing
a distribution’s Cumulative Distribution Function (CDF) allows us to sample
uniformly between 0 and 1 and then use the CDF inverse to map the sample
to the distribution space. This approach applies to our case, where samples are
distributed as follows:

ds2 = dx2 + dy2, (10)

and, by taking its inverse, we can retrieve the coordinates of each cell center. To
simplify the equations, we define r = ϱ(n, e, a, b) and w = ϱ(n, e, a, c) to indicate
the scale of the ellipse under consideration. Then we express Eq. 10 in polar
coordinates to simplify the differentiation:

ds

dθ
=

√
r2 sin2 θ + w2 cos2 θ, (11)

then, we can express the set of points on the perimeter of the ribbon centerline
as an angular position in the polar coordinate system as:

θ′ =

(
ds

dθ

)−1 (
g · 1

ξ(n, e, a, b, c)

)
, (12)
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with g being the cell identifier. Given θ′ we can use it inside the ellipse equation
in polar coordinates to obtain the 3D position of each cell center:

u =

 w cos(θ′)
g sin(θ′)
−a+ n∆r

 . (13)

4.3 Ray generation

Once we have divided each ellipsoid of the 3DGS model into equidistant cells,
we cast the rays originating from the center point of the ellipsoid i.e. vo = x
and oriented towards the Ellicell center vd = u − x. We reduce the number of
potential rays cast from each ellipsoid by considering only the rays oriented in
the same hemisphere as the estimated surface normal of the ellipsoid. We obtain
the surface normals by treating the ellipsoid centroids as a point cloud, and the
surface normal is estimated using the nearby points [41].

Finally, each ray has also been associated with the color information vc,
which we compute through the same pixel-level approach of 3DGS (Eq. 5). We
note that the application of the volumetric rendering function of Eq. 5 produces
a single pixel for each ray. The generated rays represent a collection of potential
hypotheses, meaning that a subset of them will intersect the target image It.

4.4 Binding by attenuation of rays to image

Given all the cast rays v, we identify a subset of v correlating with the target
image It. A learned attention map A assigns scores ŝ based on the highest corre-
lation to image pixels; higher similarity results in higher scores. Based on scores
ŝ, we select the top candidate’s rays (Ntop) that present maximal association
and use them to recover the pose (P̂t).

To select rays with similar appearance and position, we use a Multi-Layer
Perceptron (MLP) defined as V = ψ(v), where V ∈ RN×C with C being the
feature size and N the overall number of rays. The MLP input is enriched by
incorporating Positional Encoding that maps the data in the Fourier domain [40]
to better distinguish between similar data.

We generate features from It using DINOv2 [35] as a pre-trained back-
bone feature extractor. This results in a set of features Ft ∈ RM×C , where
M = W × H. Both the image and ray features sets are processed by a single
attention module A(Vf ,Ft) ∈ RM×N producing a set of scores. Inside the at-
tention module the ray features, V, are used as queries and the image features,
Ft, as a key. We optimize the attention map by summing along the rows and
converting it into a per-ray correlation score as follows ŝ =

∑M
i=1 Ai. The higher

the score value given by ŝ, the better the association between the rays and image
pixels. At test-time we select the Ntop rays with the highest ranking scores.

Because a ray and an image pixel should be associated with each other based
on the distance between the camera origin and its projection onto the corre-
sponding ray, we supervise the predicted scores ŝ using the same images used to
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estimate the 3DGS model at training time. We compute the projection of the
point on the line as l = max((O−vo)vd, 0), where O is the camera position, vo

the generated ray origin and vd the corresponding direction. Rays are infinite
only in one direction, so we restrict l ∈ R+ using the max operator. Then, we can
compute the distance between the camera origin and its projection on the ray as
h = ∥(vo + lvd)− O∥2. The value h can span from 0 to +∞, with 0 indicating
a ray that passes through the camera’s optical center. We map distances to the
attention map score using:

δ = 1− tanh

(
h

λ

)
, s = δ

M∑
δ
, (14)

where λ regulates the number of rays to assign to a specific camera. Lastly, the
softmax inside the attention map computation requires we normalize the ground
truth scores. We use the L2 loss to minimize the difference between the predicted
ŝ and the computed ground truth s scores as:

L =
1

MN

M∑
i=1

N∑
j=1

∥ŝi,j − si,j∥2, (15)

where M,N are the size of the attention map A. During each training iteration,
we predict an image and a pose utilized for estimating the 3DGS model.

4.5 Test-time pose estimation

During the test phase, the predicted scores ŝ are used to select the top Ntop rays,
identified as the utmost relevant, and constrained to choose at most one ray per
ellipsoid. Note that only a small set of rays is sufficient to estimate the camera
pose. However, based on an ablation study we set Ntop = 100, see Tab. 3a.

The camera position is found at the intersection of selected rays, solved as
a weighted Least Squares problem. Since 3D lines usually do not intersect at a
single point due to discretization noise introduced by the Ellicell, we minimize
the sum of squared perpendicular distances instead.

For the selected ray vj with f = 1 . . . Ntop, the error is given by the square
of the distance from the camera position to predict Ô to its projection on vj :

Ntop∑
f=1

(
(Ô− vo,f )

T (Ô− vo,f )− ((Ô− vo,f )
Tvd,f )

2
)
, (16)

where vo,f indicating the origin of the f -th ray and vd,f the respective direction.
To minimize Eq. 16, we differentiate it with respect to Ô, resulting in

Ô =

Ntop∑
f=1

ŝf (I− vd,fv
T
d,f )vo,f , (17)

where I is the identity matrix and ŝf are the predicted ray scores. This expression
can be solved as a weighted system of linear equations.
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Table 1: Evaluation of 6DoF pose estimation on the Mip-NeRF 360° [4] dataset. We
report results in terms of Mean Angular Error (MAE) and Mean Translation Error
(MTE) in terms of degrees and units, u, respectively. Where 1u is equal to the ob-
ject’s largest dimension. For both metrics lower is better. Best-performing results are
highlighted in bold and green, while second best values are highlighted in orange.

Fixed pose prior (eval. protocol by [46]) Random pose prior No pose prior

iNeRF [46] NeMo + VoGE [44] Parallel iNeRF [25] iNeRF [46] NeMo + VoGE [44] Parallel iNeRF [25] 6DGS (Ours)

Scenes MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓
Bicycle 39.5 0.116 43.8 0.015 35.9 0.116 76.6 0.217 111.8 0.038 44.4 0.150 12.1 0.010
Bonsai 51.3 0.228 52.5 0.036 41.1 0.223 96.7 0.385 98.9 0.073 58.2 0.298 10.5 0.038
Counter 40.7 0.324 45.6 0.072 24.7 0.212 70.3 0.487 98.1 0.139 42.1 0.435 19.6 0.043
Garden 31.0 0.121 31.8 0.026 18.2 0.090 72.8 0.210 89.2 0.038 60.0 0.144 37.8 0.015
Kitchen 38.2 0.113 41.6 0.042 37.3 0.109 100.2 0.266 122.2 0.082 65.0 0.193 23.2 0.018
Room 38.8 0.274 44.9 0.045 30.7 0.257 91.6 0.444 110.0 0.010 63.5 0.271 38.3 0.019
Stump 21.4 0.030 26.3 0.016 14.8 0.016 86.9 0.035 96.3 0.025 72.6 0.033 28.3 0.009
Avg. 37.3 0.172 40.9 0.036 28.9 0.146 85.0 0.292 103.8 0.058 58.0 0.218 24.3 0.022

5 Results

5.1 Experimental setup

We evaluate 6DGS and compare with other analysis-by-synthesis methods for 6D
pose estimation, including iNeRF [46], Parallel iNeRF [25], and NeMo+VoGE [43,
44]. We reproduce the results using their published code. We follow iNeRF’s eval-
uation protocol and test on two real-world datasets: Tanks & Temples [20] and
Mip-NeRF 360° [4]. For each dataset, we use the predefined training-test splits
and evaluate them with two pose initialization pipelines: i) the original iNeRF
initialization, where the starting pose is sampled uniformly between [−40◦,+40◦]
degrees of errors and [−0.1,+0.1] units of translation error from the ground-truth
target pose; ii) by randomly choosing an initialization pose from the ones used
to create the 3DGS mode. Although analysis-by-synthesis methods were tested
with a prior, in reality it is rarely available, so we present a second scenario
to assess them under more realistic conditions. We perform multiple ablation
studies to assess the sensitivity of 6DGS to different hyperparameters and set-
tings. We quantify pose estimation results in terms of mean angular (MAE) and
translation (MTE) errors (see Tab. 1 and Tab. 2) and measure the inference
time.
Implementation Details. 6DGS is implemented in PyTorch and the attention
map was trained for 1.5K iterations (∼45mins) with an NVIDIA GeForce RTX
3090. We use the Adafactor optimizer [38] with weight decay of 10−3. For speedup
training, we uniformly sample 2000 3DGS ellipsoids at each iteration.

5.2 Datasets

To demonstrate the applicability of 6DGS, we test on two datasets featuring real
world challenges. Tanks&Temples [20] was created to evaluate 3D reconstruc-
tion methods with challenging real-world objects of varying sizes, acquired from
human-like viewpoints and with difficult conditions (illumination, shadows, and
reflections). We use the five scenes (Barn, Caterpillar, Family, Ignatius, Truck)
and the train test splits given in [7,26]. The splits are object dependent, having
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Table 2: Evaluation of 6DoF pose estimation on the Tanks&Temples [20] dataset. We
show the same metrics and analysis as in Table 1.

Fixed pose prior (eval. protocol by [46]) Random pose prior No pose prior

iNeRF [46] NeMo + VoGE [44] Parallel iNeRF [25] iNeRF [46] NeMo + VoGE [44] Parallel iNeRF [25] 6DGS (Ours)

Objects MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓ MAE ↓ MTE ↓
Barn 26.5 0.208 51.2 0.752 22.9 0.131 89.2 0.682 92.5 0.684 85.2 0.572 30.3 0.162
Caterpillar 42.9 0.166 52.6 0.516 25.2 0.138 89.3 2.559 90.5 2.559 86.8 0.843 14.5 0.027
Family 42.8 0.794 58.4 1.130 22.9 0.507 93.9 1.505 97.0 1.506 99.0 2.028 20.6 0.468
Ignatius 31.4 0.723 51.2 1.193 23.4 0.604 84.1 1.489 85.4 1.491 86.9 1.326 15.5 0.441
Truck 31.6 0.370 54.6 1.236 29.4 0.351 94.4 1.042 97.7 1.045 97.6 0.883 27.5 0.242
Avg. 35.0 0.452 53.6 0.965 24.7 0.346 90.2 1.455 92.6 1.457 91.1 1.130 21.7 0.268

on average ≈ 247 training images (87%) and ≈ 35 testing images (12%). Mip-
NeRF 360° [4] consists of seven scenes: two outdoors and four indoors, with a
structured scenario and background. We use the original train-test splits [4], at
a ratio of 1:8. Following [25], we resize all the objects to fit inside a unit box.
The translation error is relative to the object size, defined as a unit.

5.3 Analysis

Quantitative Analysis: Tab. 1 and Tab. 2 present the results obtained across
both datasets. 6DGS consistently outperforms baseline methods across all datasets
and pose initialization pipelines. Notably, 6DGS achieves lower error rates than
the second-best results, especially under identical comparison conditions (i.e.,
random pose prior). Even when initialized from a fixed pose proximal to the
known camera, 6DGS still excels over baselines in most scenes. Parallel iNeRF
demonstrates improvement over iNeRF across all tested scenarios, consistent
with its reported enhancements, but both methods’ performance drops with
random initialization. Likewise, NeMo+VoGE performs worst, especially with
random pose prior due to the utilization of a smaller number of larger ellipsoids
in their approach. In contrast, 6DGS leverages approximately 300,000 ellipsoids
of varying sizes obtained via 3DGS, as opposed to their mesh-to-ellipsoid method,
which utilizes only about 5,000 larger ellipsoids. This fundamental disparity in
ellipsoid size and quantity is a crucial factor contributing to the performance dif-
ference. Additionally, 6DGS exhibits faster processing speeds, operating nearly
in real-time at 15 frames per second (fps) compared to the 0.05fps of Parallel
iNeRF and 0.16fps of iNeRF. Please refer to the supplementary material for the
complete table on timings.
Qualitative Analysis: Figure 4 illustrates qualitative findings revealing notable
observations. Particularly, we notice that the estimated poses exhibit proximity
to the object relative to ground truth, attributable to the quantization effect
introduced by the Ellicell. The qualitative findings verify the quantitative out-
comes, albeit occasional inconsistencies in results, such as in the Counter scene,
with the analysis-by-synthesis approaches showcasing a total incoherent output
in regards to the overall scene (notice how the estimated poses are completely
off the target). Moreover, the performance of 6DGS demonstrates consistency
across varied scenarios, encompassing single-object instances and indoor settings,
despite substantial variations in the models utilized.
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Fig. 4: The illustration presents qualitative results from Tanks & Temple (upper row)
and Mip-NeRF 360° (lower row) datasets. Each scene showcases the target images
(bottom left) along with their corresponding Novel View Synthesis (NVS) outputs
(bottom right), derived from the camera poses estimated by 6DGS (located on the
top). Furthermore, the estimated camera poses from the comparative baselines are
visualized, with distinct colors as indicated in the image legend. The NVS of each
scene is rendered based on the provided 3DGS model. Please check the supplementary
material for more qualitative results.

5.4 Ablation studies

Our ablation studies involve the analysis of the number of rays selected for
the pose estimation (Tab. 3a), the number of rays that we cast from a Ellicell
(Tab. 3b) as well as the different feature size on the MLP channels (Tab. 3c).
The supplementary material contains additional ablations that analyze 6DGS
performance with low-quality 3DGS models.

We find that the number of selected rays mainly affects the angular error,
while the translation error remains relatively stable. Increasing the number of
rays decreases the angular error but slightly increases the translation error, likely
due to less confident rays contributing to the pose estimation. The optimal bal-
ance between translation and angular errors is achieved between 100 to 150 rays,
with 100 being the best. The slight increase in error with more Ntop rays is due to
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Table 3: Ablation study on the number of rays selected for pose estimation, on the rays
cast from each ellipsoid and on the MLP channels using Mip-NeRF 360 [4]. Underline
indicates the default values used.

(a) Number of rays used for
pose estimation.
Ntop MAE (°)↓ MTE (u)↓ Time (s)
20 29.0 0.0235 0.03
50 26.3 0.0227 0.04
100 24.3 0.0217 0.06
150 24.4 0.0219 0.9
200 24.5 0.0222 0.11

(b) Number of cast rays per ellip-
soid.
# of cast rays MAE (°)↓ MTE (u)↓ Time (s)

20 29.0 0.0235 0.04
35 24.7 0.0220 0.04
50 24.3 0.0217 0.06
65 25.1 0.0218 0.09
80 25.2 0.0221 0.15

(c) MLP channel feature size.

MLP channels MAE (°)↓ MTE (u)↓ Time (s)
256 29.4 0.0273 0.04
512 24.3 0.0217 0.06
1024 30.1 0.0228 0.27

introducing rays not pointing precisely to the camera’s optical center. Similar to
what we observed in the qualitative examples, the noisy rays make the weighted
Least Squares estimating the camera closer to the object than it actually is.

Regarding the impact of the varying number of rays cast from the Ellicells,
the angular error tends to remain relatively constant across different configura-
tions. In contrast, the translation error decreases when 50 cast rays are used,
and then increases again. This behavior is connected to network generalization
capability. Increasing the number of rays allows the network to fit the training
set better, but at test time, it makes the network more prone to noise and con-
sequently selecting the wrong rays, thus increasing the error. We observe this
generalization issue when increasing the MLP channels, see Tab. 3c, particularly
given the limited and uneven distribution of training images (≈ 150). Moreover,
the processing time increases proportionally with the number of rays and the
MLP channels; upon exceeding the default values for rays and feature size, a
notable surge in processing time is observed, reaching approximately 10fps and
13fps, respectively.

6 Conclusions

In this study, we proposed a novel ray sampling by attention method for esti-
mating 6DoF camera poses from a single image and a 3DGS scene model. Our
analytical evaluation demonstrates its robustness and efficiency without requir-
ing initialization, up to 22% in accuracy and while being faster by a big margin,
approx. 94x faster. Furthermore, the proposed method formulates and utilizes a
novel ray generation methodology in order to explore diverse camera pose hy-
potheses in accordance to an effective attention mechanism. Our method exhibits
enhanced robustness across real-world datasets and holds promise for real-time
deployment in robotics and other fields. Future research endeavors will focus on
improving accuracy and extending applicability to diverse scenes and objects.
Limitations. The main constraint of 6DGS is the need for retraining with each
new scene. This could be mitigated with meta-learning, particularly when similar
objects or scenes are under consideration.
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1 Introduction

The provided supplementary material shows extra details, results, and figures
to support the main findings presented in the main manuscript. In Section 2 we
present the inference time performance of each method for the task of 6D pose
estimation. Section 4 offers additional figures showing qualitative results and
discussions as mentioned in the main paper. These extra results aim to make
the study clearer and more complete, providing further useful insights into our
proposed 6DGS pipeline.

2 Inference time

In Tab. 1 we detail the timings of each method. It can be noted from the table
that our approach is the only one that is able to run under 1s and near to
real-time performance at 16FPS. In general, it is possible to notice how time
slightly increases in the Mip-NeRF 360°dataset due to the higher complexity of
the scenes. The increase in computational complexity can be attributed to several
factors, including the size of the neural models required for iNeRF and Parallel
iNeRF, as well as the quantity of ellipsoids used in NeMo+VoGE for each of the
two datasets (i.e. ≈ 150000 ellipsoids for Tanks&Temples and ≈ 300000 for Mip-
NeRF 360°, while in NeRF models Tanks&Temples use ≈ 50% less parameters
than Mip-NeRF 360°). As it can be noticed 6DGS is able to handle both datasets
and especially the the Mip-NeRF 360°scenes without issues.

Considering the different methods, we can notice that NeMo+VoGE requires
the most time. This derive from the processing algorithm that struggles with
large number of ellipsoids. In regards to the analysis-by-synthesis methods, iN-
eRF represents the fastest method, with Parallel NeRF being the second fastest.
However, all methods show a considerable higher running time in contrast to
6DGS.
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3 Additional ablations studies

To assess our method’s robustness to 3DGS model quality, we conducted two
experiments using the Mip360° dataset’s Bonsai and Bicycle scenes. First, we
investigated the effect of 3DGS model accuracy on pose estimation by intro-
ducing varying noise levels to the Gaussian centers. Second, we analyzed the
performance of our method under sparse viewpoint conditions.

The results below show that 6DGS is resilient for translation and minimal
increase for rotational error, both with high noise level and even with only six
views (≈ 60◦ between viewpoints).

4 Additional qualitative results

In this section, we report additional qualitative results of other scenes not pre-
sented in the paper. Fig. 1 shows the Tanks&Temples dataset [20] scenes Barn,
Caterpillar, Ignatius, and Truck. On the other hand, Fig. 2 presents views from
the Garden, Kitchen, Stump, Room, Bicycle, and Counter scenes of the Mip-
NeRF 360°dataset [4]. In each figure, we show the ground truth camera position
(green) and our estimated camera pose (red) in addition to the baseline meth-
ods (see legend for camera colors and details). In addition to the 3D camera
positions estimated by our method and the other baselines, we also show the
rendered images using the 3DGS model from ground truth and estimated 6DGS
camera pose. From the rendered images, we can assess visually how the synthe-
sized image viewpoint is different from the tested target image.

Looking closer at Fig. 1, our method predicts poses with a more accurate
rotation, aligning closer to the ground truth. The translation can be slightly
less accurate, resulting in either being slightly closer, e.g . for the Caterpillar,
Ignatius, and Truck scenes, or further, e.g . for the Barn scene, from the object.
A similar estimation of accuracy in rotation can be seen for the scenes Kitchen,

Table 1: Average computation time to estimate the pose of an image. Comparison
between our method and state-of-the-art approaches across the two datasets. Bold
font indicates best performance. Time is reported in seconds.

Tanks and Temples Mip-NeRF 360

iNeRF (pose prior by [46]) 6.321 8.214

NeMo+VoGE (pose prior by [46]) 251.4 290.4

Parallel iNeRF (pose prior by [46]) 16.9 16.8

iNeRF (random pose) 6.2 8.5

NeMo+VoGE (random pose) 240.5 284.4

Parallel iNeRF (random pose) 16.5 17.1

6DGS (Ours) (no pose) 0.05 0.06
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Gauss. noise (‰) MAE (°) MTE (u) No. views MAE (°) MTE (u)

0.0‰u (None) 11.3 0.024 All 11.3 0.024
0.1‰u 18.3 0.025 12 15.5 0.024
0.5‰u 22.5 0.025 6 18.6 0.026

Stump of the Mip-NeRF 360°dataset, see in Fig. 2 while showing a closer cam-
era position though in a more limited amount. Mip-NeRF 360°also showcases a
degradation in performance on camera rotation estimation related to the scenes
Room, Stump, Garden. As for the baselines, in general, we can see how Paral-
lel iNeRF tends to be more precise compared to the ones from iNeRF, but it
can still fail in the complex scenes as shown. Finally, for NeMo + VoGE, the
qualitative examples are consistent with the quantitative results, which tend to
produce poses with a higher error than the other approaches.
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Fig. 1: Additional scenes from the Tanks&Temple dataset. For each scene, we show
a visualization of the camera poses in regards to the model (top) for 6DGS as well
as the baselines, which are visualized with different colors as indicated in the image
legend. In addition, for each scene, we showcase the target image (bottom left) along
with their corresponding Novel View Synthesis (NVS) output (bottom right) of the
estimated camera pose by 6DGS.
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Fig. 2: Additional scenes from the Mip-NeRF 360°dataset. For each scene, we show
a visualization of the camera poses in regards to the model (top) for 6DGS as well
as the baselines, which are visualized with different colors as indicated in the image
legend. In addition, for each scene, we showcase the target image (bottom left) along
with their corresponding 3DGS Novel View Synthesis (NVS) output (bottom right) of
the estimated camera pose by 6DGS.
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