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Flg 9. Measurements of arg ( rl ) – arg ( rz ) versus frequency for two connec-

tions of a 10-cm air transmission line terminated in an open circuit.

predominantly at the current maxima. The measurements of

arg ( rl ) – arg ( 172) are similar to those shown previously in that

the changes occur at the current maxima.

IV. DISCUSSION

It should be emphasized that the purpose of this paper is to

show that some of the measurement discrepancies observed be-

cause of connectors can be explained with a simple connector

joint model. It is not meant to be an exhaustive study of

connector joints. Much work remains to be done in both under-

standing and modeling connector joints. The intent of this paper

is to document some of the current observations.

Much of the work to date reaffirms the complexity of the

connector joint. Ideally, one would expect the resistive compo-

nent to vary with frequency as ~1/2. However, as noted by

Daywitt [1], variation of up to f28 has been observed. The

inductive term can also exhibit a complex behavior as a function

of frequency. Fig. 9 shows one example of this complexity.

Plotted here is arg ( rl ) – arg(r2 ) for the 10-cm air transmission

line terminated in an open circuit. Note that the sign of the phase

change is negative at 8 GHz and positive at the lower frequenc-

ies. This type of behavior is not explainable with the simple

model shown.

Also, it is not known what effect the network analyzer calibra-

tion errors have. Network analyzers, to some degree, can trans-

form phase information into magnitude and magnitude into

phase information. The extent to which this is happening is

beyond the scope of this study. Numerous network analyzer

calibrations were used in collecting the data for this report.

V. CONCLUSIONS

The simple connector joint model described in this paper

appears to be a valuable tool in understanding the changes that

occur at connector joints. Theory predicts that the changes in r

due to changes in resistance or reactance can be up to four times

greater for highly reflecting devices than for nonreflecting de-

vices. These changes are frequency dependent and are greatest at

or near the current maxima or the current nulls.

Measurements of 11711– 11’21 are shown for two different

connections of highly reflecting devices with 14-mm connectors.

These measurements are used to estimate the changes in normal-

ized joint resistance at the connector. Similarly, measurements of

arg ( 1’1) – arg ( r2 ) are shown for two different connections. These

measurements are used to estimate the changes in normalized

reactance. For the devices shown, the changes primarily occur at

the current maxima, which means the changes are in the resis-

tance and inductive components of the connector joint.
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A Simple Technique for Investigating Defects in

Coaxial Connectors

WILLIAM C. DAYWITT

,4bstract —This paper describes a technique that uses swept-frequency

automatic network analyzer (ANA) data for investigating electrical defects

in coaxiaf connectors. The tecfmiqne will he useful to connector and ANA

manufacturers and to enghseers interested in determining connector char-

acteristics for error analyses. A simplified theory is presented and the

technique is illustrated by applying it to perturbations caused by the center

conductor gap in a 7-mm connector pair.

Key terms ANA, coaxial connector, error analysis, stepped-frequency

measurements.

I. INTRODUCTION

Most analyses underlying microwave measurement procedures

assume ideal connectors at the various measurement ports, al-

though it has been recognized for some time that errors due to

this idealization would have to be accounted for sooner or later.

With computerization and greater sensitivity and stability, mod-

ern systems are now at that point. For example, if a swept-

frequency reflection measurement of an open circuit not used in

the automatic network analyzer (ANA) calibration is performed,

then the measured reflection coefficient magnitude often varies in

a strongly oscillatory manner below and above unity magnitude,

while the obvious result should be a magnitude that remains

below unity and slowly diminishes monotonically with frequency.

This type of result has been noted by a number of ANA users.

Studies [1] have shown that the oscillatory phenomenon just

described is due to connector loss at the joint in the connector

pair where the center conductors from the two connectors com-

prising the pair meet, and also that the oscillations can be used to

determine the magnitude of that loss even in the presence of

considerable ANA error.

Recent investigations indicate that reactive defects at the same

joint in the connector pair cause phase variations similar to the

magnitude oscillations, and that the envelope of these variations

can be used to determine the magnitude of the reactance respon-

sible for the variations.
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Fig. 1 (a) Longitudinal section of an air line and a shielded open circuit.

(b) An equivalent circuit

A simple technique has evolved from these studies that appears

to be useful for investigating connector defects. It consists of

terminating the connector pair under investigation with a length

of line ending in a shielded open circuit. The length is chosen to

produce a rapidly varying phase difference between the incident

and reflected fields at the connector as the frequency is varied.

The resulting reflection coefficient (both magnitude and phase)

when plotted as a function of frequency includes a rapidly

varying component that contains information about the connec-

tor defects which can be easily determined from the plot.

This paper will develop a theory behind these observations and

apply it to a simple model of the gap at the center conductor

joint in a 7-mm connector pair through the use of computer

simulations and ANA measurements.

II. THEORY

For illustrating the technique, it is convenient to model the

connector pair in terms of the center conductor joint alone,

ignoring smaller defects at the center conductor bead supports

and at the outer conductor joint. The connector pair is shown in

Fig. l(a). An equivalent circuit of the center conductor joint J1 is

shown in Fig. l(b); it consists of two shunting capacitors and a

series resistance. The normalized resistance r and the normalized

admittance y of the joint are given by the equations

r= R/Zo (1)

and

y = pczo (2)

where o and ZO are the radian frequency and the characteristic

line impedance, respectively. The normalized resistance r is as-

sumed to vary as the square root of the frequency [1], [2], while C

is assumed to be frequency insensitiv~ [3]. It can be shown that

the scattering parameters of the junction are related to these

normalized quantities through the equations

Sll = S22 = r/2 – y (3)

and

S21=S12=l–r/2–y (4)

to first order in r and y. The reflection coefficient r of the line

and junction is calculated from the formula

r = s + S~~S21e-Zyl+~+
11 1 – s22e-2Yl+J+

(5)

where y and 1 are the propagation constant and the length of the

line, and eJ” is the reflection coefficient of the open circuit. The

phase of the open circuit is $. The equation that results from

reducing (5) to first order in r and y is

r= e-z,/3/+@{l-2a~- r[l-cos(2/3- 4)]

-2y[l+cos(2~l - $)]} (6)

where a and /? are the real and imaginary parts of y. The

magnitude and phase of r in (6) cti’ be approximated by

lrl=l-2a~-~[1-C0s(2p/-o)] (7)

and

6= ~g(r)s -2B1+0-21y/[1+COS(2~1-~)]. (8)

The last term in (7) shows that the magnitude of r is affected by

the normalized resistance r but not by the normalized admittance

y. Similarly, the phase of r is affected by y but not by r. If the

line length 1 is a number of wavelengths, the r and Iy I terms in

(7) and (8) are rapidly varying and easily distinguished from the

other terms in the equations when Irl and 0 are plotted as a

function of frequency. It is this feature that permits the scattering

coefficients of the joint to be easily determined from the reflec-

tion data.

The center conductor bead supports at J2 and J3 in Fig. l(a)

are assumed to be matched to the lines on both sides of the

beads. The symbols J2 and J3 refer to the contact losses at these

positions where the center conductors are rejoined after passing

through the beads, generating the same type of normalized con-

tact resistances discussed for joint J1. Additional comments

about the model and about (7) and (8) are presented in the

Appendix.

111. COMPUTER SIMULATIONS

The results of a computer simulation are employed in this

section to illustrate how the oscillations caused by the resistance

and capacitances in Fig. l(b) are used to determine r and Iy I

under ideal conditions. Values of 0.006\05 for r and 0.002 pF

for C [3] are used in generating the simulated curves. The length

of the line is 30 cm, and the attenuation constant LXcorresponds

to a gold-plated 7-mm line. Equations (7) and (8) are plotted as a

function of frequency with these values inserted. The computer-

generated results are shown in Fig. 2(a) and (b). The oscillations

in Fig. 2(a) are due to the J1 joint loss (i.e., the normalized

resistance r), and (7) implies that the two envelope curves

connecting the maxima and minima are separated by 2 r. There-

fore, r is determined by plotting the measured reflection coeffi-

cient magnitude as a function of frequency, drawing in the

envelope, and measufi-ng the separation between the envelope

CUmes.

The simulated phase oscillations are shown in Fig. 2(b) with

the first two terms in (8) removed. The last term in (8) implies

that the envelope separation in the figure is equal to 41yl,

showing how to determine Iy I (and hence c via (2)) from the

measured phase data.

No ANA error is included in the model leading to Fig. 2(a)

and (b), so they represent an idealization of what is to be

expected in an actual measurement. It is assumed in using the

technique that the ANA characterization error is slowly varying,
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Fig. 2. (a) Computer simulation of the magnitude of the reflection coeffi-

cient r for r = 0.006~05. (b) Computer simulation of the phase of the

reflection coefficient r for C = 0.002 pF.

in which case the ANA error tends to cancel out since measure-

ment data differences are used in calculating the envelope widths

in Fig, 2(a) and (b).

IV. MEASUREMENTS

In order to create a single joint J1 and avoid the complication

of including J2 in the measurement (see Fig. l(a)), a 30-cm air

line was connected to the ANA with the free end of its center

conductor supported bya dielectric bead, A short length of outer

conductor was connected to the free end of the air line outer

conductor to form a shielded open circuit. The magnitude and

the phase of the reflection coefficient of the combination were

then measured and plotted as a function of frequency, the results

of which are shown in Fig. 3(a) and (b). Fig. 3(a) shows the

magnitude of the reflection coefficient as the frequency varies

from (?.o45 to 18 GHz along the abscissa. The ordinate is the

reflection coefficient, andthescale varies from O.84at the bottom

of the plot tounityin 0.02 steps. The oscillationsin the graph are

similar to those of Fig. 2(a) except that the averages of the two

curves do not track, possibly because of ANA error. The width of

the envelope was calculated at the frequencies shown in the

figure and the separation is given by2r (see Fig. 2(a)), where r

can be expressed as

r = C1fl/2 (9)

since it is assumed to vary as the square root of the frequency.

When (9)isfit tothedata in the figure, c1 is found to be 0.012

per square root frequency.

Fig. 3(b) shows the phase of the reflection (including an

electrical delay of 2 ns) as a function of frequency. The delay is
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Fig. 3. (a) Measured reflection coefficient magnitude of a 7-mm connector

line termmated in a shielded open cmcuit. (b) Measured reflection coefficient

phase of a 7-mm connector line terminated in a shielded open circuit.

included to suppress the steep negative ramp (corresponding to

the first two terms in (8)) characteristic of such data, enabling the

oscillations to be more easily discerned. Equation (2) implies that

Iy I Cm be expressed in the form

lYl=c2f (lo)

Applying (10) and the fact that the envelope separation is given

by 41yl (Fig. 2b) to the data in Fig. 3(b) results in a Cz of 0.00074

rad/GHz.

The scattering parameters of the joint may now be calculated

from Cl, C2, and (3) and (4):

S1l = S22 = 0.017f1/2/2 - jO.00074f (11)

and

S21 = S12 = 1– 0.017f1/2/2 – jO.00074f. (12)

The corresponding lumped circuit parameters of Fig. l(b) maybe

determined through (1) and (2), if desired.

V. DISCUSSION

The measurement technique is still in its formative stages and

the description just presented glosses over a number of finer

points that require comment,

The first comment concerns how to combine the other defects

within a connector pair to obtain a complete description of the

pair as a microwave junction, and how to measure these other
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defects. In the present context, a joint is defined as a discontinu-

ity whose longitudinal extension is small compared to a wave-

length. J1 through J3 in Fig. l(a) are examples, where J1 is the

joint considered in the previous sections, and J2 and J3 are at the

center conductor bead supports. The joints are far enough apart

so that no sizeable overlapping between the higher order mode

fields generated by these defects takes place. Thus, reflections

from these joints may be combined by using standard transmis-

sion-line equations [4] to obtain the complete scattering descrip-

tion of the connector pair.

The procedure described in the previous sections is concerned

with the measurement of joint J1 in Fig. l(a) without J2 being

present and with joint J3 included as part of the ANA calibra-

tion. The question of measuring J1 and J2 simultaneously has

been partially answered in an earlier paper [1], which involved

the determination of the losses (i.e., the r ‘s) of these two joints

simultaneously. Inclusion of the reactive components (the y ‘s) in

the theory has not as yet been completed, but does not appear to

present a serious problem.

The second comment relates to the general validity of the

technique. Starting from an arbitrary tee or pi network and

reducing the results to first order, it can be shown that the joint

scattering parameters take the form

Sll = S22 = z/2– y (13)

and

s2, =s12=l–z/2–y (14)

where z and y are complex numbers with positive real parts, and

where z has the form of a normalized impedance and y that of a

normalized admittance. The equations show that the first-order

joint defined by this process is both reciprocal and symmetric.

The volumetric RF loss of most commercial beads is small

because the bead width is small and the loss tangent of the bead

material is also small. Furthermore, there is no physical evidence

to suggest an inductive shunting element between the conductors

for the type of joints encountered in a connector. Therefore, y

can be assumed to be positive and purely imaginary. On the other

hand, the most that can be said about z is that its imaginary part

is positive since there is no reason to assume a significant series

capacitive element (see the Appendix) in any of the joints. It is

convenient to summarize these observations in the following

equations:

z=r+ja (15)

and

y=jb (16)

where a and b are positive reaf numbers. By repeating the steps

leading to (7) and (8), it is possible to show that

o = –2pl+f#Hz [l-co s(2Bl-@ ]–!2b[l+cos(2p& @)].

(17)

1171is the same as in (7) and shows that the joint loss can be

determined as before ~1]. Equation [17), however, contains the

inductive component ja of z that combines with the capacitive

component @ of y. These components are easily separated,

however [5].

The third and final comment concerns how the envelopes in

Figs. 2 and 3 open up. The verticil separation between the

envelopes in Fig. 2(a) was assumed to increase as the square root

of the frequency and represents what would happen for the

theoretical, ideal joint. However, a closer examination of Fig. 3(a)

shows that the envelope opens up at a rate that is linear in the

frequency, implying that the insertion loss of the connector joint
os This is contr~ to what ‘sJ1 increases more rapidly than j“ .

generally thought. A number of other experiments show patterns

where the loss of J1 varies from the square root of the frequency

to a rate as high as ~28, and even more pathological behaviors. It

is the opinion of the author that this anomalous behavior is real,

and that it is due to interactions taking place inside the center

conductor joint J1 when the center conductors do not mate

squarely. More will be said concerning this phenomenon in a

subsequent paper.

Figs. 2(b) and 3(b) are in good agreement with the theoretical

rate of separation of their respective envelopes.

VI. CONCLUSIONS

A simple technique has been presented that will aid investiga-

tions of coaxial connectors and provide a better understanding of

the mechanisms responsible for their nonideal behavior. Al-

though the theory presented here applies to the simple type of

gap depicted in Fig. 1, there is reason to believe that the theory

and technique can be expanded to provide a powerful tool for

examining connector defects in general. This conclusion is sup-

ported by a growing body of experimental evidence. Connector

repeatability measurements using this technique have already

begun to bear fruit [5]. ‘

APPENDIX

Model

The discussion in Sections I-IV concerning the electrical ef-

fects of the gap constituting joint J1 was simplified in order to

concentrate on the technique under investigation. A more realis-

tic look at this joint is provided in Fig. 4(a), where the gap width

is A 1. The magnitude of the total current across the gap at radius

a is close to 1 (the conduction current on the center conductor

away from the gap) since the gap width is small and the magnetic

field at this radius is approximation II.. This total current breaks

down into a displacement component 1’ and a conduction

component 1“ in the gap. The fields in the gap can be approxi-

mated by a TEM radial waveguide mode [6] since the small width

A 1 prevents the higher order TM modes from penetrating a

significant distance into the gap.

Fig. 4(b) shows an equivalent circuit for the gap and two

approximations [7] that can be used to obtain an order-of-magni-

tude estimate of the circuit parameters C’ and L. The parame-

ters already discussed in conjunction with Fig. l(b) are shown as

dashed symbols and will be ignored in the following discussion.

When the TEM mode fields are inserted into the equations

appearing in the figure, the capacitive reactance (c’) turns out to

be at least five orders of magnitude larger than the inductive

reactance. Therefore, the capacitance in Fig. 4(b) can be dis-

carded, leading to the equivalent circuit in Fig. 4(c). The induc-

tance is expressed in nH, where ~ is in GHz and Al is in cm. The

reflection coefficient S1l corresponding to this discontinuity is

also shown in the figure. S1l is 0.012 for a maximum frequency

and gap width of 18 GHz and 0.018 cm (0.007 in), respectively.

Technique

The standing wave set up on the line by the open circuit has

the effect of alternately turning the resistance and the capacitors

in Fig. l(b) on and off as the frequency is varied. When the

frequency is such that cos(2/31 + ~) is equal to +1, the total

electric field E, at the gap (Fig. 5(a)) is twice the incident field
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Fig, 4. (a) A close look at the fields aud currents in the gap of Jourt J1.

(b) An equwafent circuit for (a). (c) The inductance L and reflection
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Fig. 5. (a) Longltudinaf view of the line and open clrcrrit where the frequency

is such that the total electric field at the gap m a maximum and the magnetic

field vauishes, (b) Longitudinal view where the frequency is such that the

total magnetic field at the gap is a maximum and the electric field vanishes.

(c) A closer view of the gap.

E,, and the magnetic field vanishes. The gap is so narrow that no

higher order modes penetrate it to reach the bottom of the gap,

but their presence in the vicinity of the gap causes the fringing

field shown in Fig. l(b) and results in the discontinuity capaci-

tances (last term in (8)). There is no current to penetrate the gap,

so the gap resistance causes no voltage drop and goes unnoticed.

When the frequency is such that cos (2/31++) is equal to – 1,

the total magnetic field is twice the incident field, and the electric

field vanishes (Fig. 5(b)). Now there are no electric field lines at

all and the discontinuity capacitances are unexcited. However,

the circulating magnetic field HT (Fig. 5(c)) causes a current that

samples the gap resistance r (last term in (7)). The current

encounters the two contact resistances at the bottom of the gap

that represent the metal-to-metal contacts in the actuaf connector

joint. Current flowing across these contacts causes a significant

loss, which is reflected in the normalized resistance r. The

distributed or skin loss on the sides of the gap can also be

included in r, although it is not significant compared to the

contact loss.
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Analysis of Waveguiding Structures Employing

Surface Magnetoplasmons by the

Finite-Element Method

NADER MOHSENIAN, MEMRER,IEEE,TERRY J. DELPH, AND

DONALD M. BOLLE, FELLOW, IEEE

Abstract —The dispersion relation and electromagnetic field distribu-

tions for a gyroelectcicafly loaded wavegniding strnctnre are obtained

utilizing finite-element techniques. The structure considered consists of

two layers, one a dielectric and the other a semiconductor, bounded by two

perfectly conducting planes. The finite-element solution for the lowest real

branches in the dispersion spectrum was compared against a numerical

solution of the exact dispersion equation, and excellent agreement was

found between the two. The strncture, exhWing nonreciprocal behavior,

provides a suitable canonical model for the design of circuit components

such as circulators, isolators, and phase shifters.

I. INTRODUCTION

The use of surface magnetoplasmons on semiconductor sub-

strates shows promise in the development of components that

can substitute for ferrite devices in the millimeter- and submilli-

meter-wave ranges [1]– [3]. Analytical studies of canonical struc-
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