252 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

An Artificial Immune System Architecture for
Computer Security Applications

Paul K. Harmer, Paul D. Williams, Gregg H. Gunsch, and Gary B. Lamont

Abstract—With increased global interconnectivity, reliance trusion signatures in order to update scanners with the means of
on e-commerce, network services, and Internet communication, detection. This approach results in a slow reaction time to new
computer security has become a necessity. Organizations mustyh eats and is quickly becoming too much of a burden to update
protect their systems from intrusion and computer-virus attacks. ith the i . ber of - di fi twork
Such protection must detect anomalous patterns by exploiting wi e'”CfeaS'”Q number ofnew viruses and inventive ne qu
known signatures while monitoring normal computer programs ~ attacks that are discovered each day. In the past, computer-virus
and network usage for abnormalities. Current antivirus and net- scan string updates were provided every two to three months; cur-
work intrusion detection (ID) solutions can become overwhelmed rently, vendors provide updates every few hours [4]. To overcome
by the burden of capturing and classifying new viral stains and g nroplem, a self-adaptive computer defense immune system

intrusion patterns. To overcome this problem, a self-adaptive dis- . . .
tributed agent-based defense immune system based on bioIogicaI(CDIS) based on biological strategies is developed.

strategies is developed within a hierarchical layered architecture. This paper presents the design of an artificial immune system
A prototype interactive system is designed, implemented in Java, (AlS) as applied to the computer-security domairhe purpose
anql tested. The results validate the use of a distributed-agent bio- of this paper is to describe research on deve|oping a virus-ori-
logical-system approach toward the computer-security problems onieq CDIS, supplemented with an initial investigation into the
of virus elimination and ID. oo ;
o feasibility of adapting CDIS for network intrusion detection
Index Terms—Agents, artificialimmune system, computer secu- (ID) [8]. Background into computer-virus detection and net-
rity, computer virus, intrusion detection. . . - . .
work ID are given in Sections Il and IV. Next, a string-matching
function is chosen that provides the necessary coverage and
I. INTRODUCTION specificity for these aspects of the computer-security problem
HE WORLD has become a more interconnected placg_ee.Sectlon V”?' This T"atCh'”g rule.|s deployed ywthm an AlS
]';1_rch|tecture. This architecture is defined and built based on an

Electronic_communication, e-commerce, network sel mune system model of operations defined in Section VIl
vices, and the Internet have become vital components ol y P)
Q

business strategies, government operations, and private co ?i:rsig:gg gfflt(c\?;fslamgggszr:(;mpllgtrglenrf(? dtSI(;l:gh t?ﬁ;f:
munications. Many organizations have become dependent 9 : pletely PP
the wired world for their daily activities. This interconnectivity

is taken, which allows for the introduction of multiple detector
has also brought forth those who wish to exploit it. Comput etnt t);pes Wh”_e tlﬁveragT_g the ((:jommc?n |nfraSstrutc.:turleXof_|t_rr1]e
security has, thus, become a necessity in the digital age. Sys r?tm cr>r c&ver|5|g d\/rv?&?r: 'nﬁi’ arnr rﬁpallr(t?eet rectrl10rt] r).vid €
While information dependence is increasing, the threat froﬂgste;amzngpg%zm featu?es esiec SZiti?)nu\(;lﬂ (é rfll'hpe czjetee:
malicious code, such as computer viruses, is also on the e 9 ():

The number of computer viruses has been increasing expont s studied in this research are for file infector viruses and state-

tially from their first appearance in 1986 to over 55 000 diﬁereA?ss packet-hased network intrusions. The results from system

strains identified today [3]. Viruses were once spread by shari it tmg are presented n Secuon Xil, W'th. particular investiga-
10N into the areas of efficiency and effectiveness.

disks; now, global connectivity allows malicious code to spre
farther and faster. Similarly, computer misuse through network
intrusion is on the rise.
Current computer-security solutions are “reactive.” They rely There are several computational techniques that look to
upon collecting and analyzing specimens of new viruses or ibiology for inspiration. Some common examples include
networks, evolutionary algorithms, and AISs or immunological
Manuscript received December 28, 2000; revised May 21, 2001. This qugmputatlon [5] The b'0|09|cal 'mmt_me SySt_em (BIS) h_as been
was supported by the Defensive Information Warfare Branch of the Air FortBe target of considerable research interest in the medical com-
Research Laboratory’s Information Directorate (AFRL/IFGB). This paper Fnunity from which several theories of system behavior have
based on P. K. Harmer's and P. D. Williams'’ theses, submitted in partial fulfilbﬁ d | d with the h fi ina h life. Th
ment of the requirements for Master of Science degrees at the Air Force Instit _en eveloped with the hope of improving uman_l €. Theuse
of Technology, Wright-Patterson AFB, OH. of immune system models to solve the computer-virus problem
‘P. K. Harmer is with the Air Force R_’esearch Laboratory, ergh_t-Pattersqﬁ]as been suggested by [5]' [6], and [9]_[11]_ Their application
Air Force Base, OH 45433 USA (e-mail: paul.harmer@wpafb.af.mil. h | h ise for ID [121. Further id ilizi
P. D. Williams is with the Air Intelligence Agency, Lackland Air Force Base, as a S0 shown promlsg or [] urther ideas on uti 'ng.a
TX 78236 USA (e-mail: paul.wiliams@Iackland.af.mil). multilayer model of the immune system for ID was proposed in
G. H. Gunsch and G. B. Lamont are with the Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH 45433 USA (e-mail: 1The paper assumes that the reader has a cursory understanding of biological
gregg.gunsch@afit.edu; gary.lamont@afit.edu). immune system processes. Those wishing more information in this field are
Publisher Item Identifier S 1089-778X(02)06069-1. referred to [5]-[7].

Il. ARTIFICIAL IMMUNE SYSTEMS

U.S. Government work not protected by U.S. copyright.

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 253

[13] to provide defense-in-depth. Immunological computatiomost commonly associated with the term computer virus. File
has also been applied to other problem domains, not all iofection viruses work by inserting their code into executable
which are in the computer-security field. Some of the moffides, just as the biological virus works by inserting its DNA code
interesting examples include anomaly detection in time serieso living cells [20]. The host file then executes the malicious
data [5], fault diagnosis [5], decision support systems [14¢pde on behalf of the virus. Boot sector viruses attach themselves
multioptimization problems [15], robust scheduling [16], antb specific areas of a disk that are loaded and executed on startup.
loan application fraud detection [17]. The similarity in all oBy placing its viral code into the boot sector of the disk, a virus
these applications is that they utilize the pattern-matching acan gain control of the computer immediately upon bootup.
“learning” mechanisms of the immune system model to pefhis allows the virus to execute before anything can detect its
form desired system features. A lot of theoretical groundworkistence [24]. The macrovirus is a section of code contained
in immunological computation has been completed, but onlywéthin an application document. The intent of this capability was
handful of AlSs have been built [12], [17], [18]. Additionally,to add automation capabilities to otherwise static documents. As
none have implemented detectors from multiple problemfurther boon to virus writers, macroviruses are much easier to
domains in order to provide a defense-in-depth approachwueite than before because macros use high-level languages and
computer security. do notrequire specific operating system knowledge. Our current
The BIS is made up of many different types of cells that al@DIS prototype is limited to file infector virus detection and
deployed in great numbers. These cells operate independerglynination.
yet in cooperation with each other through complex chemicalWorms are programs that execute independently with the
communication mechanisms in order to protect the body frodistinguishing feature that they utilize a computer network
foreign invasion. This highly parallel and distributed structure @f order to propagate themselves [22], [23]. They often take
the BIS suggests that an integrated architecture can be vievagldantage of security or communications protocol loopholes in
as a multiagent system (MAS), where separate functions ameler to spread [20]. The firstworms were built at the Xerox Palo
carried out by individual agents [14]. Furthermore, the gener<o Research Center. They were designed to perform useful
immune system features represent a model of adaptive procesgek in a distributed environment, such as finding idle resources
at the local level, with useful behavior emerging at the globf23]. These original worms would probably be called mobile
level [5]. This is similar to the description of MAS operationsgents today.
by the artificial intelligence community [19]. The Melissa virus is more accurately termed aworm as it used
the features of Microsoft Exchange e-mail in order to spread
itself across networks. More modern malicious code utilizes
a variety of techniques, blurring the distinction among forms:
Computer-virus detection is the process of finding malicioldimda uses e-mail as one of its several transport mechanisms,
programs residing on a computer system. This process is ca¥hibits viral propagation on infected machines, and provides
monly referred to as antivirus (AV) even though more entitieErojan horse capabilities [25].
than viruses are often looked for as part of the search process.
The term computer virus is often attached to unwanted cofle Nature of the Problem
that does malicious activities on its host computer. Applying the The most common method of identifying viruses are signa-
term in this fashion is imprecise and misleading as viruses atge strings. A 16-B string has become the defacto AV industry
actually only one form of “rogue code.” Malicious code can takstandard. Researchers at IBM have shown that 16 B is suffi-
the form of a Trojan horse, virus, or worm. cient to identify malicious code with a 0.5% false-positive rate
A Trojan horse is a program the masquerades as one pfDype | error) [9]. These 16 B must also be crafted so that
gram, while it actually performs an entirely different taskhey find known viruses, thereby minimizing the false-nega-
altogether [20]. Trojan horses are also programs planted aivé rate (Type Il error). The largest problem with creating a
run unbeknownst to the user or administrator to provide rew computer-virus immune system (CVIS) is the generation
“backdoor” onto the system. A Trojan horse can be placed omfithese signature strings or antibodies in an immune system.
system through cooperation by unwary users, e.g., by openifige problem is that only some of t256'¢ = 3.4 x 10*® com-
executable attachments to email. A popular example is the Chilhations identify one or more valid viruses. Furthermore, if a
of the Dead Cow’s “Back Orifice 2000,” a stealthy persistentalid string could be generated each microsecond, it would take
program that allows the perpetrator to remotely control many afserial computet.08 x 10%° years to generate them all. This
the functions of a compromised Windows-based system [21]methodology uses simple exhaustive search, but even the gener-
A computer virus is a program that can “infect” other proation of strings through machine learning techniques has been
grams by modifying them to include a possibly evolved versishown to be highly combinatoric [26]. In general, the genera-
of itself [22]. One distinguishing feature of viruses is that thegjon of strings and then testing their capabilities as virus identi-
are parasitic. They require a host to run them and to spread tHigrs is similar to the Boolean-satisfiability NP-complete (NPC)
viral code [23]. This is usually another executable program goblem [27]. In this problem, a Boolean function is known
though other hosts, such as disk boot sectors, can be infectg@.g., a function that describes one or more viruses) and the goal
Computer viruses are usually classified by their method & to find the instantiation of function variables that returns a
infection. The common subclasses of viruses are file infecttmie value from the function. There may be one, many, or even
boot sector, and macroviruses. The file infector is the typw valid variable assignments that return true. The problem then

I1l. COMPUTERVIRUS DETECTION

254 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

degenerates into enumerating all possibilities, which leads totésnet protocol (IP), internet control message protocol (ICMP),
classification as NPC. This indicates that a polynomial-time aimple network management protocol (SNMP), transmission
gorithm does not exist for generating antibodies, so an appraontrol protocol (TCP), user datagram protocol (UDP), hyper-
imation algorithm is the only choice. text transfer protocol (HTTP), and address resolution protocol
Another issue with generating all possible scan strings is f&RP)]. Each protocol is vulnerable to certain types of exploita-
taining themin memory or offline storage. Again, if 16-B stringsion; some are similar among protocols, but many are unique.
are used, storing all of the signatures would téke&'°x 16 Bx Second, there are many operating system, network service, and
1 MB)/(10° B) = 5.4 x 10** MB. Even with the removal of user-application vulnerabilities—intentional services, software
known invalid combinations, this is far too large for currenbugs, and error-check omissions—that provide exploitation op-
storage methods. portunities by unauthorized people or processes. These two fac-
An AIS approaches these problems through the use of gendoab together beget an enormous number of highly varied ap-
detectors that cover a wider area of the search space; howepssaches for abusing computing resources.
a parallel implementation of an antibody generation programThe most common and straightforward approach to ID ap-
is needed to reduce the high combinatoric burden and maklis the basic virus detection model: pattern matching against
the system practical. The large storage requirements can bearbrary of signatures. If a match is made, an alert is generated.
duced through creative methods, such as compression, butllséng a robust library can potentially produce a low false-neg-
sizes required also indicate the need for a distributed system.&tive rate; i.e., the ID system (IDS) would rarely fail to detect
nally, the increased connectivity of networked systems, whi&mown intrusions (Type Il errors). However, there are several
has aided virus spread in the past, can be used as a defensigblems with this approach. First, the amount of data and speed
weapon with a distributed CVIS. This not only provides a paat which it moves can outpace the ability of an IDS to monitor
allel framework for the antibody generators and a distributel of the data. The result is that the IDS effectively takes random
file system for their storage, but also provides the capabilitigamples and can miss key information. Second, signatures are
to eliminate intruders as they enter the system. A collectiygoduced reactively; rarely are signatures created prior to an ex-
antiviral self-defense organization is created by delivering inploitation being observed in the wild. Third, there is a very high
proved inoculations across the entire system. innocuous “noise” level on networks due to misconfigured ser-
There are many different forms of malicious code attackingces, user accidents, damaged/lost data packets, network man-
computer systems today. The variety and number of conteagement services, heartbeat information, and other activities un-
porary viruses makes complete detection difficult as shown bglated to intrusion attempts. These contribute to a very high
the combinatorics, although it is possible to design efficient sylalse-positive alert rate: detection of activities that match signa-
tems by utilizing distributed and parallel computational environures, but are not part of an attack (Type | errors).
ments. Many of the same problems and solutions can be foundt is this high false-positive rate that makes ID based on the

in the ID domain as well. recognition of a singular event ineffective. Alerts can be gener-
ated by the IDS, but reacting to every alert consumes enormous
IV. INTRUSION DETECTION time and resources, resulting in a self-inflicted denial of service.

Inits purest form, ID is the process of identifying the presenéaéphyS'C'an usually does not make a diagnosis based on asingle

of unauthorized access to an enterprise’s computing resourﬁso .:g%ﬂ;;g;;';ijé?;togz ?I\Seﬁilsgr?tser’orcr:]glstls[i)rl]e ?Slerretsg]i?:;
In practice, ID is broader and includes the detection of: ; . yzed. gentp! ng q '
not just to recognize the patterns of activity making up attack

D mlsuse/abuse—unf_;luthonzed activities by_ authon_z?) ofiles, but, more importantly, to attempt to determine intent.
users (e.g., accessing pornography, theft of informatiogygginy the most difficult aspect of ID is that legitimate usage
using corporate resources for personal gain); _shares many of the symptoms of unauthorized activity. Normal

2) reconnalssance—ldeterm|nat|on of systems and Serv'%%ﬁvity patterns on the protected systems need to be considered
that may be exploitable; . . : during the analysis process.

3) penetration attempt—unauthorized activity to gain aCCeSSthe correlation of multiple alerts requires maintenance of

to compl_mng resources, . state information. Each alert produced by a low-level detector
4) penetratlon.—successful access to computing resour%ﬁérem called a “sensor”) contains information about the pro-
by .unguthorlzed USers, - . tocol or command used plus other parameters that provide con-
5) trojanization—presence and activity of unauthorized pr?éxt, such as source and target addresses. Since multiple attacks
cesses, . . can occur simultaneously, related and unrelated alerts can be
6) denial of service—an aitack that obstructs legitimate aﬁénerated from multiple sensors and attacks can be distributed
cess to computing resources.) widely over time (among other factors), rigorous maintenance
For ease of discourse, the terms “intrusion” or “attack” args state information can be an enormous task. Multiple com-
used loosely to encompass any of the above conditions, exg§gfing hypotheses must be entertained in order to correlate alerts
where further clarification is needed. and deconflict activities, yet these hypotheses cannot be held in-
definitely lest partially completed attacks consume the analyst's
(human or automated) resources.
ID is a difficult problem for a variety of reasons. First, there In summary, ID is tasked with discerning the occurrence of
is a large number of communication protocols in use [e.g., iany of a large number of highly varied patterns of nefarious ac-

A. Nature of the Problem

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 255

tivity within a massive amount of authorized normal and ab- Self Strings (S)
normal, but innocuous, activity.
Itisunrealistic and self-defeating to attemptto solve allaspect:
of this problem at once, so we have concentrated on the proa(Generate : No | Detector Set
tive/predictive developmentof antibodies covering large portions| Random Strings ———@E—’ R)
of the network traffic space not populated with self data. Our pro- (Ry) Yes
totype ID component generates signatures for deploymentto ne
worksensorsandweintendthatthe responsesofthose sensorsv Rejected

be correlated by an analytical engine yet to be developed. The an-

tibodies use 320 bits for a signature, comprising 29 ofthe possilblg. 1. Negative-selection algorithm.

datafieldsin anetwork protocol packet (see Section VI-B). These

fields have a range of values from 1 to 32 bits. Limiting the pr@ pseudorandom number generator. Because of the algorithmic
tocols under consideration and ignoring for the moment the threi#ferences betweenthe AlS and the current static string methods,
large sequence numbers, the number of possible combinatiorisis unclear if the 16-B string length is appropriate for a CVIS.
dominated by TCP traffic &45 x 10°. Clearly, this event space Therefore, our experiments include an examination of string
defies deterministic search, so stochastic search with hefty glsmgth on the CVIS's effectiveness. Additionally, improvements
eralization is used to explore large sections of this space in tleethe random search method can be made, but they are not

development of useful antibodies. implemented currently. One technique would be to follow the
biological model. The BIS generates antibodies by choosing
V. SYMBOLIC PROBLEM DOMAIN random sections from five separate gene libraries [16]. In this

The major objective of our prototype system is to detect LRy, thg B cells are gblg to create more than 100 million unigue
existence of nonself patterns within a potentially larger set apt'bOd'es [29]', A §|m|Iar Process could use computer-virus
existing self patterns. The problem domain is over the\sef byte-fragment libraries combined in random ways to produce

finite-length symbol sequence. is typically represented as antibodies based on known nonself patterns. Variation in the
X e {0,1} or X € {0...255}/9 but the exact represen_antibody population or an adequate balance between known and

tation is an implementation detail. S&tcontains two subsets, randomly generation signatures is needed to avoid converging to
selfS C X and nonselfV ¢ X such thatS U N = X and only known signatures. This would in effect revert us back to the

S NN = [28]. For virus detection, the nonself patterns reF;s_lgnature-bzsed rgodel an_g ndegg\te the value of an AIS. 4
resent malicious viral code, while the self set is indicative of le- OUr PSeudorandom antibody detection strings are assumed to
gitimate benign programs. In an IDS, nonself patterns represpég%cert'f'ed as non;elf pat.terns via the negauve—sglecuon algo-
IP packets from a computer network attack, while self patterH&!m 301 [3f1]' Thllls algor]rlthg:SmONdeIs the |nt|era§:t|on and ‘;e'
are normal sanctioned network service transactions and nonﬁﬁeajppme”t of T cells in the 1S. 1 egatlvg selection is used to
licious background clutter. precensor the generated antibodies against all known self pat-

The task of the detection algorithm is the classification of dfms (see Fig. 1, _[30])‘ This_ guarantees that _false—positiw_a errors
input patternl € X as either self or nonself. Given an inpu 0 not occur against a static self as any antibody matching self
stringZ: I € {0,1}%, a detector seb: D = {a, @} is removed before fielding. Our system does not yet address the

wherea € {0,11%, k < I, i € X, a matching function Problem of a dynamic self space.
fifd,a) = {p: R|p > 0Ap < 1}, and a matching threshold

LW B. Network Intrusion Antibodies
¢, the classification as self or nonself can be made as

The antibodies for network intrusion are generated in the
same manner and censored via negative selection just as in the
AV detectors. However, the antibodies for network intrusion are

This detection methodology can generate two types of errolsnger and segregated because they utilize the IP packet struc-
Type |, or false-positive errors, and Type Il, or false-negativerres as a template. There are many types of protocols flowing
errors. A false-positive erraft occurs when a member of theon our networks. For the purposes of this system, only the three
self setS is incorrectly classified as malicious. Conversely, enost common protocols are monitored: TCP, UDP, and ICMP.
false-negative errof— is the classification of a member of theAll three of these protocols are layered on top of the IP. Network
nonself setV as benign intrusion antibodies in the CDIS are essentially signatures for

. protocol packets. The fields in each of the protocols are mapped
(I € 5N match(f, e I, D) = malicious) — §* onto the first 292 bits of a 320-bit binary string (see Table I).

malicious, f(I,a)>1—c¢

match(f, e, [, D) = {benign, otherwise.

(I € NNmatch(f,e I, D) =benign) — 6~ The last 28 bits are used to determine whether a particular field
is considered “valid” in the signature.
VI. ANTIBODY GENERATION The generated antibodies, whether AV or ID, are deployed

) o and compared to possible malicious attacks by a matching-rule
A. File Infector Antibodies function f. It is this function that provides the core function-

The antibodies for detecting file infections are simple bytality of the detection process. The proper selection of a pat-
strings. These patterns are compared to the bytes within the caemn-matching function is instrumental in reducing the Type |
puter file system. The signature bytes themselves are createchbyg Type Il errors.

256 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE |
NETWORK PACKET ANTIBODY MAPPING

Gene | Field

Possible Values | Gene Bits | Start Loc | Valid Bit | Comment
IP Fields (Common to all packets)

1 Protocol type TCP, UDP, ICMP | 2 [n/a 1,23 Corre-
spond to TCP,
UDP, ICMP
respectively. 0
corresponds to
dont-care
2 P Tdentification | 0-65535 16 2 292
number
3 IP Time to live | 0-255 8 18 203 Usunally < 128,
(TTL) small num-
bers are often
interesting
4 [P Flags 0-65535 16 26 201 2, 4 possible
: (and legal) all
other possibili-
ties suspect
5 IP Overall Packet | 0-65535 16 42 295
length
6 {P Source Address A | 0-255 8 58 296
7 1P Source Address B | 0-255 3 66 297
8 IP Source Address C | 0-255 8 74 298
9 [P Source Address D | 0-255 3 82 299
10 [P Dest. Address A 0-255 8 90 300
11 IP Dest. Address B 0-255 38 98 301
12 [P Dest. Address C 0-255 8 106 302
13 [P Dest. Address D 0-255 8 114 303
TCP Fields
11 TCP Src port 0-65535 16 122 301
15 TCP Dest port 0-65535 16 138 305
16 TCP Scquence num- | 0-4291967295 32 154 306
ber
17 TCP Next Scquence | 0-4291967295 32 186 307
number
18 TCP Ack number 0-1291967295 32 218 308
19 TCP Flags 0-255 8 250 309 The sum of the
Hags in dee
20 TCPCWR boolcan 1 258 310 1 = set, 0 = not
set
21 TCPECN_Echo boolcan 1 259 311
22 TCPUrgent boolcan 1 260 312
23 TCPAck boolcan 1 261 313
24 TCPPush boolcan 1 262 311
25 TCPReset boolcan 1 263 315
26 TCPSyn boolcan 1 264 316
27 TCPFin boolean 1 265 317
28 TCP Packet size 0-65535 16 266 318
29 TCP Data 0-2047 11 281 319 Not currently
used
UDP Fields
14 UDPSrcPort 0-65535 16 122 301
15 UDPDestPort 0-65535 16 138 305
16 UDPLength 0-65535 16 266 318
17 UDPData 0-2047 11 281 319 Not. currently
used
ICMP Fields
14 TCMP Type 0-255 3 122 301
15 ICMPCode 0-255 8 130 305
16 ICMPDatalength 0-65535 16 266 318
17 ICMPData 0-2047 11 281 319 Not currently
used
Gene Validity Fields (is a particular gene to be used?)
Gene 1 valid boolean 1 292 1 = gene valid, 0
= not valid
Gene 2 valid boolcan 1 293
Gence 3 valid boolean 1 294
Gene 28 valid boolcan 1 316
VII. PATTERN-MATCHING RULES ulations. This is accomplished through a search for features

common to members of the various populations or sets [32].
The BIS implements two core functions, the detection arthe BIS accomplishes this through the physical and chemical
elimination of pathogens, or harmful foreign invaders. This prdrinding of antibodies to antigen molecules. Because of the neg-
posed CDIS is no different. The crux of the problem is the detive-selection process, a match is a segregation of that molecule
tection of malicious entities that have penetrated the boundariet the set of nonself. In the computational domain, this process
of the system so that they cohabitate within a much larger sedfcompleted by string-matching rules; however, exact-equality
set. This is an application of pattern matching between a setRBifolean matching does not produce the coverage and flexibility
antibody scan strings and the set of input data. of the biological system. The model suggests using imperfect
Pattern recognition is a process by which input data are ddetectors to recognize nonself with a low false-positive rate and
criminated, not between individual patterns, but between pog-high probability of detection.

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 257

A. Matching Rules 1) Russel and Rao

The many pattern-matching functions come in two varieties: f= a]
distance measures, which express how different two sequences at+bt+ct+d
are, and similarity functions, which measure how alike they are 2) Jaccard and Needham
[33]. Intuitively, objects that are close together in the feature _ a
space must be similar, while those that are farther apart are dis- f= a+b+c

similar [33]. Those that are similar to a nonself pattern within 3) Kulzinski: A one has been added to the denominator of
a certain threshold can be classified as nonself. The matching the author’s equation to avoid division by zero errors. Due
rules investigated in this study utilize statistical, physical, and (g the definition oft andc, this occurs whenever there is
binary measures of distance or similarity. One statistically based 5 exact match
similarity measure is the correlation factor or correlation coef-

a

ficient. f= b+e+1

1) Statistical: The correlation coefficient produces a .
number between-1 and 1 that relates how similar the two 4) Sokal and Michener
input sequences are. It is defined as f= a+d)

I a+b+c+d
X, Ye{0...255}, N = 5 5) Rogers and Tanimoto
N - %
N S TS e R A ey rarit
Ei:l(P) Ei:l(P) 6) Yule

The most common implementation of this measurg?3s ad — be

which is somewhat easier to compute [33]. Other common f= ad + be’

matching rules operate at the bit level.]))))

2) Binary Distance: The correlation coefficient utilizes the TN final binary-distance function examined for system pat-
byte values of the input and antibody strings. However, at théfn matching is the-contiguous-bits matching rule [34]. This
lowest level these strings are sequences of bit values. Theref&y#€ attempts to model the strength of protein-antibody binding
it makes sense to utilize difference and similarity measures tf}t €quating longer substring matches with a higher affinity.
operate in the digital domain. The most obvious is the Hammiling this rule, stringt’ and stringl” are said to match if they
distance, which counts the number of bit features that are d¥dree in at least-contiguous locations
ferent between two strings. Taking the complement results in X: ABADCBARB
the number of bit positions that are alike [33] V: CAGDCBBA.

]\r .
Hamming similarity = Zi(Xi 3Y), XY e{o,1}V. In this example X an_d_Y match fqu < 3 [30]. _ 3
= T 3) Landscape-Affinity MatchingThe BIS “identifies”

. . . antigen by bonding with it physically and chemically. Only the
The Hamming distance is the most commonly used methggrrect inverse protein structure and chemical makeup binds

for measuring the distance between bit strings, but to be more, o high enough affinity to attach to an antibody or major
useful, several authors have proposed additional similarity mer"ﬁétocompatibility complex molecule.

sures that extend the Hamming distance to produce the relatiwlan most AISs, this binding is performed by bit or byte string

?umper of f?aturr(]a S fthl?t matc(;' ?r .d_iffer. [33]. These matChir},Q)mparisons [35]. Others extend bit matching to account for
unctions utilize the following definitions: imperfect matches by using the Hamming distance-opn-

X,Y € {0,1}V tiguous bits [12], [30]. Another extension is to present combi-
N natoric variations of the nonself string to the detector in order
a = Z G, G= L Xi= Yz =1 to extend the search space of a specific matching function [12],
= 0, otherwise [18]. All of these variations capture the chemical and physical

N L X1 Y —o matching process at a fairly high conceptual abstraction. Along
b= Z &, &= 0’ tiw_ oo with the historical matching rules, this study also introduces one
i=1 » omnenmse more type, dubbed landscape-affinity matching.

N 1. X.—=0. V. =1 In this methodology, the input strings are sampled as bytes
c= Z% Yi = 0’ ot;1erwi’se ’ and converted into positive integer values in order to generate
i=1 ’ a skyline, or landscape. The antibody strings are similarly rep-
N 1. X:=YV.=0 resented. The antibody and input landscapes are compared in a
d= Z bir i = { 0: otzherwizse : sliding window fashion (see Fig. 2).
=1

The comparison can be made in several ways that produce an

These basic measures are combined into many different siffinity measure. Those used are difference, slope, and phys-

ilarity functions with the goal of producing a better similarityical affinity. These measurements are then checked against a
coefficient. threshold value. If the affinity exceeds the threshold, a match

258 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Antibody:

15 206 120 2 15 206 120 2 35
Input:! ¢ 0 0 130 {33...{15 206 120 2|...91 130 0 ©

gt g

20*Log(S/N)
N
o

Affinity: 0.563 1.000

10 %
Fig. 2. Landscape-affinity-matching representation and windowing. 5 _‘—i_i—‘_i_f—i_T_i_I—i_I_ 1

0
0 5 0 0 5 0 5 0 e o & O o

(2 < A
AP P R g
& ®

é) '\ L O
KPS e [N A
3 = Match if ‘?‘&\ < & N ¥ {.&1}
10 :l—\: |::> Threshold < 4

Fig. 4. Average SNRs.

0+13+10=23 5+1240=17 2+0+2=4 is compared with the zero-padded input string using a sliding
window. This generates 35 measurements of difference or sim-
ilarity for each matching rule.
_ _)) _ All measurements are converted to similarity measurements
is declared (see Fig. 3). The input _strmg and the antibody 4fd normalized so that a value of one represents an exact match,
sequences of bytes comparddat a time while a zero is produced by the two most dissimilar strings. This
X, Yefo... 255}N. testisrunonfive randominputstringsto produce a statistical sam-
n?ﬁi/ing of the rules’ performance. In order to compare the effec-
tiveness of the various methods, an average signal-to-noise ratio
(SNR) is calculated, along with a function-value distribution.

Fig. 3. Physical landscape-affinity-matching methodology.

In the difference-matching rule, the differences in the stri
bytes are simply summed
N
faifterence = Z |(Xi = Y3l C. Results and Analysis
i=1 .) , .
The slope-matching rule looks at the differences in the TheISI(;I_R IS a measure oLa_mat;:?lng rullleﬁ ability to ic'
changes between bytes among the two stings curately discriminate a match signal from all the nonmatches
N1 (noise). It is calculated as ten times the log of the ratio of the
signal power to the average noise power. In order to equate with
= X1 — X)) — Y — Y0 L o R .
Jstope 2 (X i) = (Vi — V)| communications theory, in this application, the normalized rule
1=
function values are interpreted as voltages driving a normalized

Physical matching stacks the two strings like blocks and th?n istor. The result is a continuum of values from zero to one. A

calculates the resulting gaps between the two strings (see Flgde ection or a Boolean “match” value is an independent calcu-

N lation and determined during scanning if the signal strength is

Jotysical = E(Xi = Yi) 43 |ul greater than the predefined threshold value
. . N—-1
p = min(Vi, (X; —Y;)). S _ 20 % log <1> = 1 Z R
Landscape-affinity matching captures the ideas of matching N 1 N -1 im1

the biochemical, physical structure, and imperfect matchingThe results can be seen in Fig. 4. A large SNR indicates
with a threshold for activation. The differences between t@more Specific detector, while a low value is indicative of a
input landscape and the antibody “heights” can be likened ¢@neral detector. A specific detector is able to find a pathogen
the ease of chemical bonding between proteins. The closer {{jeh a low false-alarm rate. As the SNR decreases, the proba-
peaks and valleys are, the greater the likelihood of a bond a#ifity of generating a false-positive detection increases. How-

the higher the affinity. ever, a general detector is able to cover a larger subset of the
) L self/nonself space. This must be balanced with an appropriate
B. Comparison Criteria affinity threshold value. Together, the matching rule and the

A comprehensive theory on the probability of detection hakreshold define the specificity of the detection process. The in-
been developed for thecontiguous-bits matching rules in [34]. herent tradeoff is between accuracy and coverage.
This theory was verified with experimentation in the AV do- The Kulzinski measure produces a disproportionately large
main in [30]. Our approach for this system is to compare ti&NR. This measure would produce the most specific detector.
matching rules experimentally. This methodology was selectétie Hamming distance and the Sokal functions produce the
due to the relatively large number of rules and our desire to dewest SNR, pulling a signal only about 6 dB above the noise
lect a matching rule for a computer-security system, as oppodgkbr. These would result in much higher false-alarm rates on av-
to developing a complete theory behind each of the rules. énage. Interestingly, the landscape-affinity measures did not per-
order to compare these 12 selected matching rules, each orferism much better. The-contiguous-bits rule produced a SNR
calculated with a common data set. A random string of 32 B @ almost 17. The increased stringency in this rule compared to
generated as the input string. From this, 4 B are selected fréime Hamming distance, where matching can occur anywhere, re-
positions 11-14 to act as an antibody string. Therefore, a knoauits in a detection rule that is almost three times more specific
exact match is always present at position 14. The 4-B antibothan the Hamming distance.

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 259

Correlation Coefficient Squared Difference
0.35
05 03
04 0.25
03 02
02 +— 0.15 T
A R = S
0.05 + = 1
0 T T T T T T T T 0 - L l +!+

001 0.1- 021- 031- 041- 051- 061- 071- 081- 09141 004 041- 021- 031 041- 05 061~ 071- 081- 0911

02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Slope . Physical
0.4 — 03
035
o3 0.25 -
025 - F 02
02 - I 0.15
0.15 T
0.1 1 0 T
005 —F : 0.05 I
o I 1=+ * =] 0
001 011- 021- 031- 041- 051- 061- 071- 081- 091 © 001 011~ 021- 031~ 041- 051- 061- 071~ 081- 081
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Hamming Similarity R-Contiguous Bits
06 06
T
3.0.5 I 05
= 04 0.4 :
o
g 03 £ 03
© 02 02 T
® o1 04 1
0 + f t t t t 0 = t t t t T
001 011~ 021- 031- 041~ 051- 061- 071- 081- 091 001 011- 021- 031- 041- 051- 061- 071- 081- 0911

02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Normalized Matching Rule Value)

Fig. 5. Normalized-matching rule distribution functions, part I.

For this application, a balance between generality and spef€igs. 5 and 6. Ideally, the density function for this application
ficity in the detector is desired, with a tendency toward th&hould approximate Fig. 7. This corresponds to a SNR of 8.05
specific. A general detector allows the antibody to cover @&B. The ideal density function would allow for a low false-pos-
greater portion of the nonself region, at the expense of possiltiye rate with a smooth scaling in sensitivity as the detection
overlapping a small portion of self. Since we are using thtareshold is moved to the left. In the ideal case, the density func-
negative-selection approach, the impact of general detecttos value at 90%—100% should be/35) = 0.0286, which in-
would be a greater difficulty in generating the required numbéicates only one exact match and all other similarity values are
of antibodies (due to a higher probability of a match on selfless than 90%. Additionally, a low variability, especially in the
Additionally, small areas of nonself (holes) in the landscagegher affinity values, is desired. This would indicate consistent
could be overlooked [36]. Another design goal for the CDIS igerformance from the detector.
to increase the sensitivity of the detector by reducing the detecEvident in these histograms are the reasons for some of
tion threshold. This allows the system to increase its awarenéss SNR values as well as confirmation of the generality or
for a possible infection based upon outside notification or tlepecificity of the matching rules. The Kulzinski measure’s
recent occurrence of an attack. For this reason, a matchhigtogram dramatically depicts this rule’s ability to perform
rule with the ability to pull the signal out of the noise flooras a highly-specific detector. Likewise, thecontiguous-bits
but not too high, is desirable. A SNR between nine and 12rgle is quite heavily weighted at the lower affinity end. The
probably sufficient, which corresponds to the Rogers corriandscape-affinity physical measure produces the worst dis-
lation-coefficient-squared and the Jaccard measures. In ordeminator, with a naturally high false-positive frequency along
to down select among these, the function value distributiomsth large variability in all the other value bands. Additionally,
are plotted. it has an almost uniform distribution in value frequencies, indi-

The various values produced by the comparison functions a&aing poor discrimination. The Hamming distance and Sokal’s
scaled and plotted using histograms in order to understand theasure, which possess identical SNR values, also show their
density functions of the various measures. These can be seeaqgnality in their density functions. Further investigation reveals

260 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002
Russel Jaccard
04 0.6
0.35 05
03
025 04
0.2 T 03
0.15 02
W . 0.1 I
0.05 I : 1T_
o +—1— I I == 0 } . —E : ; f
00t 0.11- 021- 031- 041- 051- 061- 071- 081- 0911 001 011- 021- 031- 041- 051- 061- 071- 081- 00911
0.2 0.3 04 05 0.6 0.7 08 0.9 0.2 0.3 0.4 05 0.6 07 0.8 0.9
Kulzinski+1 Sokal
1.2 0.6
T
1 05 T
08 0.4
0.6 03 £
04 02
02 0.1 t
0 } } } . f + ; f 0 f ; ! | ; =
0-01 0.11- 021- 0.31- 041- 051- 061- 071- 081- 0911 001 011- 021- 031- 041- 051- 061- 071- 081- 0911
0.2 0.3 04 05 06 07 08 09 0.2 03 0.4 0.5 08 07 08 09
Rogers Yule
0.6 0.4
05 : 035 [
£ o4 oz I
8 03 02
S .
‘3 0.2 'T T 0.15 ‘T_ I -
1 0.1
& o4 005 —— - S I
0 + —F—y + } = 0 ! == I ' L t
001 011- 021- 031- 041- 051- 061- 071- 081- 0911 001 01t1- 021- 031- 041- 051- 0861- 071- 081- 0911
02 03 04 05 06 07 0.8 09 02 03 04 05 06 07 08 08
Normalized Matching Rule Value
Fig. 6. Normalized-matching rule distribution functions, part Il.
Ideal Distribution Function sitivity, but it has a very high false-positive frequency. This
03 false-alarm rate renders the correlation coefficient unacceptable.
2 025 For these reasons, the Rogers and Tanimoto measure is the best
g 0015 B choice. Its density function is a fairly good approximation of the
2 o : _ ideal case, but its greatest deficiency is the gap between a posi-
0.05 — ; — tive match and the next lowest frequency band. This either needs
0 ‘ ‘ ' to be accounted for with a scaling of the threshold reduction or
0-01 0.11- 021- 031- 041- 051- 061- 071- 081- 0911 . e
02 03 04 05 06 07 08 09 it allows for a sensitivity gap where the threshold would have
Normalized Matching Rule Value to pe reduced 40% pefore additional sensitivity is encountered.
_ _ o _ Heightened sensitivity could also be gained by the replacement
Fig. 7. ldeal-matching rule distribution function.

of the Rogers function with the Sokal function. This would give
the system the same performance as the Hamming distance if

that the Sokal and Michener function is equivalent to th@ore generality is required.
normalized Hamming similarity.
Based on their SNRs, Rogers, the correlation coefficient, anthtching rule for this application. It provides a good compro-

the Jaccard measurements are the most applicable to thisrafse between a specific versus a general detector and can also
plication. Both the Rogers and Jaccard rules produce distritaRccommodate increased sensitivity through detector threshold
tion functions that are only slightly better than the Hammingeduction, although a fairly large reduction is required.

distance in terms of specificity. These two also have large gapd-or each of these matching rules, additional mathematical op-
in their frequency distributions between an exact match of oreations such as squaring, scaling, or taking the absolute value
and the values of lesser matching affinity. The Rogers mezan have a dramatic effect on the density function histogram
sure is the best of the two because of its low variance in frand the SNR. The Yule discriminator produces a value between
guency values. The correlation-coefficient-squared produces-& and 1. Scaling with the absolute value produces a density
close-to-uniform distribution, which would scale well in senfunction that almost exactly matches the ideal case. However,

The Rogers and Tanimoto similarity measure is the best

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 261

g 12 o Coma | 1) Parallel and Distributed:The immune system is a mas-

s ! | —A—Hamming | sively parallel architecture with a diverse set of compo-
= —e— Jaccard L

§ 08 ————— | 0—Rogers | nents. These components are distributed throughout the
g 06 ~®-Ronig | body and communicate through chemical signals.

[. . . .

B 04 1 2) Multilayered:No single mechanism offers complete im-

2 02 L munity. Each layer operates independently, yet also in
§ ' concert with all the other components, to provide de-
2 0 O

fense-in-depth.

3) AutonomousEach entity of the immune system operates
under independent control. There is no central authority
and hence no single point of failure. The multitude of
independent agents work together resulting in the emer-

this folding of the density values about the origin produces in- gent behavior of the immune system.

valid results because a value-et, the result of two completely ~ 4) Imperfect DetectionA detection event does not require
dissimilar strings, then becomes equal to an exact match. Other ~ an single exact match, but rather, the exceeding of an
items to consider are the matching methodology and the sensi- affinity threshold. Imprecise detectors allow for gener-
tivity of the measures. The-contiguous-bits measure is highly ality in the matching process, which further allows each
sensitive to bit changes near the middle of the string, while less ~ detector to cover a larger subset of the nonself space.
sensitive at the outer edges. One bit flip in the middle can cutthe 5) Safety:The system contains checks-and-balances, such
measure’s value in half, while an end bit change only decreases as costimulation or a second confirmation signal, and
the measure by 1. This could be overcome if wrapping of the activation thresholds to ensure that detection errors are

Offset

Fig. 8. Output values using a 4-B block comparison.

string is allowed. Finally, the matching methodology, whether minimized.

block compare or sliding window, can produce very different 6) Diversity: Diversity in the composition of each indi-
results. By only comparing in successid&bit blocks, infor- vidual's immune system ensures that the entire popu-
mation is lost (see Fig. 8). Calculations of the effect of block lation does not succumb to the same single pathogen.
size on information loss show exactly this [36]. Most of our Additionally, each immune system cell only carries one

matching functions completely miss the exact match at position ~ form of detector. A large population of cells with a di-
14 because it is sandwiched between two successive 4-B blocks. verse set of receptor types enables the body to cover a
The correlation coefficient comes close due to a false-positive large portion of the nonself space.

match at position 16. It is hypothesized that the block compare 7) Resource Optimizatiort is combinatorically expensive
methodology would only be useful in reduced instruction set and too resource intensive to maintain a complete set of
computers, where instructions and data are aligned on prede- nonself detectors. Through the use of programmed cell
termined boundaries. The chunk size would have to be exactly ~ death and cell division, the system maintains a random
matched to the processor word size to be effective. Indeed, the ~ sampling of the search space at any one time.

entropy calculations in [36] show that local minima occur atin- 8) Self/Nonself Detectiorithrough nonself receptor death
struction-size (4-B) boundaries. However, in complex instruc- and generation, the immune system has the ability to
tion set computers (those running Microsoft DOS and Win- detect and respond to the presence of pathogens, even
dows variants are host to the greatest number of viruses), in- those that have not been encountered before.

struction length is variable. Therefore, using a block compare 9) Selective Responsafter a detection, chemical signals
strategy would miss important instruction and data structures. ~ and the identification method effectively classify the
Conversely, for scanning packets, fields within the data stream antigen. This determines the exact response to an
are reserved for specific values. Therefore, block comparisonin infection.

this problem domain makes sense. 10) Memory:Memory B cells enable the immune system to
“remember” past infections and prime the system for an
improved response upon later infections by the same or
similar antigen.

The components, processes, and results of the BIS show i 1) Adaptive:The system evolves through clonal selection
to be an effective model for self-defense. It is desirable to con- and hypermutation to improve the antigen recognition

struct a CDIS based on this model in order to overcome the reac- capabilities and therefore improve the overall system
tive, nonadaptive, centralized, and monolithic nature of current performance.

computer-security solutions. However, the fundamental differ-

ences between biological and digital systems make a mapping

between these domains difficult. B. Artificial Immune System Model

VIII. | MMUNE-SYSTEM MODEL DEVELOPMENT

)) At a high level of abstraction, the main structures of the im-
A. Biological Immune System Features mune system map logically into information system entities (see
In order to construct an effective isomorphism, the followin&ig. 9). The BIS correlates to a CDIS, whose function is to
features, functions, and organizing principles [37], [38] of thedetect and eliminate digitally malicious pathogens. These anti-
BIS must be understood. genic programs and network packets are made up of symbolic

262 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE I
BIOLOGICAL-TO-COMPUTATION DOMAIN MAPPING

Immune System Information System

Parallel & Distributed | Distributed system software utilizing data network
communications. Detection and elimination activities operate
in parallel.

Multi-layered Multiple detector types monitor various input sources (email,
file system, network packets, etc.). Policy guidance in order to
implement barriers to initial infection (regular vaccinations, no
executables in email, etc.).

Autonomous A multiagent system of autonomous software agents.

Imperfect Detection Detectors utilize partial string matching functions with an
affinity threshold.

Safety Costimulation through detection alarm validation to reduce
false positive errors.

Diversity Each detector node generates a statistically unique set of

non-self detectors.

Resource Optimization | The detector set repertoire is continually resampled by
reinitializing detector strings that are not activated within a
certain time frame.

Self/Non-self Detection | Utilize the negative-selection algorithm to censor detector
strings so that only non-self patterns remain. Employ these
patterns through input source scanning.

Memory, Adaption Retain detector strings that effectively match non-self. Upon
multiple separate detector matches, only retain those with the
highest affinity.

Selective Response Eliminate malicious activity by the best means available, such as
repair, deletion/replacement, quarantine, or port blocking.

Immune system — > ODBS also requires a costimulation signal in order to reduce false-pos-
. . itive errors. A confirmed valid detection results in a selective re-
Pathogens (antigens) Computer viruses L. . . .
~ sponse that utilizes the best means available, either repair, dele-
Netwaork intrusions tion, or quarantine for files or port blocking for intrusions. A
B-cells, T-cells, and repair can occur if an exact classification of the infecting virus
antibodies —> Detectors can be made and a known “antidote” algorithm is available. Oth-
] erwise, the infected file must be deleted or immobilized (quar-
Proteins ———— Strings antined) in order to not pose a risk to the infected system or its
neighbors.

Antibody/antigen binding ——— Pattern matching

Fig. 9. Biological to computational domain top-level mapping. C. System Logical Hierarchy

The deployment of an agent-based CDIS should be dis-
ibuted with redundant links and no centralized control in order
to realize the fault tolerance and no-single-point-of-failure

string (i.e., bits, bytes, or words) patterns that detection algtrr)
rithms search for by employing pattern-matching functions.
The previously identified BIS features, functions, and org

BIS suggest a distributed MAS utilizing a diverse array of agep}
detectors. These detectors maintain “antibody” search stri

that are censored at creation via the negative-selection al
rithm. The detectors are deployed with a pattern-matching fur]

tion thgt produces a_relative_affinity based on the similarity ommunities, and individuals (see Table Ill). The assignment
the antibody and antigen stnng_s. . . of functionality to the three layers borrows from the structure
If a detector exceeds an affinity threshold, then it is activated,, | operation of the self-adaptive CVIS [6]. Similar layered

.If multiple an_tibo_dy strings are activated,.“affinity maturation” rchitectures can be found in the Computer Health System [26]
is used to maintain only those detector strings that best match %ﬁ% Dasgupta’s general ID framework [13]

malicious code. This process and the “programmed cell death”
of nonactivated strings results in a continual searching of the
nonself space along with a retention of only the best matching a) provides health status of the community;

antibody strings. A match that exceeds the affinity threshold b) identifies problems, durations, trends, and locations;

. 10). These communications links need to be encrypted

participants authenticated to ensure system integrity. This
yered hierarchy is divided into the system, network, and local
vels that map to a larger biological abstraction of populations,

) System Level:

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE

Syatem Level iiEis s

- Siniues Codleciion - Resource Request

- Mlietric Cieneralion - Slatus
Information Sharing

- Resgurce Warehouse I Resnurce

Metwork Livel / 3& —

- Conerdl Local Activiles -
Callect Local Stanes f B T - User Iniernciion

- Dispenss Vaccinations - Wirng Alder
- User Imterface

Lical Level Resuarce Reguesl
".-ul_ls Dem'.ilun - User Internctian
- Sysem Response Wirus Alert
= Bystem Memaory - Resares
Wirus Alen

Fig. 10. Model logical hierarchy

263

Antibodies
Randomly Created
§ 01010101111...11011

| Negative-Selection |

Affinity Maturation
(optional)

¥

A

Detection
Not Match Event

Yes

Extend Lifetime

Fig. 11. Detector string lifecycle model.

TABLE Il
SYSTEM HIERARCHY DOMAIN COMPARISON
Level | Network | Biological
System Internet Population
Network Subnet Community
Local IP Individual

IX. DOMAIN-LEVEL DESIGN

The domain-level design involves defining agents and their
interactions. This process is accomplished through use-case
modeling. The biological, system hierarchy, and local models

of operation imply a suite of operations performed by a

federation of interacting agents. The identified operations of a
c) promotes system health awareness by providing prc?omputer _security AIS are the following.

vention information and sharing community status,
thresholds, and vaccinations;
d) provides a global storehouse for memory detectors.

2) Network Level:

a) focuses on the local community of machines;

b) sets system priorities by controlling activation thresh-
olds and system responses;

c) collects local system status;

d) reports local status to the system level;

e) dispenses vaccinations and preventative information.

3) Local Level:

a) responsible for detection, response, and memory;

b) implements innate and acquired immunity through
self/nonself detection;

c) generates infection warnings;

d) implements local memory.

D. Local Model

Atthe local level, detectors encompass the featurésaxlls,
T cells, and antibodies into a unified detection entity. In order to
reduce the overhead of maintaining multiple separate instances
of detector objects each with a separate antigen receptor, each

1) Generate Nonself Strings:

a) the generator creates a nonself detector string;

b) the generator tests this string against all known self;

c) if amatch on self occurs, the string is destroyed and
a new string is generated. This process is repeated
until no match occurs and the string graduates to an
immature state;

d) if a detector string is set to memory type, the gen-
erator adds this string to nonvolatile storage;

e) the generator logs all actions performed.

2) Detect Foreign Bodies:

a) the detector opens the input source;

b) the detector performs pattern matching using one or
more generated strings;

c¢) ifamatch occurs that exceeds the affinity threshold,
the detector raises a warning and stores a pointer to
the offending entity;

d) after a designated time period, if a detector string
has not been elevated to a memory type, the de-
tector destroys the detector string and signals the
generator to generate a new one;

e) the detector logs all actions performed.

detector contains a set of detector strings. These strings are inis) Monitor Warmings:

tially censored via negative selection and also have a finite life-
time, unless they are promoted to a memory “cell.” False-posi-
tive errors are reduced through an affinity threshold and an ex-
ternal costimulation requirement. These processes infer the an-
tibody scan string lifecycle model (see Fig. 11) introduced by
[12] and expanded upon in [2] and [8].

a) the monitor coordinates the activities of the local
agents;

b) if a warning message is received, the monitor raises
an alarm and signals the helper;

c¢) ifan alarmis received from an adjacent monitor, the
local monitor decreases the local affinity threshold;

264 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

d) the monitor communicates the local status to the Generate Non-self Strings ~————— Antibody
controller; Detect Foreign Bodies ————— Detector
e) the monitor logs all actions performed. Monitor Warnings » Monitor
4) Costimulation: Costimulation ——— Helper

a) ifanalarmisraised, the helper reports the alarm and Classify
asks for costimulation;

—— Classifier

Kill/Remove Foreign Body

b) if no costimulation is received or a negative costim- Repai > Cleaner
ulation is received, the helper signals the detector epatt
to destroy the detector string; System Control & Reporting —————— Controller

¢) if costimulation is received, the helper signals th
classifier and signals the detector to graduate th
detector string from immature to memory state;
d) the helper logs all actions performed. renders it unexecutable or routs network packets to
5) Classify: a honey.pot;)
g) the repairer logs all actions performed.

|€q. 12. Decomposition of use cases to agents.

a) the classifier gets the pointer to the malicious entity

from the detector: 8) System Control and Reporting:

b) the classifier con;pares the data bits with known a) the controller provides metrics to the administrator
virus signatures or network intrusions; on system operation;

¢) if a match is found, the classifier signals the re- b) the controller provides the health status of the com-
pairer; munity; . S .

d) if no match is found, the classifier signals the killer; c) the contr_oller provides preventative information to

e) the classifier logs all actions performed. the monitors;

d) the controller coordinates information passing be-
tween nonlocal monitors;

a) the killer notifies the helper that no known cure is e) the controller logs all actions performed.
available; The design of agent types is completed by decomposing the

b) the killer asks the helper to confirm the deletion ofjse cases into individual agents. A base set of seven agent types
the infected file, blocking of the port, or the shungre identified and the mapping of use-cases to agents can be seen
ning of an IP address range; in Fig. 12.

c) if a confirmation is received, the killer deletes the The antibody agent encapsulates the generation and mainte-
file or updates the firewall rules; nance of search strings. The detector agent uses the services of

d) if no confirmation is received, the killer asks themultiple antibodies in order to scan an input string for mali-
helper to confirm the quarantining of the maliciougious code or network intrusion signatures. The monitor con-
code or the routing of traffic to a honey pot; trols the local area detection thresholds, communicates with the

e) if no confirmation for quarantine is received, theontroller and other local monitors, and generates alarms to be
killer warns the administrator of the presence o4cted upon by helper agents. Helpers perform the tasks of inter-
active malicious code on the system; facing with the administrator, such as soliciting costimulation

f) if confirmation for quarantine is received, the killerin order to overcome the problems of imperfect detector strings.
moves the infected file to a safe location and rerglassifiers identify the exact infector or attack responsible and
ders it unexecutable; send the appropriate cleaner to fix the problem. Cleaners re-

g) the killer logs all actions performed. move the virus or network attacks from the system using the

6) Remove/Kill Foreign Body:

7) Repair: best means available, repair, deletion, quarantine, or shunning.
a) the repairer notifies the administrator that a know-lqhe definition of agent types concludes with assigning goals and
cure is available: services to the individual agents.
b) the repairer asks the administrator to confirm the 11e @gents with their goals and services can be seen in
application of the repair: Table IV. The services provided by the agents are requested
c) if a confirmation is receiv’ed the repairer repairs th@rough interactions with other agents. These interactions are
file. or resets the connectio’n' carried out by message passing “conversations.”

d) if no confirmation is recieved, the repairer asks the ,
helper to confirm the quarantining of the malicioud: Agent Conversations

code; Agent “conversations” define possible interactions between
e) if no confirmation for quarantine is received, thegents [19]. Conversations are used by an agent to request the
repairer warns the administrator of the presence sérvices of another in order to fulfill its goals. Through the coor-
active malicious code or active network attack odinated use of each other’s services, the CDIS as a whole is able
the system; to detect, identify, and remove malicious code from the system.
f) if confirmation for quarantine is received, the re-The required coordination is accomplished through conversa-
pairer moves the infected file to a safe location antions.

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE

265

TABLE IV
AGENTS GOALS, AND SERVICES
Agent [Goals [Services
Antibody | Generate, maintain, and store valid scan Generate
strings Graduate to memory
Destroy scan string
Detector Detect malicious code or network attacks Scan input source
at the input source Reccive vaccination
Update detection threshold
Destroy antibody string
Graduatc antibody string to memory,
Get pointer to input source
Monitor Coordinate the actions of a local Reccive information from a Controller
neighborhood of agents Send, process, and receive alarm mcssages
Receive warning messages
Update detector detection thresholds
Helper Communicate with the system Receive system information
user/administrator Reccive costimualtion
Receive action confirmation
Classifier Tmplement the system response to an Tdentify malicious agent
infection or attack
Killer Remove viral infections or network attacks | Delete malicious input
Repairer Repair viral infections or network attacks Repair malicious input
Controller | Coordinate global system operation Receive monitor status messages
Gencrate system operation metrics
TABLE V
AGENTS AND THEIR CONVERSATIONS
Conversation Initiator Receiver | Description
cRaiseWarning Detector Monitor Notify of a possible viral infection.
cUpdateThreshold | Monitor Detector An infection has occurred in an adjacent node, reduce
the detection threshold to increase awareness.
cCostimulation Monitor Detector | A warning has been validated (not validated).
cVaccination Controller Monitor Vaccinate detectors with this string.
Monitor Detector
cSendMessage Controller, Helper Notify the System level administrator with the at-
Classifier, tached text.
Monitor
Controller Monitor Notify the Network level administrator with the at-
tached text.
cStatus Controller Helper Display system status to the administrator.
Monitor Controller | Send the Network level status to the System level.
cRaiseAlarm Monitor Helper Ask for costimulation.
cConfirmation Classifier Helper Ask for verification of virus removal actions.
cPassFilePointer Detector Classifier | Pass the Classifier the infection location.

The conversations are developed from the use cases, wHarge amounts of data (conceivably the whole disk) across a net-
interagent interactions are described. Each interaction becomesk. The network intrusion detectors would need to be placed
a conversation or part of a more complex interaction. Than a network border machine, probably just behind a firewall.
use-case interactions generate the conversations showrinigeneral, attacks or infections are rare, so detectors run locally
Table V. and send messages to their associated monitors in order to min-

. imize network traffic. Due to input—output (I/O) considerations,
B. System Design the classifiers and killers should also be located local to the input

The system can be defined as a set of any number of differepurce. These agents perform file operations or update firewall
agent types [19]. The minimal set would be a monitor andsgttings, which can induce considerable network loading if done
detector. However, a realistic system would include multiple iiemotely.
stances of all the agent types running on distributed nodes. A major system consideration is the need for low resource

The efficient mapping of agents to physical machines requiregerhead. The CDIS should be unobtrusive to the user. Because
the considerations of parallel algorithm design. This is acconfections and detections are rare, helpers, kKillers, and cleaners
plished through two major components: 1) the identification @fe not used often. Therefore, in order to not waste central pro-
parallel components and 2) the mapping of tasks to processorsessing unit (CPU) cycles or memory on busy waiting, these
minimize communication [39]. The division of tasks into thosagents are instantiated only when the need arises. Helpers only
that can operate concurrently occurs as part of the agent decéend messages and perform costimulation. Itis logical that they
position. The second part of a good parallel agent deployméagt colocated with the monitor for simplified user interaction.
is the consideration of communications costs. For example, fidl these considerations are embodied in an example physical
detectors need to be local to their file system to avoid passidgployment diagram (see Fig. 13).

266 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Controller message message
Detector /' handler handler ‘\\
Helper [
receive receive \
! message message |
\ /
< - - \ \ 4 v Y,
Monitor Monitor Monitor S | t1 | 2
Detector Detector Detector / agen aget N\
Helper Helper / 4+ 4 \
{ method . method I
calls make connection & calls)
\ send initial message

- /
"{ conversation [¢ »| conversation |‘
send/read message

—— >
thread/subobject creation

'lol‘l
Im
Detector
Classifier
Killer

Detector
Classifier
Repairer

Fig. 14. AgentMOM operation.

messages between each other, within possibly multiple sepa-
rate conversations. A communication layer that supports mul-
tiple channels over a single connection would be ideal.

X. AGENT COMMUNICATIONS The system is designed as a collaborating federation of

agents. These agents could conceivably join or leave the group

This CDIS is designed as a multiagent system. These ach!'any time; for instance, if workstations were turned off at the

tonomous system entities collaborate with each other in orderetHd of the day. For this reason, it is desired that the commu-

produce an immune system behavior. This collaboration, whig.tions library supports the ability to join and separate from

is inherent in distributed multiagent systems, requires the use system, or subscribe and unsubscribe to message-passing
a network backbone and a communications software layer. T&‘F‘annels.

Java language was chosen for this project because it was dei:inally
signed to operate over networks and, hence, provides comp ’
hensive network communication support. However, low-lev
TCP/IP socket construction, manipulation, and optimization

not the goal of this research. In order to develop the distribut beyond the scope of this prototype, but would be necessary
agent-based CDIS prototype, a communications library that "an actual deployment ’

stracts away the low-level details of network communication Along with this diverse set of functional requirements, a com-

IS desired. Ther.e are many approaches to this problem of qlf?ﬂnications layer that is easy to use and understand is desired.
tr!bu_ted computing, including shared memory, Message passipflis tacilitates later understanding and expansion of the design.
dlstrlbu_ted objects, a_nd qgent_development k|ts_. .. Two communications systems are selected to implementation
The ideal communications library would provide an efficienl,e cp|s multiagent communications. The CDIS communica-
abstraction above the low-level implementation issues whily,q infrastructure and agent messaging components are real-
supporting the needs of agent collaboration, the immune systenyy by combining the strengths of message-oriented middle-

model, and the desire for fast prototyping. Foremost is the .. (MOM) and the Java Shared Data Toolkit (JSDT).
need for low startup and transmission overhead. The bottleneck

in many distributed applications is the communication time.
In order to further minimize communication costs or to nd/f\' AgentMOM
undo the efforts of effective agent decomposition, an efficient AgentMOM is a communications framework developed
communications library is required. by the AFIT Agent Research Group [40]. It is designed to
The needs of the agent design require the use of one-to-axglicitly implement the communications required in MASs
and one-to-many send routines. For example, vaccinatiaarsgineering-designed architectures. Although agentMOM is
should be broadcast to all the appropriate detector types, wh#emed as a MOM for agents, it is actually devoid of mid-
virus detection warnings need only be sent from a single AMleware services commonly associated with MOMs, such as
detector to a monitor agent. A messaging system that only peastomatic message routing or queuing. However, it has been
vides one-to-one capabilities could be used by making multigbeoven effective for implementing agent conversations.
sends to a list of recipients, but this would be less efficient, Agents utilizing this framework implement two components:
especially in a local area network (LAN) environment, wherg) the message handler and 2) the conversation (see Fig. 14).
packets are broadcast to all nodes anyway. Agent communication occurs via conversations in a multiagent
On the receive side, asynchronous messaging is desired.systems engineering environment. When an agent wants to col-
infection and later detection of the malicious code occurs witHaborate, it begins a conversation as a separate thread. The ini-
relatively low frequency. Responses to an infection are drivéial message is sent across a socket connection to the recip-
from the detection event. Therefore, an asynchronous eveent's message handler. The message handler monitors a local
driven messaging system is desired. Next, agents can pass tipesefor incoming messages, which it passes on to an agent's

Fig. 13. Agent deployment diagram.

with an eye to the future, the system should be able

incorporate a security layer. In order to make a fielded system

fesistant to infiltration or spoofing, encryption of messages and
authentication of agents would be required. Such features

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 267

receiveMessagmethod. TheeceiveMessageutine processes System Session

that message and, if appropriate, begins the other side of th (T~ «oiler
conversation in a separate thread. After that initial contact, the \
Channel

conversation is handled by the two conversation threads. Uti-
lizing threads for conversations eliminates agent busy waiting - =\
during blocking communication calls.]M"’:‘t"rﬁ'—‘ Momtor}

Messages in this framework are sent as the content ir \ / Local Session

peer-to-peer conversations. AgentMOM does not directly sup- Monitor Detector
port one-to-many multicast messaging. This would have to be

. 1 /
simulated by using multiple one-to-one calls. The agentMOM e
’Helper[(Clasmﬁcr‘
-Detector

Network Session

architecture utilizes asynchronous event-driven message

and multichannel messaging is accommodated via multiple
conversations all running as separate threads. AgentMOM doe
not use subscription-based channels, instead conversations are
initiated and torn down as required. This is potentially mongg. 15. Session-level logical view.
efficient if conversations are infrequent, as is the case with
those initiated on virus detection. This lack of a subscriptic

service also alludes to agentMOM’s low level of abstractior/ a \
gentl agent2
Aot | [Logen2 K

AgentMOM requires the programmer to specify socket ar / A py
dresses and ports. However, because operations are at | method method ‘,
level, performance gains can be realized through tailoring | calls Channel calls |

the operations to the exact problem domain. Additionally, th ‘I conversation II: Trend =|| conversation I‘
facilitates the addition of extra functionality. For instance, ¢ sendiead message

tcrgislfxﬁ;lt ;regglrjlté/ |§ ;Sci)lt implicitly offered; however, 'Fhe socke \ Session Ire:d/-;bobjea ereatio y
y be replaced by one that implemer
secure socket layer (SSL).
AgentMOM offers a medium-level abstraction for agenffi9- 16- Channel-level logical view.
communication. Instead of middleware services, as the name
implies, the library provides base classes and functionali@/channel consumerdataReceivednethod is called when a
to the individual agents. AgentMOM partially defines thénessage arrives, thereby providing an event driven operational
structure of the agents themselves, not just the communicationgdel. Channel consumers indicate their interest in a particular
mechanisms. For instance, the passing of received message&gsgsion:channel combination by subscribing to it. Additionally,
an agent'seceiveMessagmethod is specified. An additionalthe library supports managed sessions. A session manager
benefit of the lower abstraction is performance improvemergtan invite clients to join a session channel or even expel them
gained by a reduced number of object layers as well as thiem an existing connection. Inherent to a managed session is
capability for implementation tailoring. AgentMOM providesa security layer consisting of a challenge/reply authentication
an ideal architecture and agent functional description fbetween the manager and the joining client. Additional security
implementing conversations, but it lacks some communicatiog@n be added by utilizing a SSL instead of regular, unsecure
services desired for our system. Therefore, its overall architegcket connections. Utilizing this capability is as simple as
ture is combined with the JSDT. adding two source code lines at the beginning of a JSDT
application.

B. Java Shared Data Toolkit

The JSDT is a communications library that is designed fo €VIS Communications Design
support collaborative applications [41]. This set of classes pro-The JSDT constructs are combined with the agentMOM ar-
vides an abstraction above the basic networking functionality ¢bitecture to provide a hierarchical communications network
offer communication sessions between objects, with each stmt supports the system, network, and local CVIS levels (see
sion capable of supporting multiple separate data channels. Beetion VIII-C). By utilizing the JSDT session constructs, the
low-level networking communication can utilize sockets, hyimplementation can create multiple sessions to logically isolate
pertext transfer protocol (HTTP), light-weight reliable multiconversations at the appropriate level (see Fig. 15).
cast package, or remote method invocation for its basic con-The system-level session encompasses the regional (or
nection. The exact method can be specified by the programngéwbal) controller agents and their assigned network monitors.
during session creation. Since most of these protocols are bAiltthe network level, various sessions connect local Monitors
on sockets, it makes sense to utilize the basic socket for effi- order to pass on virus epidemic or large-scale network
ciency. attack warning messages. Finally, many local sessions connect

This architecture can efficiently support multicast messag#se monitors to their assigned agents. Within these sessions,
with point-to-point being a special case. There is also supponultiple channels are created in order to carry on interagent
for both synchronous and asynchronous message deliveymmunications (see Fig. 16). Each of these conversations is
with the latter being the default. In the asynchronous modejplemented as a separate thread.

268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE VI
TESTINPUTS
Number | Description | Purpose
1 Self - Randomly generated Does CDIS operate in a large search
Non-self - Randomly generated | space?
2 Self - Application program suite | Does CDIS operate correctly in a real
Non-self - EICAR test program | world environment? :
3 Self - Application program suite | Comparison of this CDIS to other
Non-self - TIMID virus research.
4 Self - LL Training set Does CDIS operate correctly in a real
Non-self - Nessus probes world environment?

The operation of conversations are based on agentMOM con-3) Number of antibodies in a detectahe number of anti-
structs. However, because JSDT channels are used, the message body strings in each detector can affect the probability of
handler is unnecessary and agents can use the session members detection.
list as a naming service to invite other agents to join a conversa-4) Contents of self and nonselthe degree to which the
tion. Conversations are implemented as separate threads in order self/nonself data appropriately represents all possibilities
to allow multiple concurrent conversations within asingle agent. can affect the Type | and Il error rates. Lack of specificity,
This also enables agents to better enforce accountability in mul- where some self data is indistinguishable from nonself,
ticast type conversations. The following is the agent conversa- can lead to an autoimmune reaction.

tion process. 5) Length of self and nonselthe size of the data sets,
1) The agent joins a session. whether the total file system size or the total number of
2) The agentlooks up the other agents in their shared session allowed network requests. Data set size affects scan time
to begin a conversation with one (or more) of them. and negative-selection time.

3) The agent creates a hew conversation thread.
4) The conversation creates a new managed channel witBin Test Inputs

the session. o There are three basic sources of test problems: 1) those that
5) The conversation invites the other agent to join thgise naturally in practice; 2) ones that are specially constructed
channel. to test a particular aspect of the code; and 3) randomly gener-

6) The agents converse by passing messages back and fQfflly problems [42]. Additionally, it is desirable to test against a
7) The initiating conversation thread expels the other agef¥mmon industry benchmark. Our testing uses all four.
from the channel. The test problems for a CDIS are sets of self and nonself
8) The conversation thread closes the channel. strings. In order to test the operation of the antibodies, some are
By utilizing the capabilities of the JSDT, combined with thessigned to predetermined values. To test the CDIS’s ability to
overall architecture of agentMOM, a solution that meets all éfinction in a large search space, randomly generated sequences
the system requirements is obtained. Furthermore, this impige used. Finally, the system is tested against actual user pro-
mentation elegantly captures the agent conversation paradiggiams, viruses, and captured network traffic in order to under-
stand the system’s applicability to the real-world problem do-
mains. The complete set of test inputs can be seen in Table VI.
XI. TESTPLAN Of particular use for the real-world computer-virus problem

The purpose of the system experiments is to understand gqt is the European Institutle for Computgr Antivir.us Research
performance implications of the CDIS agent components. THeICAR) standard AV test file [43]. This file contains of a set
objectives of system experimentation are to gain insight into teé68 B of ASCII printable characters. The purpose of the file is

efficiency and effectiveness of this prototype system. to provide a safe target for testing the operation of AV software.
The file is easy to use and noninfecting. It is an executable file

that only prints the messag@CAR-STANDARD-ANTI-VIRUS-
TEST-FILE! Most commercial AV software products have scan
The influential variables are those items that may bﬁrings that recognize the EICAR test pattern.
controlled or uncontrolled and have an effect on system per-one of the key reasons for utilizing an immune system model
formance [42]. Each of these involve engineering tradeoffs ¥ gperation is to recognize as of yet unknown viruses. There-
system design and they may not be independent. The varialilg® a modified version of the EICAR test string is used as a
and some of their effects are listed below. new unknown “virus.” For this purpose, EICAR was modified
1) Affinity threshold:the level of detection required to raiseso that it now printdPaul Harmer-s test Virus XxXxXxXxH-
an alarm. The threshold can affect Type | and Type |l errstead. This new noninfecting strain of EICAR goes undetected
rates. by Norton AntiVirus (NAV).
2) Antibody length:the number of bytes in an antibody Testing the system against a common industry benchmark is
string. String length can affect memory usage and antlesired in order to compare the efficiency and effectiveness of
body effectiveness. the proposed CDIS against other solutions. Unfortunately, there

A. Influential Variables

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE

TABLE VII
TEST CASES
Number [Input | Measurements/Desired Output | Variable
1 2 Can known and unknown viruses be detected? EICAR vS.
EICARnew

Type I and Type II error rate vs. number of anti-
bodies

Number of anti-
bodies

3 1 Type I and Type II error rate vs. antibody length | Antibody length

4 1 Type I and Type 1I error rate vs. file system size | File system size

5 1 Type I and Type I error rate vs. threshold level | Threshold level

6 1 Scan time vs. Number of antibodies Number of anti-
bodies

7 1 Scan time vs. antibody length Antibody length

8 1 Scan time vs. file system size File system size

9 1 Negative-selection time vs. number of antibodies | Number of anti-
bodies

10 1 Negative-selection time vs. antibody length Antibody length

11 1 Negative-selection time vs. size of self Size of self

12 3 Number of immature antibodies required to gen- | Number of anti-

erate a number of antibodies bodies
13 4 Can known and unknown network attacks be de- | LI, Data with

tected?

Nessus Probes

269

does not exist such a baseline. This prototype represents &oea national Air Force base. For this effort, only a small subset
of the first CDISs constructed that addresses the virus problephithe network data captured outside the test firewall was used.

However, tests were performed in [30] to validate thegon-

Negative selection was performed using only the LL training

tiguous-bits theoretical derivations against actual data. For thelsga—data without intrusion attempts. For scanning, a small
tests, the TIMID virus [24] was used to infect COM files. Wenumber of malignant packets generated by the Nessus security
analysis tool were added [45].

also chose to use TIMID for testing.

TIMID is a simple file infecting virus [24]. It only infects one

file on each execution. Its targets are COM files residing only j

E. Test Cases

TIMID’s local directory. It does not hop across directory struc-
tures. Additionally, TIMID has the nice feature of outputting the The test cases are designed to gather effectiveness or effi-
ciency data. In each test case, either an influential variable is
TIMID is an appending file infector that adds 5 B to the beehanged or a static system property is measured to understand
ginning of a file and an additional 300 to the end. No stealgystem performance. The test cases are enumerated in Table VII.
capabilities are employed, so victim files sizes can be seen to
grow by 305 B, along with an appropriate file date alteration. All Each test is run five times. Regarding the number of para-
these features make TIMID an excellent test subject becausmétric and nonparametric experiments required in generating
can be controlled and its effects are known. Furthermore, it iveble statistics, it depends upon the specific experiment and
commonly known virus that can be detected and removed by ddisired confidence interval ([46, p. 431]). Also, the experi-
current AV suites. TIMID, EICAR, and the generated problemmental goals must be considered, which drives the selection
of experimental parameter values as well as the performance
For real-world network intrusion testing, a combination ofetrics. Metrics are of the effectiveness category (such as
captured network packets and probe seeding is used. At fistjution quality) or efficient category (such as computational
randomly-generated packet sets were utilized, but they did reftort or algorithm efficiency) [47]. The intent of the efforts
prove very useful. It was thought that the use of generated datported here are to give an appreciation of possible qualitative
would make evaluation of the algorithm easier; however, evetatements with little emphasis on efficiency since the goal
when limiting the generation range to a few fields and a fairlig focused on feasibility. As to the number of experiments,
small range of parameters, the highly random distribution of tka& increasing number is always required until a distribution
data prevented achieving consistent test results. Generatingf aesults is achieved resulting in an underlying statistical
more structured data set would have solved some of the proedel. This model, based upon quantitative data, can then
lems, but would have had to be done with extreme care so ab® employed to make qualified statements with a high level
model actual traffic in a useful way. Therefore, all testing on th&f confidence. Our limited experiments give a consistent, but

name of its victim.

sets become inputs to the test cases.

ID aspect of CDIS was completed using captured data.

limited view of performance. In the future, more extensive

MIT’s Lincoln Laboratories (LL) completed an ID evaluationstatistical experiments are required using different parameter
for which they created a corpus of ID data [44]. The LL datealues and associated sensitivity analysis in order to reflect
was designed and generated with this type of research in mpelformance means and variances and confidence levels across
and its use made the evaluation of CDIS feasible. The entire $Dwide range of realistic intrusion test data. Such analysis
corpus contains both network and host sensor logs, as wellcasild achieve a much higher level of confidence in the utility
file system dumps and directory listings (among other thingej our suggested virus and ID process. It is not the intent of

270 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

our current efforts to show a high level of confidence in the 10

parameter space because of the extensive and abnormal testini /
required over incomplete intrusion data. However, we do desire g 4

ime (sec)

to convince the reader of the feasibility of the approach, which _fg X/{/{/
we hope we have done from an unbiased perspective. % 04 ¢
»
D. Testing Platform % 0.01 ‘ ‘ . ‘ ‘ .
The CDIS is tested on the AFIT bimodal cluster (ABC) § 2 4 8 16 32 64 128

pile of personal computers (PCs). This is a heterogeneous Number of Antibodies

system consisting of 22 variously configured Pentium I anIg 17. Computer-virus negative-selection time versus the number of
Pentium Il CPUs connected by a fat tree gigabit and 100bas§n%bodiés per dpetector_ 9

switched Ethernet backbone. Each machine within the cluster
is dual bootable as a Windows2000 or Red Hat Linux system.

All systems are booted as Windows2000 systems to reflett Size of self (bytes).
the most common virus target platform and current Air For¢@(L) Sliding window
server standards. All network intrusion testing was completed shuffle.

within a segregated laboratory. The network intrusion agte(8L) Bit compare.

was hosted alongside the Objectivity 5.2 database on a singleV(S(L +8L))) = O(NSL) Negative selection.

Windows2000 computer. Tests on the detector agents were

performed using simple system architectures consisting of onel his linearity is somewhat deceiving however. Foieapriori
controller, one monitor, and one detector. Testing of systé;iﬁfined number of initial antibodies, it is true. It can be consid-
scaleability and agent performance were conducted utilizi§§ed @ lower bound, but the number of antibodies required to
one controller and two monitors, each with two detectors. THotect a system with a chosen probability of detection grows
testing of the ID and AV detectors were performed separategxponentially with the size of self [30]. Therefore, the number
although each detector-type integrates well into the largefantibodiesV would be expected to grow exponentially with
hierarchy. the size of self.

The ABC is a closed environment that is representative of These theoretical results are also representative of the ID
a PC LAN network, the target implementation platform of th&canner if it were to be deployed against a log file. However,
CDIS. Increasing the test platform to include Win95 or even S@Ur tests with packet scanning utilize a database to enable better
laris machines would be a good test suite for understanding giPerimentation. The negative-selection time and the scan time
performance of the CDIS in the enterprise environment and thee, therefore, dependent upon the database query algorithm.
effectiveness of the network intrusion detector in actual deploy-The experimental results accurately follow the expected
ment conditions. Exploration into a more robust, fieldable CDIgeory as the time tends to double as the number of antibodies

platform is left for future research. are doubled in the AV detector (see Fig. 17). The network 1D
agent performance is similar to the AV agent (see Fig. 18).
XIl. EXPERIMENTAL RESULTS AND ANALYSIS These tests were accomplished using the Rogers and Tanimoto

matching rule with a 0.7 affinity threshold against 1 K of
randomly generated application self bytes (for AV) or with
The negative-selection algorithm represents an investmé@&K self packets (for ID) from the LL's set. For these tests, a
that the system must make in order to remove the possibility @dndidate antibody pool was not generated, so the variations
false-positive errors (see Section VI-A). The current algorithin the negative-selection times are due to matches on self. A
sequentially checks each antibody against all bytes in theatch during this process requires the system to regenerate a
known self space. For the virus detection antibodies, thiew antibody and then compare it against the entire self set.
requires adding each byte from self to the sliding windoBecause antibody creation is random, the negative-selection
and then comparing each antibody bit by bit or checkingrocess introduces random variation in the negative-selection
each packet within the known self database in the case of lidnes. It is hypothesized that the probability of a match is low
negative selection is performed after each antibody stringfi this 1 K set of self so that the linear equation holds. With a
randomly generated. If a match on self occurs, the antibodyhigher probability of match, an exponential trend would result.
regenerated and retested from the beginning of self. Alterna+ig. 19 depicts the effects of antibody length on the nega-
tively, a pool of previously generated antibodies could be rdive-selection time for the AV layer. The ID antibodies use a
through the negative-selection process together. Theoreticglisedefined length of 320 bits. Therefore, length is not a factor.
the negative-selection time should grow linearly with respeBut, for the AV agent, at lengths greater than 2 B, the nega-
to the number of antibodies, the length of each antibody, atide-selection time grows at an almost imperceptible rate that is
the size of known self. This is because each byte in every Adperlinear. The change in length also induces very little vari-

A. Negative-Selection Time

antibody must be checked against every self byte. ance in the negative-selection time. However, a 2-B string pro-
N Number of antibodies. duces very dramatic increases in the censoring time with ac-
L Antibody length companying wide variance between runs. This result is consis-

(bytes). tent with the comprehensive theory developed in [30]. The ob-

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 271

pry
(=1
o

1000

100 -
/
/

P

N
(o]
—

Y
o

-

=y

T

32 64 128 256 512 1024 2048 . .
Number of Antibodies 1K 10K 100K 1™
Size of Self (bytes)

Negative Selection Time (sec)
Negative Selection Time (sec)

o
pY

Fig. 18. ID negative-selection time versus the number of antibodies per

detector. Fig. 20. Computer-virus negative-selection time versus the size of self.
E; 100
$2s 3
Q
E 20 2
L %« 16.8 E
SRR :
‘6 c
g 10 g T
2 \ g 10 / Y
5 1
2 . N\ 07 06 o7 0 ?':
[>
o 2=
g 2 4 8 16 32 'g
Antibody Length (bytes) 3]

1K 10K 100K ™

Fig. 19. Computer-virus negative-selection time versus antibody length. Size of Self (packets)

served 25-fold increase in the negative-selection time is due™g 21- D negative-selection time versus the size of self.

the increasing generality of a 2-B string, or the increased proba-
bility of a match during negative selection. Somewnhere betwegstiuction in antibody length or detection threshold would only
2 and 4 B there is a sensitivity point, before which a very larggcrease this time. Algorithmic and implementation improve-

number of matches on self occurs. The result is a much larggénts are required to reduce the negative-selection time to a us-
negative-selection time in order to find the required number ghle duration.

2-B combinations that do not match self. The 4-B antibody falls Fig. 18 shows a superlinear, possibly exponential, increase
at the beginning of this trend. It has a negative-selection timethe cost of performing negative-selection on antibodies for
that is slightly greater than the 8-B case. network ID. The upswing is likely caused by a combination of

The previous tests utilized 1 K of self bytes in order to censewo factors. One factor is inefficiency in the database design,
the antibodies. Fig. 20 shows the effect of the length of self easulting in nonlinear increases in query service rates for larger
the AV antibody’s negative-selection time. The comprehensivable sizes. This factor is being ameliorated through the develop-
theory [30] predicts that an exponential relationship would reaent of optimized data structures and memory-resident storage
sult; however, a linear relationship is observed with very littlgo eliminate disk accesses. Some polynomial growth cannot be
variation in the experimental times. This variation is visualizegliminated, however, due to the requirement to find the inter-
as almost imperceptible error bars in Fig. 20. It hypothesizegdction of the responses to multiple queries. The other factor is
that the observed linearity is due to a low probability of matclielated to the diversity of the self data. If the self data is highly
with the Rogers and Tanimoto rule. More testing and theoretit@mogenous, then additional data points would have minimal
calculations are required to fully understand its relationship &ffect on antibody generation: antibodies describe regions and a
the comprehensive theory, but the testing does give us insighiall number of self data points would be enough to eliminate
into the system efficiency. The system produces 16 8-B aniiad antibodies. However, if the self data are relatively scattered,
bodies against 1 MB of known self in approximately 10 mirthen as the number of data points increases, the probability of
Using the more general 2-B antibodies could cost over 25 timgenerating an antibody that has to be discarded also increases.
that on average. Larger data sets imply longer comparison times, exacerbated by

The generation of correctly censored antibodies produces thereased probability of having to regenerate antibodies; hence,
core components for virus detection by an AIS. File systems aesuperlinear performance curve results. This phenomenon is
large and growing. For example, an 8-GB hard drive is considndemic to all inductive learning processes; a useful area of fu-
ered small for commercially produced PC’s. The current perfdire research would be to determine the homogeneity of the LL
mance of this system (assuming the linear relationship is maand real-world training data sets, thereby providing a basis to
tained) would produce 128 4-B antibodies against 8 GB of selfidress the question of “How many samples are enough?” so
in 1.45 years! Clearly, this is too long to be practical and anye can optimize the training process.

272 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

8 100
»
8
7 / f
P /)
36 7
2 / E 10+— :
@5 [=
E / c
4 / (§
=
g3 7
: — "Te e s e s e o
1 S
. / Number of Antibodies
0
2 4 8 16 82 64 128 Fig. 23. ID scan time versus the number of antibodies per detector.
Number of Antibodies

2

Fig. 22. Computer-virus scan time versus the number of antibodies f

detector. 18 /
16

B. Scan Time 14 /
The scan operation represents the heart of the AIS detf; /
tion process. Ideally, the viral scanning algorithm should run S 12 /
quickly as possible in order to be unobtrusive to the user. For 1 >
IDS, the algorithm should also be high-speed so that it can ke
up with the flow of data coming over the line. If not, the IDS s 4 s 1.
either becomes a bottleneck or ineffective as some packets Antibody Length (bytes)
skipped. Current systems often fall short of this goal, especially
as data sizes and networking speeds continually increase. Fig. 24. Computer-virus scan time versus antibody length.
Theoretically, the scan time of this system is directly propor-
tional to the amount of data being scanned, the number of @s in negative selection. Therefore, scan times are almost con-
tibodies, and the antibody length. For detecting file viruses, teéant between runs.
scanning algorithm must read in each byte of the file system, add_ikewise, the ID times mirror those produced by negative se-
it to the sliding window, and then compare the window againktction, with reduced variations. The result is a much smoother

ime (sec)

the antibody string bit- by-bit. growth in the time curve. Unfortunately, the time advantages
N Number of antibodies. gained by utilizing the database for testing cannot be directly
L Antibody length related to ID scanning directly from the wire. Because the data-
(bytes). base can perform the indexing operation ahead of time, con-
X Size of file system siderable searching advantages are gained. However, realistic
(bytes). growth rates are seen, along with effective operation. Future
O(L) Sliding window research will replace the database I/O component with wire-
shuffle. sniffing operations in order to fully assess the system usability.
O(8L) Bit compare. The network attack antibodies are a fixed length, but the AV
O(X(L+ N(8L)))=O(NXL) Scan time. antibodies need not be so. Antibody length was expected to af-

fect AV scan time linearly; however, the results indicate a slight

This analysis is somewhat irrelevant to an actual deploysdperlinear trend (see Fig. 24). We hypothesize that this is due
packed-based ID scanner because packets would be reatbdlse Java implementation of bit comparisons. In general, these
they flow by on the wire. In our experiments, however, weesults give a few specific long antibodies an advantage over
utilize a database loaded with actual captured packets. Harany short strings. Longer strings can be used with only small
again, like the negative-selection time, it is expected to lperformance ramifications. The long antibodies also result in
driven by the database query algorithm; the only differencelatively short negative-selection times due to their specificity
being that matches result in a detection alarm instead of @ee Section XII-A, Fig. 19). The tradeoff is in the ability to ef-
antibody regeneration and certification process. Therefore, fleetively search the larger space created by utilizing specialized
IDS average scan times should be slightly shorter than thetectors.
negative-selection times, with a smaller variance. The experimental results also parallel theory with respect to

The experimental results hold true to theoretical expectatiofiige system growth (see Fig. 25). Increasing the file system size
The number of antibodies in a detector directly affects the scem-fold also increases the scan time by a factor of ten. The
time (see Figs. 22 and 23). As the number of AV antibodies a2eMB file system is scanned in 19.5 min. By extrapolation, an
doubled, the scan time is also doubled. Compared to the ne§a=B file system with 128 4-B antibodies would be expected to
tive-selection algorithm (see Section XII-A, Fig. 17), scannintake 1.05 years to scan.
produces negligible variations in execution time. During scan- Scanning is faster than negative selection because files only
ning, if a match occurs, the offending file and its bound antibodyeed to be opened once and compared against all antibodies
are added to a list. This requires no regeneration or rescannfjage Section XlI-A). The current negative-selection algorithm

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 273

10000 1.2

1 -—I—Iil\
1000 o 08 I
—4—False Positive
04 1 _mFalse Negative
02 T
0 T T T T - r
2 4 8 16 32 64 128
1 . :

Error Rate

Scan Time (sec)
=)
o

=
(=]

L 2

Number of Antibodies
2K 20K 200K 2M
File System Size (bytes) Fig. 27. Error rates versus the number of antibodies per computer-virus
detector.
Fig. 25. Computer-virus scan time versus file system size.
1.2
100 1 —o—False Positive
-l False Negative
2 08 = =
&
—~ = 06
g
E 10 / 0.2 -\Iﬁ\-
g 0 D SN S —
@ 32 64 128 256 512 1024 2048
Number of Antibodies
12K 10.2K 120K 1.9M Fig. 28. Error rates versus the number of antibodies per intrusion detector.

Database Size (packets)

order to minimize the false-negative rate. The comprehensive
theory developed in [30] is able to predict the probability of
failure (false-negative rate) given a matching rule probability of
requires opening every file in the system once for each antibogyatch. Experimental results support this theory. However, this
Therefore, the 1/0 system overhead is incurred multiple tim%ﬁ’eory has not yet been adapted to the Rogers and Tanimoto
unnecessarily. This observation gives insight into possible alg@atching rule that the CDIS utilizes. Therefore, experiments are
rithmic improvements for negative selection. As with negativ§erformed to understand the feasibility and effectiveness of this
selection, the scan time is too long to be of practical use. AlgRratching rule for AV and IDSs. For these feasibility tests, each
rithmic and implementation improvements are needed to Makg or |D detector contains a set of antibody strings. Each test
the system usable. is run five times and an average error rate is determined.

The ID scan times for an increasing number of packets can bgncreasing the number of AV antibodies generally decreases
seen in Fig. 26. The results are slightly better than those for ngge average false-negative rate (see Fig. 27) for the antibody sets.
ative selection (see Fig. 21). Since antibodies are not being ¥8ys test utilizes 4-B antibodies and a 0.7 detection threshold
generated, the probabilistic and diversity arguments posed &g§ainst 1 K of randomly generated nonself bytes. The error bars
lier do not apply. This would appear to indicate that the donygicate the maximum and minimum values to understand the
inant factor in the superlinear growth of both figures is indeeghmplete range of effectiveness for the five test runs. Due to the
an artifact of the database. As mentioned earlier, this factordﬁjbab”istic nature of the problem, even 64 antibodies can fail
being addressed in ongoing research. to find nonself the same as a single antibody. Conversely, the
best run of 64 or greater number of antibody strings found all the
nonself files. In order to generate a consistently low error rate,

The system’s error rates reflect its ability to detect self ari?8 or more antibodies are required per detector. However, this
nonself appropriately (see Section V). The false-positive ratesults in higher negative-selection and scan times. A tradeoff
should always be zero. This is ensured in advance by the nbgtween speed and coverage must be made.
ative-selection algorithm. By initially censoring strings against The ID agent is effective at higher antibody counts, but it does
self, no future self-matches should occur (assuming a static deft exhibit as smooth a rolloff as the file infection antibodies
inition of self). The false-negative rate should also ideally bisee Fig. 28). Full detection does not occur until 256 or more
zero. Any percentage higher than this indicates the systematsn strings are utilized. This is due in part to the larger sample
relative inability to detect the presence of nonself. This ratézes used in the ID tests. The IDS also exhibits a higher sen-
can fluctuate dramatically because of the stochastic naturesdivity to antibody numbers. 32 antibodies give a 31% average
the problem. The antibody strings are randomly generated,false-negative rate and 64 antibodies drops the error down to
are the appearance of viral infections or intrusion attempts. S8%; not a large effectiveness gain. But, using 32 AV antibodies
the system parameters, such as antibody length, the numbegioés a 65% average false-negative rate with 64 AV antibodies,
antibodies, and the detection threshold, must all be tunedrésulting in a 40% rate. The AV detectors produce much wider

Fig. 26. 1D scan time versus input database size.

C. Error Rate

274 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

1 = 11 = - T
K. | 0.8 T
| = False Negative 0.6 False Negative

H—

@

2 08 ©
& €

0.6 —e—False Positi S
5 /] —$=Tase Fosiive | E 0.4 | —e—False Positive
w 04 / 0.2

02 0 Y — - ¢ - < —

0 é ‘ * ‘ * ‘ —— * 1K 10K 100K 1™
2 4 8 16 32 File System Size (bytes)
Antibody Length (bytes)

Fig. 31. Virus detection error rates versus file system size.
Fig. 29. Error rates versus computer-virus antibody length.

1.2
1 +—s—s 8= o 8 -
4.\$ T 06 —— False Negative |
50 | ¢ False Positive |
X ,p | —S—False Negative Rate \ 5 04 —e— False Positive !
8§ £
lh‘- 04 1‘ —e—False Positive Rate \\’\ w,,
0.2 1 0 [T {ot T {o— T {ol
0 —o—t—o—t—o—o—t—o—t—o—t—o—‘—o;— 1K 10K 100K ™M

&8 § & 8 R R & 8 8 Database Size (packets)
[=) o [=3 (=) (=] o o o o
Detection Threshold Fig. 32. ID error rates versus database size

Fig. 30. Error rates versus computer-virus detection threshold.

The final laboratory error rate tests examine the effects of the
swings in performance with changes in antibody count due fite system size on the error rate for file infector viruses (see
the smaller sample size. Fig. 31). The results indicate only a minor influence. This is

The length of the antibody affects its specificity as a AV denot surprising as a larger set of nonself bytes simply gives the
tector. The error rate for long detectors should be greater than tletector more chances to encounter a match. For these tests, de-
smaller more general strings. This is a by-product of a long diectors used 16 8-B antibodies and a detection threshold of 0.7.
tector’s need to search an exponentially larger space in ordeftee high threshold value should result in a 100% false-negative
find a match. This trend is evident in Fig. 29. At lengths greateate (see Fig. 30). The AV detector searched up to a 2-MB file
than 4 B, the antibodies have a complete inability to find 1 Kystem containing up to 1 MB of random nonself bytes. In each
of random nonself bytes. The extremely general, 2-B strings ar@se, the file system was made up of one part self and one part
able to find all nonself files with no variance. In the middle beronself bytes. In practice, the likelihood of 1 MB of nonself ap-
tween these two extremes is the 4-B antibody. On average, thpsaring on an individual system is all but impossible. Because
perform better than the longer strings, but they also only deteabst viruses are smaller than 5 KB [48], the accumulation of
nonself 20% of the time. The variance seen with this length is ii-MB of nonself bytes would require a significant number of
dicative of its position between too general and too specific. Tkenultaneous infections or the addition of large infected appli-
random generation of 4-B antibodies can place them on eitleations. This is an event that is so remote that its occurrence is
side of a present or future nonself boundary. For these testémpossible without sabotage. Therefore, this example is mostly
0.7 detection threshold is used. The error rate graph (see Fig. @8)lagogical, but the goal was to understand the effect of non-
is a reflection of the probability of a matching value occurringelf size on the system error rates through experimentation. In a
about this threshold. Therefore, selecting the antibody lengihactical environment (5-10 KB of nonself), the size of nonself
determines its specificity, but this must be matched with an alpas no measurable effect on the false-negative error rate, except
propriate affinity threshold in order to obtain the desired err@o keep it high.
rate. In essence, reducing the detection threshold creates a moFdg. 32 presents the results of developing 256 antibodies over
general detector, no matter what its length. a set of self data (e.g., 1-K packets) and then testing over a

Fig. 30 depicts the effect of the detection threshold on tt&9% larger set for the purpose of ferreting-out surprises. In-
false-negative rate for the computer-virus attack. For this testeasing the amount of simulated traffic by including more of
each run consists of a detector with 32 8-B antibodies agaitis¢ LL's self data had minimal effect on the error rates. Only
randomly generated self and nonself files. The IDS was onyo to three false-positive errors emerged in the tests with the
tested against real-world data, so its results are presented inldnger databases. This tends to imply that the self data is rela-
next section. tively homogeneous; further exploration using real-world data

The AV 100% false-negative rate at a 0.7 threshold matchissequired. The other obvious experiment, training on a small
the same result in Fig. 29. At threshold values less than 0.7, &t of this self data and then testing on a significantly larger set,
antibody set becomes an increasingly effective nonself discrigentributes little beyond a better feel for the homogeneity of
inator. An affinity threshold of 0.55 results in a 100% effectivéhe LL's data until affinity maturation and costimulation are in-
detector with no variance. cluded (areas currently under development).

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 275

12 1.2
1 & 4 A —&— False Negative — 1 ’4‘ -8 False Negative Rate] /. —& &
208 .\ —&-—False Positive | | 2 o8 17| —#—False Positive Rate /y
5 \ X o6
(4 ~ 0.
X 06 5 /
2 \ 5 04 / L
w 04 \ 02
0.2 0 —l—t—l—‘—l—n——L—o—‘—o—‘—o—k
\. 3 2 & 2 e b 35 & b
o0 ————8——8———f——8—8———8— s & © & & ° s & s
0.55 05 0.45 0.4 0.35 0.3 0.25 Detection Threshold

Detection Threshold
Fig. 34. Error rates versus ID threshold.

Fig. 33. Computer-virus detector’s ability to detect nonself.
length. Additionally, this test indicates that tuning should also
done based on the contents of self and nonself, a result that
urther validated by changing the domain to ID (see Fig. 34).
These data also show that antibody generation could be

These results indicate that each detector should field as m
generic antibodies as possible in order to minimize the falde-

negative rate. However, the use of highly generic as well as 4 based « led ¢ oxisti if and i
large numbers of antibodies contribute to an increased neffgP'oved based on knowledge o existing self and nonse

tive-selection time, but negative selection is necessary to fo jges. Ana priori examination of no_ns_elf would have revealed
the false-positive rate to 0%. An engineering tradeoff must paata smgle_ antlbod_y pattern consisting of all zeros cou_ld ha_lve
made between negative-selection time and system effectiveng%@(:hed' W',th the highest affinity posab[e, all nonselflln th|_s
Once the desired antibody length is selected for the virus /Stem (an improvement would seed antibody generation with
main (ID antibodies are 320 bits), the detection threshold m own virus, or network attack signatures). Because_of the
be tuned to the antibody-matching function probability densit luence ,Of search space contents on system effegﬂvengss,
in order to create a system that actually detects nonself with g 29ainst actual viruses and captured network intrusion
desired frequency. This tuning must also take into account fiiempts were cqnducted. .)
specific detector domain as the differing domains result in dif- 1€ IDS testutilizes the LL training set seeded with captured
ferent sensitivities to the various parameters. probing attacks conducted using Nessus [4}5], configured to sim-
ulate a complete port scan from one machine onto another, both
having LL self data IP addresses. The results indicate a dramatic
difference in the ID domain with respect to the effective range
The previous tests have shown that the system operates asofiehreshold values compared to the file infection detector (see
signed and is able to successfully detect the existence of non§édf. 34). These results are similar to the polar self/nonself test
within a set of self strings. However, these results were gainabove, but much higher threshold values can be used effectively
by testing the system against randomly generated self and ntangive the system 100% detection. The results are also some-
self bytes (for AV) or LL's training set IP packets (for ID). Inwhat more sensitive to threshold value than the AV antibodies:
order to be truly effective, the system must be able to detettanging the threshold by 0.03 (versus 0.05) results in a differ-
actual malicious code among a larger set of known self applicance between 100% and 0% false-negative rate.
tions or intrusion attempts within a set of valid network service The real-world virus test utilizes test input five (see Sec-
request packets. tion 1X-B, Table VI). This test suite consists of 196 KB of
The first test against other than random bytes uses a pdagplication programs and 136 B in the two EICAR “viruses”
input set. For this test, self is made up of all ones, while nofsee Section XI-B). This test also reveals the system’s ability
self consists of all zeros (see Section XI-B, Table VI). Inteto detect, as of yet, unknown viruses. For example, NAV can
estingly, the randomly generated 8-B antibodies have a hardetect the EICARG8 test string 100% of the time, while it has
time finding this consistent nonself set (see Fig. 33) than a sel00% false-negative rate for the newly created EICARPAU
of random bytes 30. Full detection only occurs with an activaest string. Fig. 35 presents the error rates for various detection
tion threshold of 0.4 or less. The 100% error rate differen¢bresholds. The detection rates represent the total rate for 90
between 0.45 and 0.4 is indicative of the consistent polar mans with a variable number of antibodies per detector. A
ture of the self and nonself sets. Once one detector is abledaghly 10% false-negative error rate is the best result when
bind with a string of zeros, it is able to bind with all of non-using a detection threshold of 0.6 or less.
self. This results in a 0% false-negative rate once the detectiorin general, the system was able to detect the new virus strain
threshold is crossed. This test does not provide much useful &-a rate only slightly less than that of the known virus. Addi-
formation in itself other than the dramatic effect a proper detetionally, the system found both nonself files at a rate equal to
tion threshold selection can make, but by comparing with thoe slightly less than the least detected strain. In these cases, the
similar data obtained using random nonself bytes (see Fig. 3@ldition of affinity maturation or antibody optimization to im-
an interesting difference emerges. This test shows 100% detemve the antibody false-negative rate could be highly useful.
tion at a threshold of 0.4, while with random strings, 100% den affinity maturation capability could either evolve antibodies
tection occurs at a 0.55 threshold. Previous data indicated tt@mtecognize one virus very well or evolve a general detector that
the detection threshold should be tuned based on the antibdityds to both strings equally.

D. Real-World Effectiveness

276 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

10000

—o— BCAR68 /£>!
/ Threshold

—a— BCARPAU 1000
—— Both // /‘//’//.
i /k

o

o -
I
|

—e— False Positives

Detection Rate

o&
\

o (=] o
(ST S)
Candidates
=

Number of Generated

0.8 0.756 07 0.65 0.6 0.55 2 4 8 16 32 64 128
Detection Threshold Desired Number of Censored Antibodies
Fig. 35. Detection rate for known and unknown viruses. Fig. 36. Effects of matching threshold on negative-selection candidate pool
size.

A tuned detection threshold results in an 89% detection rate

for both strings. NAV produces a constant 50% false-negatif@®!- The near 100% detection rate seen at a threshold of 0.6
rate. This system out performs NAV for detection threshold€duires about four times the number of immature strings as
of 0.6 or below. The introduction emphasizes the inability dj2iV€ ones. In order to obtain a 0% false-negative rate at a 0.55
current AV software to adapt and recognize new viruses. Trﬁyeshold, a 23:_1 ratio |s_reqL_J|red. This is a reflection of the
system is able to detect the new strain with approximately!'?sFreaS_ed negat_we—selectlon t|me_versus coverage tra(_jeoff seen
9% false-negative rate. The tradeoff with the immune systdfh a7lier experiments (see Section XII-A). This testing has
methodology is the probability of detection, while currenfot been performed in the ID domain, but similar results are

systems utilize deterministic scanning to give 100% detectiG¥Pected. _
of known viruses. However, through careful tuning, a 0% Once again, the performance of the system requires a tradeoff

false-negative rate can be obtained (see Fig. 30). Beyond tiglween coverage, speed, and memory. The selection of the
additional coverage could possibly be gained by utilizinﬁyStem paramgters, such as number of antlbod!es per detector
distributed detectors that share successful antibodies. 1t3Rd the detection threshold, can have a dramatic affect on the

hypothesized that an improved error rate can be gained in tRyStem efficie_ncy and eff¢Cti\{eness. At a detgclt?on threshold of
manner through a multiagent collective self-defense. 0.55, generating 128 antibodies requires an initial pool of 3020
candidates on average. Previous results indicate that at least 64

E. Antibody Candidate Pool Size 4—I_3 anpbodles, at a detection threshold_of 0.60 or less, is re-
)) o quired in order to reduce the false-negative error rate to within
The experiments on the system negative-selection time Siggactive limits. This requires the generation of several hundred

gest that a performance increase can be gained by over g@several thousand candidate antibodies for censor.
erating the number of required antibodies and then censoring

this large pool down to the required number. However, such
an algorithm requires understanding what size the initial pool
of uncensored scan strings should be. Forrest’s research on thEhe overall goal is to create an agent-based CDIS. This was
r-contiguous-bits algorithm validates theoretical results that tRécomplished successfully and two layers of defense have been
required number of initial StringNRO grows with the the prob_ implemented. Effective system and local models of immune
ability of a match, the number of final strings required, and tHystem operation were constructed that realize improvements
size of self [30]. The Rogers and Tanimoto similarity rule prag@ver current AV and packet-based ID solutions. Based on these
duces similar results. models, the multilayered implementation provides an effective
This experiment varies the detection threshold and tielution for the detection, identification, and elimination of
number of final antibodies required against the TIMID virus-incomputer viruses and network attacks. The prototype was
fected application-suite input 6 (see Section XI-B, Table VI}sed to gain insight into the efficiency and effectiveness of an
The results indicate that the size B, increases linearly with agent-based AIS. The successful use of agents and the integra-
the number of required antibodies and exponentially with t9n of pattern recognition principles are valuable contributions
decrease in the detection threshold (see Fig. 36). The higkefhe immunological computation community.
detection thresholds all require the approximately same numbef his research was conducted by integrating many different
of initial candidates, with a break in this trend occurring at @0mains including immunology, immunological computation,
threshold of 0.65. The required number of candidates increagealicious code, multiagent systems, and parallel and distributed
dramatically thereafter. This phenomenon is roughly the inveré@mputation. Because of the diverse amalgamation of ideas,
of the results seen in Figs. 30 and 35. As the detection threshgfficlusions are discussed from a variety of perspectives. The
decreases, the antibodies become more general. This restfigclusions are based on the analysis of this design implemen-
in an increased number of matches on self during censorifgtion.
and improved nonself detection during employment. The small 1) System ModelsThe system and local models (see Sec-
false-negative rates that are required for an effective system tion VIII-B) for this CDIS are created based on ideas
require the upfront investment in a large antibody candidate from biology, the self-adaptive CVIS [6], the antibody

XIl. QUALITATIVE ANALYSIS

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE

lifecycle [12], and parallel computation. The separation
of tasks into a logical hierarchy supports the reduction
of the computational burden by allocating responsibili-
ties to dedicated agents operating at the appropriate level.
By integrating this structure with the prevention focus of
the computer health system [26], a system-wide “com-
putational health management” infrastructure is created
that emphasizes preventative measures through informa-
tion sharing. It is hypothesized that such an infrastructure
will allow for the early identification and elimination of
wide spread attacks. It also provides a forum for a collec-
tive self-defense by enabling the sharing of successful an-
tibodies among individual detectors in the “population.”
This diversity that is used to the advantage of the entire
system is the result of the local model.

Each detector on each node within the system indepen-
dently generates and manages its own antibody set. The4)
computational burden on individual nodes is reduced by
limiting the local number of antibodies. This distributes
the cost of generation and negative selection across the
system. These tasks can also be performed in parallel.
Even though the detection capabilities at the local node
are limited to the antibodies on hand, the full power of all
the system scan strings can be utilized though informa-
tion sharing via vaccinations. If placed within a broadcast
LAN environment (e.g., Ethernet), then all ID agents can
employ their antibodies simultaneously. Vaccinations
between LAN’s would support an even larger collective
self-defense. Additionally, each node is continually
searching the nonself space through the “programmed
cell death” within the local detector string lifecycle. This
realizes the greatest advantage of this system over current
methodologies, which is the ability to recognize as of
yet unknown viral infections. The power gained through
the partitioning of tasks and the sharing of information is
accomplished through distributed, collaborating agents.

2) Agents:The BIS is made up of many individual entities,

each with their own “goals” and “services.” Because of
this, mapping the capabilities of these entities to software
agents is an intuitive task. Additionally, the BIS compo-
nents communicate through chemical signals. This can be
mapped to message passing in a distributed AIS. For these
reasons, the agent paradigm represents an excellent soft-
ware engineering approach to AlS design.

3) Antibodies:The detector agents each carry a battery of

several antibody scan strings. In this prototype, these are
generated pseudorandomly. This provides a quick pro-
duction method and because the exact locations of nonself
within the search space are unknown, probably provides
as good a method as any given all the possible nonself in-
stantiations.

Testing shows that there exists an engineering tradeoff
between the specificity and generality of an antibody.
Short strings are more general because they reduce the di-
mensionality of the self/nonself space and, hence, cover a
larger area. A 4-B antibody is shown to provide the cov- 5)
erage of a general detector string without the high nega-
tive-selection cost of being too general. Current AV solu-

277

tions utilize 16-B scan strings in order to help eliminate
the threat of false-positive errors. The CDIS accomplishes
this through negative selection. However, short antibody
lengths will not be able to adequately distinguish between
self and nonself in cases where their differences are fine
grained. The result is undetectable holes in the detector’s
ability to recognize nonself. It has been shown that elimi-
nating holes is impossible with a single matching rule [36]
so multiple approaches are required to completely cover
the nonself space. This discussion alludes to a character-
ization of the self/nonself space, which has not been ac-
complished for either problem domain. Future activities
in this area could lead to the improved generation of anti-
bodies through enhancing the random search by steering
the generation algorithm toward known nonself areas of
the search space.

Management Advantag€urrent AV and ID solutions are
monolithic and provide little or no system wide manage-
ment capabilities. Each desktop locally runs the complete
AV package and separate network segments do not share
intrusion information in real-time. All decisions for what
and how to scan are left to the user/system administrator.
Even the addition of signature updates, vital to the con-
tinued effectiveness of the system, are often the task of
the individual user to manually integrate. This prototype
CDIS eliminates these problems and provides a frame-
work for system metric reporting.

By using autonomous agents, this CDIS all but elimi-
nates individual user interaction. Vaccinations and infec-
tion responses are controlled and directed by the agents
at the network and system levels. Additionally, current
system status is passed up the chain. This allows for au-
tomated metric collection, system status evaluation, and
trend analysis. With the addition of appropriate logic,
system-wide infection epidemics can be recognized and
eliminated in real-time.

Organizations are increasingly interested in reporting
computer-security incidents. Incident reports must be
compiled and passed up the management chain. With
this architecture, attack incidents are already reported up
the hierarchy. Automated incident report generation and
statistics could be added to the metric generation duties
of the controller agents without much difficulty. This has
the potential to save money and manpower that are cur-
rently being used to generate, report, and collate incident
reports. Also available could be a real-time status display
for infection incidents across the entire system. A live
system status on malicious code or network intrusion
incidents could be generated and pictorially presented.

By integrating the ideas of a system hierarchy [49]
with the management and oversight processes of the
public health system [26], this distributed agent-based
CDIS provides a superior capability for system wide
management and elimination of the virus threat over
current solutions.

Issues:There are several issues that remain unaddressed
by this system including security and a time-varying defi-
nition of self. No security layer isimplemented in this pro-

278

1)

2)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

totype: the distributed nature of the system leaves it wide
open to spoofing attacks that can compromise system in-
tegrity. Encrypted channels, digitally signed messages,
and other technologies are required in order to ensure
trusted conversations. JSDT can easily support these ad-
ditions, but what is ultimately required is a quality control
mechanism for critical system components.

In the current implementation, the system could be
“trained” to generate an autoimmune reaction. By per-
forming negative selection on nonself, some censored an-3)
tibodies could react against self strings. These antibodies
could then be passed on to other nodes using spoofed
vaccination messages. The result would be false-positive
detections and the possible elimination of valid self ap-
plications or the blocking of valid network accesses. A
trusted quality control mechanism is needed to oversee
alarm generation and the dispensing of vaccinations.

Another problem is the steadily changing definition
of self. Programs are routinely added and deleted from
most desktop computers, and new users and network ser-
vices are also added regularly. One of the major differ-
ences between the virus detection portion of CDIS and
the network ID portion is that, realistically, self is not
static in networks. While it is conceivable that, in a corpo-
rate server environment, new applications are installed at
a slow enough rate to assume a static file system, even5)
fairly consistent networks tend to have traffic patterns
that shift over time. It is unrealistic to expect a zero-per-
cent false-positive rate, for antibodies perfectly-trained on
today’s data may falsely detect acceptable, but new traffic
tomorrow. Under conditions of high network traffic, too
many false-positive errors will become intolerable, essen-
tially creating a self-induced denial-of-service attack.

Similarly, the addition of a new application may re-
quire recensoring of the antibodies. Care must be taken
to ensure the new software is not already infected. An 6)
alternative is to scan with the current antibodies: a pos-
itive detection could indicate the presence of a virus or
recognition that this “self” has not been encountered be-
fore by the system. The decision on whether this is a
false-positive error rests with the system administrator,
and is accommodated by the system through the cos-
timulation function of the antibody lifecycle (see Sec-
tion VIII-D, Fig. 11). This approach is far from perfect,
since it does not provide assurance of detection and elim-
ination, features essential to system effectiveness.

4)

7

XIV. FUTURE RESEARCH

Improved Scanning and Negative-Selection Spdé: 8)
current system can produce naive antibodies in 1.45 years
for an 8-GB drive and scan that drive in 1.05 years. This
prototype system efficiency needs to be improved in order

to be operationally viable.

Parallel Censoring:The prototype algorithm generates
and performs negative selection sequentially. The algo-
rithm execution time can be greatly reduced by generating
an excess number of antibodies and then censoring them

all in parallel. During negative selection, those antibody
strings matching self are removed from the candidate pop-
ulation. After censoring, only naive strings remain. A suf-
ficiently large number must be generated initially in order
to ensure that enough remain after negative selection. This
number of initial candidates must be estimated based on
the antibody length, contents of self, detection threshold,
and the number of remaining strings required after nega-
tive selection.

Efficient String MatchingImproved methods of string
pattern matching could be integrated to increase the per-
formance of the matching algorithm. A common method
used in spell checking is ta priori construct a directed
graph ofthe patterns. Thisis then used to process the input
string against all patterns in a single pass by “walking” the
graph [50].

Antibody CreationThe prototype uses a pseudorandom
number generator to create antibody candidates. These
are then censored at a very high rate to produce valid
detection strings. Improved antibody generation schemes
could reduce the censoring rate by directing the creation
algorithm to known areas of the nonself space or seeding
the initial antibody population with known attack signa-
tures. This would improve the generation and negative-se-
lection efficiency.

Affinity Maturation The current implementation of de-
ploying randomly generated antibodies can result in mul-
tiple matches on the same antigen. Affinity maturation
could be implemented to conserve resources by only re-
taining the antibody with the highest affinity. This could
be extended to include hypermutation and clonal selection
algorithms to create evolved copies of high affinity anti-
bodies. This has the possibility of improving the system
adaption process and also increasing the detection of re-
lated viral strains.

Metrics: One of the goals of the controller agent is to pro-
duce metrics on system performance (see Table IV). This
functionality is necessary for management insight into
system operation and in order to understand the system
wide impact of viruses. Real time displays could also be
created based on the metric information. This function-
ality is not currently not implemented.

Additional DetectorsCurrently, only file infector viruses
and packet-based network attacks are detected with the
prototype system. Additional agent types need to be cre-
ated in order to detect and remove the other viral threats,
such as macroviruses, or to implement more complex
state-based ID. A complete set of detector types is re-
quired to create a multilayered defense-in-depth.

Robust DeploymeniThe prototype contains very little
code to deal with system failures. However, the system
architecture is designed to one-day accommodate such
functionality. Features should be added to support the
graceful degradation of service in the face of failure,
instead of system collapse. This could include backup
agents, such as monitors that automatically fail over to
their adjacent peers, and communications timeouts with
recovery.

HARMER et al. AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE

9) Security: The current system is highly vulnerable to
spoofing and denial of service attacks. For instance, [y
erroneous vaccinations could easily be sent to a detector,
which could cause an autoimmune reaction. The proto—[Z]
type architecture easily supports the addition of security
layers, such as secure socket communication and agent
authentication, but they are not currently implemented. 3
These would have to be added, especially for a wide area
network deployment, in order to overcome the security [4]
problems associated with system compromise. (5]

XV. CONCLUSION o

The system design integrates the power, flexibility, adaption,
and capabilities of the BIS into an architecture realizable in thel’]
information system domain. Based on the models, the prototypegg;
implementation provides an effective solution for the detection,
identification, and elimination of malicious code and bad packets.
The level of effectiveness is tunable through the proper selectiorjg)
ofthe number ofantibodies, the antibody length, and the detection
threshold. These mustbe selected based on the contents of known
self and with an understanding of their ramifications on negativepi0]
selection time, scan time, and nonself space coverage.

The use of the agent paradigm facilitates the construction qfi 1
an AIS because of the performance limitations of a monolithic
implementation and the biological basis for the architecture caH?
be viewed as a system of collaborating agents [51]. While using
agents improves the understanding of the system design and the
mapping to the biological domain, the deployment of the agent[s’L3
must be done by considering the principles of parallel software
design in order to improve performance. For an agent-based
CDIS, this involves reducing communication and placing del
tection agents near their /0O sources.

This CDIS design is scaleable in terms of scope and covt®l
erage through the simple addition of new agent types and partic-
ipating system nodes. The prototype implements file system ardi6]
IP packet detection, but a more complete multilayered defense
could be realized by adding agent types for monitoring memoryj17
email, boot sectors, complex intrusions, and more. Additionally,
because the JSDT provides lookup services, agents can join Qg
leave the system at anytime.

Atits current level of maturity, the prototype does not provide
for a practical implementation nor unobtrusive operation. Thélg]
Java implementation provides a good prototype environment,
but its speed limits the system usability. The negative-selectioft®!
and scanning times measured in years are unacceptable fofog
practical system. An implementation improvement to increase
the system speed is paramount to future system viability. [22]

The agent-based CDIS offers detection and management cgas)
pabilities that are absent from current deployed solutions. The
abilities of these facets working together promises an entef?*
prise-wide computer-security solution. At the heart of CDIS[25]
is the ability to proactively generate antibodies capable of de-
tecting nonself data; the research presented herein investigat[ggl
a method of generating antibodies for the computer-virus and
network intrusion problem domains. The preliminary results,
though limited, indicate that this approach holds promise ang”
deserves continuing investigation.

] Symantec.

279

REFERENCES

P. K. Harmer, “A distributed agent architecture for a computer virus im-
mune system,” M.S. thesis, Air Force Inst. Technol., Wright-Patterson
AFB, OH, Mar. 2000.

P. D. Williams, “Warthog: Toward an artificial immune system for de-
tecting ‘low and slow’ information system attacks,” M.S. thesis, Air
Force Instit. Technol., Wright-Patterson AFB, OH, Mar. 2001.

(2001, Oct.) Symantec Security Response—Defini-
tions Added. [Online]. Available: http://www.symantec.com/av-
center/defs.added.html

M. Leon, “Internet virus boom,’ Infoworld, vol. 22, no. 3, pp. 36-37,
Jan. 2000.

D. Dasgupta, Ed.Artificial Inmune Systems and Their Applicatipns
Heidelberg, Germany: Springer-Verlag, 1999.

G. B. Lamont, R. E. Marmelstein, and D. A. Van Veldhuizen, “A dis-
tributed architecture for a self-adaptive computer virus immune system,”
in New Ideas in Optimization New York: McGraw-Hill, 1999, Ad-
vanced Topics in Computer Science Series, ch. 11, pp. 167-183.

E. Benjamini, G. Sunshine, and S. Leskowitmmunology: A Short
Course 3rd ed. New York: Wiley, 1996.

P. D. Williams, K. P. Anchor, J. L. Bebo, G. H. Gunsch, and G. B. La-
mont, “CDIS: Toward a computer immune system for detecting network
intrusions,” inProc. Fourth Int. Symp. Recent Advances in Intrusion De-
tection Oct. 2001, pp. 117-133.

J. O.Kephartand W. C. Arnold, “Automatic extraction of computer virus
signatures,” irProceedings of the 4th Virus Bulletin International Con-
ference R. Ford, Ed. Abingdon, U.K.: Virus Bulletin Ltd., 1994, pp.
179-194.

J. O. Kephart, G. B. Sorkin, M. Swimmer, and S. R. White, “Blueprint
for a computer immune system,” ifroceedings of the Virus Bulletin
International Conference Abingdon, U.K.: Virus Bulletin Ltd., 1997.

S. Forrest, S. A. Hofmeyer, and A. Somayaji, “Computer immunology,”
Commun. ACMvol. 40, no. 10, pp. 88-96, Oct. 1997.

S. A. Hofmeyr and S. Forrest, “Immunity by design: An artificial im-
mune system,” ifProceedings of the Genetic and Evolutionary Compu-
tation Conference San Mateo, CA: Morgan Kaufmann, July 1999, pp.
1289-1296.

] D. Dasgupta. Immunity-based intrusion detection systems: A general

framework. presented at 22nd Nat. Information Systems Security Conf..
[Online]. Available: http://csrc.nist.gov/nissc/1999/proceedings/pa-
pers/pl11.pdf

4] ——, “An artificial immune system as a multi-agent decision support

system,” inProc. IEEE Int. Conf. Systems, Man and Cybernetiost.
1998, pp. 3816-3820.

K. Mori, M. Tsukiyama, and T. Fukuda, “Multi-optimization by immune
algorithm with diversity and learning,” iRroc. Second Int. Conf. Mul-
tiagent System®ec. 1996, pp. 118-123.

E. Hart, P. Ross, and J. Nelson, “Producing robust schedules via an arti-
ficial immune system,Proc. IEEE Int. Conf. Evolutionary Computing

pp. 464-469, May 1998.

Her Majesty’s Office of Information.
Antibodies teach computers to learn.
http://www.aber.ac.uk/~jot/ISYS/hmoi.html

J. Hunt and D. Cooke, “The ISYS Project: An Introduction,” Univ.
Wales, Aberystwyth, Aberystwyth, U.K., Tech. Rep. IP-REP-002,
1996.

S. A. DelLoach, “Multiagent systems engineering: A methodology and
language for designing agent systems,Pioc. Int. Bi-Conf. Workshop
Agent-Oriented Information SystenhMay 1999, pp. 45-57.

R. Skardhamar\irus Detection and Eliminatian New York: Aca-
demic, 1996.

Cult of the Dead Cow. (1999, July) Back Orifice 2000. [Online]. Avail-
able: http://www.bo2k.com

F. B. CohenA Short Course on Computer Virus@sid ed. New York:
Wiley, 1994.

L. J. Hoffman, Ed.,Rogue Programs: Viruses, Worms, and Trojan
Horses New York: Van Nostrand Reinhold, 1990.

(1996,
[Online].

Sept.)
Available:

] M. A. Ludwig, The Little Black Book of Computer VirusesShow Low,

AZ: American Eagle, 1996.

Symantec Security Response—W32.Nimda.A@mm, Symantec.
(2001, Oct.). [Online]. Available: http://www.symantec.com/av-
center/venc/data/w32.nimda.a@mm.html

K. J. Cardinale and H. M. O’Donnell, “A constructive induction ap-
proach to computer immunology,” M.S. thesis, Air Force Inst. Technol.,
Wright-Patterson AFB, OH, Mar. 1999.

A compendium of NP optimization problems (1999, May). [On-
line]. Available: http://www.nada.kth.se/~viggo/problemlist/com-
pendium.html

280

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

[28] S. A. Hofmeyr, “An immunological model of distributed detection ang Paul K. Harmer received the B.S.E.E. degree from
its application to computer security,” Ph.D. dissertation, Univ. Ne the California State University, Long Beach, in 1996
Mexico, Albuguerque, NM, 1999. and the M.S.E.E. degree from the Air Force Institute

[29] C. A.Janeway Jr., “How the immune system recognizes invadscs,” of Technology, Wright-Patterson AFB, OH, in 2000.
Amer, vol. 269, no. 3, pp. 73-79, Sept. 1993. He is currently the Director of Technical Services

[30] S. Forrest, L. Allen, A. S. Perelson, and R. Cherukuri, “Self-nonse of the new high-performance computing distributed
discrimination in a computer,” iRroc. IEEE Symp. Research in Securit center for the Air Force Research Laboratory, Sen-
and Privacy May 1994, pp. 202-212. sors Directorate, Wright-Patterson AFB. He is also

[31] D. Dasgupta and F. Nino, “A comparison of negative and positive s the Program Manager for the Virtual Distributed Lab-
lection algorithms in novel pattern detection,”Rmoc. IEEE Int. Conf. oratory, which allows geographically distributed re-
Systems, Man, and Cybernetigsl. 1, Oct. 2000, pp. 125-130. searchersto collaborate and share code, data, and pro-

[32] J.T.TouandR. C. GonzaleRattern Recognition Principles Reading, grammatic information online.

MA: Addison-Wesley, 1974.

[33] M. Nadler and E. P. SmithRPattern Recognition Engineering New
York: Wiley, 1993.

[34] A.S. Perelson and G. Weisbuch, Edeoretical and Experimental In-
sights Into Immunology New York: Springer-Verlag, 1992, ch. Prob-
ability of self-nonself discrimination, pp. 63-70. Paul D. Williams received the B.S. degree in com-

[35] J. 0. Kephart, “A biologically inspired immune system for computers, puter science from the University of Washington,
in Proc. Fourth Int. Workshop Synthesis and Simulation of Living Sy Seattle, in 1996, and the M.S. degree in computer
tems July 1994, pp. 130-139. science from the Air Force Institute of Technology

[36] P.D’haeseleer, “Animmunological approach to change detection: The (AFIT), Wright-Patterson AFB, OH, in 2001.
retical results,” irProc. 9th IEEE Computer Security Foundations Work His course of study at AFIT centered primarily on
shop June 1996, pp. 18-27. information operations, with significant course work

[37] A.Somayaiji, S. Hofmeyer, and S. Forrest, “Principles of a computer i in the areas of artificial intelligence and advanced al-
mune system,” ifProc. New Security ParadigmSept. 1997, pp. 75-82. gorithm design. He is currently with the Air Intelli-

[38] R. E. Marmelstein, D. A. Van Veldhuizen, P. K. Harmer, and G. gence Agency, Lackland AFB, TX.

Lamont, “A white paper on modeling and analysis of computer im-
mune systems using evolutionary algorithms,” Air Force Inst. Technol.,
Wright-Patterson AFB, OH, Dec. 1999.

[39] V.Kumar, A. Grama, A. Gupta, and G. Karypistroduction to Parallel
Computing: Design and Analysis of AlgorithmsRedwood City, CA:

Benjamin Cummings, 1994. Gregg H. Gunsch received the B.S.E.E. degree

[40] S. A. DeLoach, Using agentMOM, 1999. from the University of North Dakota, Grand Forks,

[41] R. Burridge,Java Shared Data Toolkit User Guide, Version,1S&in in 1979, the M.S.E.E. degree from the Air Force
Microsystems, Mountain View, CA, Apr. 1999. Institute of Technology (AFIT), Wright-Patterson

[42] H. Crowder, R. S. Dembo, and J. M. Mulvey, “On reporting compu AFB, OH, in 1983, and the Ph.D. degree in electrical
tational experiments with mathematical softwar&CM Trans. Math. engineering from the University of lllinois at
Software vol. 5, no. 2, pp. 193-203, June 1979. Urbana-Champaign, Urbana, in 1991.

[43] P. Ducklin, “Standard anti-virus test file,” Eur. Inst. Computer Anti He has over 15 years of experience in developing
Virus Research, Brussels, Belgium, Aug. 1999. synergistic computer-human systems through the ap-

[44] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel plication of artificial intelligence techniques. He is
I. Graf, K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. currently responsible for the information systems se-
Zissman. Evaluating intrusion detection systems without attacking yosiirity/assurance (information warfare) curriculum at AFIT.
friends: the 1998 DARPA intrusion detection evaluation. presented
at Third Conf. and Workshop on Intrusion Detection and Response.

[Online]. Available: http://www.ll.mit.edu/IST/ideval/pubs/1999/Eval-
uating_IDs_DARPA_1998.pdf

[45] Nessus Ver. 1.0.5 (2000). [Online]. Available: www.nessus.org

[46] R. Jain,The Art of Computer Systems Performance Analydisew Gary B. Lamont received the B.S. degree in physics
York: Wiley, 1991. and the M.S.E.E. and Ph.D. degrees from the Univer-

[47] R.S.Barr,B.L.Golden, J.P.Kelly, M. G. C. Resende, and W. R. Stewa sity of Minnesota, Minneapolis, in 1961, 1967, and
“Designing and reporting on computational experiments with heurist 1970, respectively.
methods,”J. Heuristics vol. 1, no. 1, pp. 9-32, Mar. 1996. He is currently a Professor of Electrical and Com-

[48] Tally’s Virii Link Reference. (1999, Nov.) Tally’s virus col- puter Engineering at the Air Force Institute of Tech-
lection statistics. [Online]. Available: http://www.virusex- nology, Wright-Patterson AFB, OH, where he directs
change.org/tally/stats1.html the parallel and distributed computing and the evolu-

[49] R. E. Marmelstein, D. A. Van Veldhuizen, and G. B. Lamont, “A dis tionary computation research groups. Previously, he
tributed architecture for an adaptive computer virus immune system,” was an Engineering Systems Analyst for the Honey-
Proc. IEEE Int. Conf. Systems, Man, and Cybernetios 4, Oct. 1998, well Corporation for six years. He has authored or
pp. 3838-3843. coauthored a book, several book chapters, and over 100 papers. His current

[50] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to research interests include parallel/distributed computation, evolutionary com-
bibliographic search,Commun. ACMvol. 18, no. 6, pp. 333-340, June putation (genetic algorithms, evolutionary strategies), combinatorial optimiza-
1975. tion problems (single objective, multiobjective), formal methods, software en-

[51] K. P. Sycara, “Multiagent systems&l Mag., vol. 19, no. 2, pp. 79-92, gineering, digital signal processing, intelligent and distributed control systems,

1998. computational and numerical methods, and computer-aided design.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

