
252 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

An Artificial Immune System Architecture for
Computer Security Applications

Paul K. Harmer, Paul D. Williams, Gregg H. Gunsch, and Gary B. Lamont

Abstract—With increased global interconnectivity, reliance
on e-commerce, network services, and Internet communication,
computer security has become a necessity. Organizations must
protect their systems from intrusion and computer-virus attacks.
Such protection must detect anomalous patterns by exploiting
known signatures while monitoring normal computer programs
and network usage for abnormalities. Current antivirus and net-
work intrusion detection (ID) solutions can become overwhelmed
by the burden of capturing and classifying new viral stains and
intrusion patterns. To overcome this problem, a self-adaptive dis-
tributed agent-based defense immune system based on biological
strategies is developed within a hierarchical layered architecture.
A prototype interactive system is designed, implemented in Java,
and tested. The results validate the use of a distributed-agent bio-
logical-system approach toward the computer-security problems
of virus elimination and ID.

Index Terms—Agents, artificial immune system, computer secu-
rity, computer virus, intrusion detection.

I. INTRODUCTION

T HE WORLD has become a more interconnected place.
Electronic communication, e-commerce, network ser-

vices, and the Internet have become vital components of
business strategies, government operations, and private com-
munications. Many organizations have become dependent on
the wired world for their daily activities. This interconnectivity
has also brought forth those who wish to exploit it. Computer
security has, thus, become a necessity in the digital age.

While information dependence is increasing, the threat from
malicious code, such as computer viruses, is also on the rise.
The number of computer viruses has been increasing exponen-
tially from their first appearance in 1986 to over 55 000 different
strains identified today [3]. Viruses were once spread by sharing
disks; now, global connectivity allows malicious code to spread
farther and faster. Similarly, computer misuse through network
intrusion is on the rise.

Current computer-security solutions are “reactive.” They rely
upon collecting and analyzing specimens of new viruses or in-

Manuscript received December 28, 2000; revised May 21, 2001. This work
was supported by the Defensive Information Warfare Branch of the Air Force
Research Laboratory’s Information Directorate (AFRL/IFGB). This paper is
based on P. K. Harmer’s and P. D. Williams’ theses, submitted in partial fulfill-
ment of the requirements for Master of Science degrees at the Air Force Institute
of Technology, Wright-Patterson AFB, OH.

P. K. Harmer is with the Air Force Research Laboratory, Wright-Patterson
Air Force Base, OH 45433 USA (e-mail: paul.harmer@wpafb.af.mil.

P. D. Williams is with the Air Intelligence Agency, Lackland Air Force Base,
TX 78236 USA (e-mail: paul.williams@lackland.af.mil).

G. H. Gunsch and G. B. Lamont are with the Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH 45433 USA (e-mail:
gregg.gunsch@afit.edu; gary.lamont@afit.edu).

Publisher Item Identifier S 1089-778X(02)06069-1.

trusion signatures in order to update scanners with the means of
detection. This approach results in a slow reaction time to new
threats and is quickly becoming too much of a burden to update
with the increasing number of new viruses and inventive network
attacks that are discovered each day. In the past, computer-virus
scanstringupdateswereprovidedevery two to threemonths;cur-
rently, vendorsprovideupdatesevery fewhours [4].Toovercome
this problem, a self-adaptive computer defense immune system
(CDIS) based on biological strategies is developed.

This paper presents the design of an artificial immune system
(AIS) as applied to the computer-security domain.1 The purpose
of this paper is to describe research on developing a virus-ori-
ented CDIS, supplemented with an initial investigation into the
feasibility of adapting CDIS for network intrusion detection
(ID) [8]. Background into computer-virus detection and net-
work ID are given in Sections III and IV. Next, a string-matching
function is chosen that provides the necessary coverage and
specificity for these aspects of the computer-security problem
(see Section VII). This matching rule is deployed within an AIS
architecture. This architecture is defined and built based on an
immune system model of operations defined in Section VIII.
The resulting biological models are implemented though the use
of distributed software agents. A completely modular approach
is taken, which allows for the introduction of multiple detector
agent types while leveraging the common infrastructure of the
system for oversight, reporting, and repair (see Section IX). The
agents are deployed within a hierarchical structure that provides
system management features (see Section VIII-C). The detec-
tors studied in this research are for file infector viruses and state-
less packet-based network intrusions. The results from system
testing are presented in Section XII, with particular investiga-
tion into the areas of efficiency and effectiveness.

II. A RTIFICIAL IMMUNE SYSTEMS

There are several computational techniques that look to
biology for inspiration. Some common examples include
networks, evolutionary algorithms, and AISs or immunological
computation [5]. The biological immune system (BIS) has been
the target of considerable research interest in the medical com-
munity from which several theories of system behavior have
been developed with the hope of improving human life. The use
of immune system models to solve the computer-virus problem
has been suggested by [5], [6], and [9]–[11]. Their application
has also shown promise for ID [12]. Further ideas on utilizing a
multilayer model of the immune system for ID was proposed in

1The paper assumes that the reader has a cursory understanding of biological
immune system processes. Those wishing more information in this field are
referred to [5]–[7].

U.S. Government work not protected by U.S. copyright.

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 253

[13] to provide defense-in-depth. Immunological computation
has also been applied to other problem domains, not all of
which are in the computer-security field. Some of the more
interesting examples include anomaly detection in time series
data [5], fault diagnosis [5], decision support systems [14],
multioptimization problems [15], robust scheduling [16], and
loan application fraud detection [17]. The similarity in all of
these applications is that they utilize the pattern-matching and
“learning” mechanisms of the immune system model to per-
form desired system features. A lot of theoretical groundwork
in immunological computation has been completed, but only a
handful of AISs have been built [12], [17], [18]. Additionally,
none have implemented detectors from multiple problem
domains in order to provide a defense-in-depth approach to
computer security.

The BIS is made up of many different types of cells that are
deployed in great numbers. These cells operate independently,
yet in cooperation with each other through complex chemical
communication mechanisms in order to protect the body from
foreign invasion. This highly parallel and distributed structure of
the BIS suggests that an integrated architecture can be viewed
as a multiagent system (MAS), where separate functions are
carried out by individual agents [14]. Furthermore, the general
immune system features represent a model of adaptive processes
at the local level, with useful behavior emerging at the global
level [5]. This is similar to the description of MAS operations
by the artificial intelligence community [19].

III. COMPUTER-VIRUS DETECTION

Computer-virus detection is the process of finding malicious
programs residing on a computer system. This process is com-
monly referred to as antivirus (AV) even though more entities
than viruses are often looked for as part of the search process.
The term computer virus is often attached to unwanted code
that does malicious activities on its host computer. Applying the
term in this fashion is imprecise and misleading as viruses are
actually only one form of “rogue code.” Malicious code can take
the form of a Trojan horse, virus, or worm.

A Trojan horse is a program the masquerades as one pro-
gram, while it actually performs an entirely different task
altogether [20]. Trojan horses are also programs planted and
run unbeknownst to the user or administrator to provide a
“backdoor” onto the system. A Trojan horse can be placed on a
system through cooperation by unwary users, e.g., by opening
executable attachments to email. A popular example is the Cult
of the Dead Cow’s “Back Orifice 2000,” a stealthy persistent
program that allows the perpetrator to remotely control many of
the functions of a compromised Windows-based system [21].

A computer virus is a program that can “infect” other pro-
grams by modifying them to include a possibly evolved version
of itself [22]. One distinguishing feature of viruses is that they
are parasitic. They require a host to run them and to spread their
viral code [23]. This is usually another executable program al-
though other hosts, such as disk boot sectors, can be infected.

Computer viruses are usually classified by their method of
infection. The common subclasses of viruses are file infector,
boot sector, and macroviruses. The file infector is the type

most commonly associated with the term computer virus. File
infection viruses work by inserting their code into executable
files, just as the biological virus works by inserting its DNA code
into living cells [20]. The host file then executes the malicious
code on behalf of the virus. Boot sector viruses attach themselves
to specific areas of a disk that are loaded and executed on startup.
By placing its viral code into the boot sector of the disk, a virus
can gain control of the computer immediately upon bootup.
This allows the virus to execute before anything can detect its
existence [24]. The macrovirus is a section of code contained
within an application document. The intent of this capability was
to add automation capabilities to otherwise static documents. As
a further boon to virus writers, macroviruses are much easier to
write than before because macros use high-level languages and
do not require specific operating system knowledge. Our current
CDIS prototype is limited to file infector virus detection and
elimination.

Worms are programs that execute independently with the
distinguishing feature that they utilize a computer network
in order to propagate themselves [22], [23]. They often take
advantage of security or communications protocol loopholes in
order to spread [20]. The first worms were built at the Xerox Palo
Alto Research Center. They were designed to perform useful
work in a distributed environment, such as finding idle resources
[23]. These original worms would probably be called mobile
agents today.

The Melissa virus is more accurately termed a worm as it used
the features of Microsoft Exchange e-mail in order to spread
itself across networks. More modern malicious code utilizes
a variety of techniques, blurring the distinction among forms:
Nimda uses e-mail as one of its several transport mechanisms,
exhibits viral propagation on infected machines, and provides
Trojan horse capabilities [25].

A. Nature of the Problem

The most common method of identifying viruses are signa-
ture strings. A 16-B string has become the defacto AV industry
standard. Researchers at IBM have shown that 16 B is suffi-
cient to identify malicious code with a 0.5% false-positive rate
(Type I error) [9]. These 16 B must also be crafted so that
they find known viruses, thereby minimizing the false-nega-
tive rate (Type II error). The largest problem with creating a
new computer-virus immune system (CVIS) is the generation
of these signature strings or antibodies in an immune system.
The problem is that only some of the com-
binations identify one or more valid viruses. Furthermore, if a
valid string could be generated each microsecond, it would take
a serial computer years to generate them all. This
methodology uses simple exhaustive search, but even the gener-
ation of strings through machine learning techniques has been
shown to be highly combinatoric [26]. In general, the genera-
tion of strings and then testing their capabilities as virus identi-
fiers is similar to the Boolean-satisfiability NP-complete (NPC)
problem [27]. In this problem, a Boolean function is known
(e.g., a function that describes one or more viruses) and the goal
is to find the instantiation of function variables that returns a
true value from the function. There may be one, many, or even
no valid variable assignments that return true. The problem then

254 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

degenerates into enumerating all possibilities, which leads to its
classification as NPC. This indicates that a polynomial-time al-
gorithm does not exist for generating antibodies, so an approx-
imation algorithm is the only choice.

Another issue with generating all possible scan strings is re-
taining them in memory or offline storage. Again, if 16-B strings
are used, storing all of the signatures would take B

MB B MB. Even with the removal of
known invalid combinations, this is far too large for current
storage methods.

An AIS approaches these problems through the use of general
detectors that cover a wider area of the search space; however,
a parallel implementation of an antibody generation program
is needed to reduce the high combinatoric burden and make
the system practical. The large storage requirements can be re-
duced through creative methods, such as compression, but the
sizes required also indicate the need for a distributed system. Fi-
nally, the increased connectivity of networked systems, which
has aided virus spread in the past, can be used as a defensive
weapon with a distributed CVIS. This not only provides a par-
allel framework for the antibody generators and a distributed
file system for their storage, but also provides the capabilities
to eliminate intruders as they enter the system. A collective
antiviral self-defense organization is created by delivering im-
proved inoculations across the entire system.

There are many different forms of malicious code attacking
computer systems today. The variety and number of contem-
porary viruses makes complete detection difficult as shown by
the combinatorics, although it is possible to design efficient sys-
tems by utilizing distributed and parallel computational environ-
ments. Many of the same problems and solutions can be found
in the ID domain as well.

IV. I NTRUSION DETECTION

In its purest form, ID is the process of identifying the presence
of unauthorized access to an enterprise’s computing resources.
In practice, ID is broader and includes the detection of:

1) misuse/abuse—unauthorized activities by authorized
users (e.g., accessing pornography, theft of information,
using corporate resources for personal gain);

2) reconnaissance—determination of systems and services
that may be exploitable;

3) penetration attempt—unauthorized activity to gain access
to computing resources;

4) penetration—successful access to computing resources
by unauthorized users;

5) trojanization—presence and activity of unauthorized pro-
cesses;

6) denial of service—an attack that obstructs legitimate ac-
cess to computing resources.

For ease of discourse, the terms “intrusion” or “attack” are
used loosely to encompass any of the above conditions, except
where further clarification is needed.

A. Nature of the Problem

ID is a difficult problem for a variety of reasons. First, there
is a large number of communication protocols in use [e.g., in-

ternet protocol (IP), internet control message protocol (ICMP),
simple network management protocol (SNMP), transmission
control protocol (TCP), user datagram protocol (UDP), hyper-
text transfer protocol (HTTP), and address resolution protocol
(ARP)]. Each protocol is vulnerable to certain types of exploita-
tion; some are similar among protocols, but many are unique.
Second, there are many operating system, network service, and
user-application vulnerabilities—intentional services, software
bugs, and error-check omissions—that provide exploitation op-
portunities by unauthorized people or processes. These two fac-
tors together beget an enormous number of highly varied ap-
proaches for abusing computing resources.

The most common and straightforward approach to ID ap-
plies the basic virus detection model: pattern matching against
a library of signatures. If a match is made, an alert is generated.
Using a robust library can potentially produce a low false-neg-
ative rate; i.e., the ID system (IDS) would rarely fail to detect
known intrusions (Type II errors). However, there are several
problems with this approach. First, the amount of data and speed
at which it moves can outpace the ability of an IDS to monitor
all of the data. The result is that the IDS effectively takes random
samples and can miss key information. Second, signatures are
produced reactively; rarely are signatures created prior to an ex-
ploitation being observed in the wild. Third, there is a very high
innocuous “noise” level on networks due to misconfigured ser-
vices, user accidents, damaged/lost data packets, network man-
agement services, heartbeat information, and other activities un-
related to intrusion attempts. These contribute to a very high
false-positive alert rate: detection of activities that match signa-
tures, but are not part of an attack (Type I errors).

It is this high false-positive rate that makes ID based on the
recognition of a singular event ineffective. Alerts can be gener-
ated by the IDS, but reacting to every alert consumes enormous
time and resources, resulting in a self-inflicted denial of service.
A physician usually does not make a diagnosis based on a single
symptom and, like symptoms of a disease, multiple alerts need
to be correlated and analyzed. Intelligent processing is required,
not just to recognize the patterns of activity making up attack
profiles, but, more importantly, to attempt to determine intent.
Possibly the most difficult aspect of ID is that legitimate usage
shares many of the symptoms of unauthorized activity. Normal
activity patterns on the protected systems need to be considered
during the analysis process.

The correlation of multiple alerts requires maintenance of
state information. Each alert produced by a low-level detector
(herein called a “sensor”) contains information about the pro-
tocol or command used plus other parameters that provide con-
text, such as source and target addresses. Since multiple attacks
can occur simultaneously, related and unrelated alerts can be
generated from multiple sensors and attacks can be distributed
widely over time (among other factors), rigorous maintenance
of state information can be an enormous task. Multiple com-
peting hypotheses must be entertained in order to correlate alerts
and deconflict activities, yet these hypotheses cannot be held in-
definitely lest partially completed attacks consume the analyst’s
(human or automated) resources.

In summary, ID is tasked with discerning the occurrence of
any of a large number of highly varied patterns of nefarious ac-

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 255

tivity within a massive amount of authorized normal and ab-
normal, but innocuous, activity.

It isunrealisticandself-defeating toattempt tosolveallaspects
of this problem at once, so we have concentrated on the proac-
tive/predictivedevelopmentofantibodiescovering largeportions
of the network traffic space not populated with self data. Our pro-
totype ID component generates signatures for deployment to net-
worksensorsandweintendthattheresponsesofthosesensorswill
be correlated by an analytical engine yet to be developed. The an-
tibodiesuse320bits forasignature,comprising29of thepossible
data fields inanetworkprotocolpacket (seeSectionVI-B).These
fields have a range of values from 1 to 32 bits. Limiting the pro-
tocols under consideration and ignoring for the moment the three
large sequence numbers, the number of possible combinations is
dominatedbyTCPtraffic at .Clearly, this event space
defies deterministic search, so stochastic search with hefty gen-
eralization is used to explore large sections of this space in the
development of useful antibodies.

V. SYMBOLIC PROBLEM DOMAIN

The major objective of our prototype system is to detect the
existence of nonself patterns within a potentially larger set of
existing self patterns. The problem domain is over the setof
finite-length symbol sequences. is typically represented as

or , but the exact represen-
tation is an implementation detail. Set contains two subsets,
self and nonself such that and

[28]. For virus detection, the nonself patterns rep-
resent malicious viral code, while the self set is indicative of le-
gitimate benign programs. In an IDS, nonself patterns represent
IP packets from a computer network attack, while self patterns
are normal sanctioned network service transactions and nonma-
licious background clutter.

The task of the detection algorithm is the classification of an
input pattern as either self or nonself. Given an input
string , a detector set ,
where , a matching function

, and a matching threshold
, the classification as self or nonself can be made as

otherwise.

This detection methodology can generate two types of errors:
Type I, or false-positive errors, and Type II, or false-negative
errors. A false-positive error occurs when a member of the
self set is incorrectly classified as malicious. Conversely, a
false-negative error is the classification of a member of the
nonself set as benign

VI. A NTIBODY GENERATION

A. File Infector Antibodies

The antibodies for detecting file infections are simple byte
strings. These patterns are compared to the bytes within the com-
puter file system. The signature bytes themselves are created by

Fig. 1. Negative-selection algorithm.

a pseudorandom number generator. Because of the algorithmic
differencesbetweentheAISandthecurrentstaticstringmethods,
it is unclear if the 16-B string length is appropriate for a CVIS.
Therefore, our experiments include an examination of string
length on the CVIS’s effectiveness. Additionally, improvements
to the random search method can be made, but they are not
implemented currently. One technique would be to follow the
biological model. The BIS generates antibodies by choosing
random sections from five separate gene libraries [16]. In this
way, the B cells are able to create more than 100 million unique
antibodies [29]. A similar process could use computer-virus
byte-fragment libraries combined in random ways to produce
antibodies based on known nonself patterns. Variation in the
antibody population or an adequate balance between known and
randomly generation signatures is needed to avoid converging to
only known signatures. This would in effect revert us back to the
signature-based model and negate the value of an AIS.

Our pseudorandom antibody detection strings are assumed to
be certified as nonself patterns via the negative-selection algo-
rithm [30], [31]. This algorithm models the interaction and de-
velopment of T cells in the BIS. Negative selection is used to
precensor the generated antibodies against all known self pat-
terns (see Fig. 1, [30]). This guarantees that false-positive errors
do not occur against a static self as any antibody matching self
is removed before fielding. Our system does not yet address the
problem of a dynamic self space.

B. Network Intrusion Antibodies

The antibodies for network intrusion are generated in the
same manner and censored via negative selection just as in the
AV detectors. However, the antibodies for network intrusion are
longer and segregated because they utilize the IP packet struc-
tures as a template. There are many types of protocols flowing
on our networks. For the purposes of this system, only the three
most common protocols are monitored: TCP, UDP, and ICMP.
All three of these protocols are layered on top of the IP. Network
intrusion antibodies in the CDIS are essentially signatures for
protocol packets. The fields in each of the protocols are mapped
onto the first 292 bits of a 320-bit binary string (see Table I).
The last 28 bits are used to determine whether a particular field
is considered “valid” in the signature.

The generated antibodies, whether AV or ID, are deployed
and compared to possible malicious attacks by a matching-rule
function . It is this function that provides the core function-
ality of the detection process. The proper selection of a pat-
tern-matching function is instrumental in reducing the Type I
and Type II errors.

256 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE I
NETWORK PACKET ANTIBODY MAPPING

VII. PATTERN-MATCHING RULES

The BIS implements two core functions, the detection and
elimination of pathogens, or harmful foreign invaders. This pro-
posed CDIS is no different. The crux of the problem is the de-
tection of malicious entities that have penetrated the boundaries
of the system so that they cohabitate within a much larger self
set. This is an application of pattern matching between a set of
antibody scan strings and the set of input data.

Pattern recognition is a process by which input data are dis-
criminated, not between individual patterns, but between pop-

ulations. This is accomplished through a search for features
common to members of the various populations or sets [32].
The BIS accomplishes this through the physical and chemical
binding of antibodies to antigen molecules. Because of the neg-
ative-selection process, a match is a segregation of that molecule
into the set of nonself. In the computational domain, this process
is completed by string-matching rules; however, exact-equality
Boolean matching does not produce the coverage and flexibility
of the biological system. The model suggests using imperfect
detectors to recognize nonself with a low false-positive rate and
a high probability of detection.

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 257

A. Matching Rules

The many pattern-matching functions come in two varieties:
distance measures, which express how different two sequences
are, and similarity functions, which measure how alike they are
[33]. Intuitively, objects that are close together in the feature
space must be similar, while those that are farther apart are dis-
similar [33]. Those that are similar to a nonself pattern within
a certain threshold can be classified as nonself. The matching
rules investigated in this study utilize statistical, physical, and
binary measures of distance or similarity. One statistically based
similarity measure is the correlation factor or correlation coef-
ficient.

1) Statistical: The correlation coefficient produces a
number between 1 and 1 that relates how similar the two
input sequences are. It is defined as

The most common implementation of this measure is,
which is somewhat easier to compute [33]. Other common
matching rules operate at the bit level.

2) Binary Distance: The correlation coefficient utilizes the
byte values of the input and antibody strings. However, at their
lowest level these strings are sequences of bit values. Therefore,
it makes sense to utilize difference and similarity measures that
operate in the digital domain. The most obvious is the Hamming
distance, which counts the number of bit features that are dif-
ferent between two strings. Taking the complement results in
the number of bit positions that are alike [33]

The Hamming distance is the most commonly used method
for measuring the distance between bit strings, but to be more
useful, several authors have proposed additional similarity mea-
sures that extend the Hamming distance to produce the relative
number of features that match or differ [33]. These matching
functions utilize the following definitions:

otherwise

otherwise

otherwise

otherwise

These basic measures are combined into many different sim-
ilarity functions with the goal of producing a better similarity
coefficient.

1) Russel and Rao

2) Jaccard and Needham

3) Kulzinski: A one has been added to the denominator of
the author’s equation to avoid division by zero errors. Due
to the definition of and , this occurs whenever there is
an exact match

4) Sokal and Michener

5) Rogers and Tanimoto

6) Yule

The final binary-distance function examined for system pat-
tern matching is the-contiguous-bits matching rule [34]. This
rule attempts to model the strength of protein-antibody binding
by equating longer substring matches with a higher affinity.
Using this rule, string and string are said to match if they
agree in at least-contiguous locations

In this example, and match for [30].
3) Landscape-Affinity Matching:The BIS “identifies”

antigen by bonding with it physically and chemically. Only the
correct inverse protein structure and chemical makeup binds
with a high enough affinity to attach to an antibody or major
histocompatibility complex molecule.

In most AISs, this binding is performed by bit or byte string
comparisons [35]. Others extend bit matching to account for
imperfect matches by using the Hamming distance or-con-
tiguous bits [12], [30]. Another extension is to present combi-
natoric variations of the nonself string to the detector in order
to extend the search space of a specific matching function [12],
[18]. All of these variations capture the chemical and physical
matching process at a fairly high conceptual abstraction. Along
with the historical matching rules, this study also introduces one
more type, dubbed landscape-affinity matching.

In this methodology, the input strings are sampled as bytes
and converted into positive integer values in order to generate
a skyline, or landscape. The antibody strings are similarly rep-
resented. The antibody and input landscapes are compared in a
sliding window fashion (see Fig. 2).

The comparison can be made in several ways that produce an
affinity measure. Those used are difference, slope, and phys-
ical affinity. These measurements are then checked against a
threshold value. If the affinity exceeds the threshold, a match

258 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 2. Landscape-affinity-matching representation and windowing.

Fig. 3. Physical landscape-affinity-matching methodology.

is declared (see Fig. 3). The input string and the antibody are
sequences of bytes comparedat a time

In the difference-matching rule, the differences in the string
bytes are simply summed

The slope-matching rule looks at the differences in the
changes between bytes among the two stings

Physical matching stacks the two strings like blocks and then
calculates the resulting gaps between the two strings (see Fig. 3)

Landscape-affinity matching captures the ideas of matching
the biochemical, physical structure, and imperfect matching
with a threshold for activation. The differences between the
input landscape and the antibody “heights” can be likened to
the ease of chemical bonding between proteins. The closer the
peaks and valleys are, the greater the likelihood of a bond and
the higher the affinity.

B. Comparison Criteria

A comprehensive theory on the probability of detection has
been developed for the-contiguous-bits matching rules in [34].
This theory was verified with experimentation in the AV do-
main in [30]. Our approach for this system is to compare the
matching rules experimentally. This methodology was selected
due to the relatively large number of rules and our desire to se-
lect a matching rule for a computer-security system, as opposed
to developing a complete theory behind each of the rules. In
order to compare these 12 selected matching rules, each one is
calculated with a common data set. A random string of 32 B is
generated as the input string. From this, 4 B are selected from
positions 11–14 to act as an antibody string. Therefore, a known
exact match is always present at position 14. The 4-B antibody

Fig. 4. Average SNRs.

is compared with the zero-padded input string using a sliding
window. This generates 35 measurements of difference or sim-
ilarity for each matching rule.

All measurements are converted to similarity measurements
and normalized so that a value of one represents an exact match,
while a zero is produced by the two most dissimilar strings. This
test is runonfive randominputstringstoproduceastatisticalsam-
pling of the rules’ performance. In order to compare the effec-
tiveness of the various methods, an average signal-to-noise ratio
(SNR) is calculated, along with a function-value distribution.

C. Results and Analysis

The SNR is a measure of a matching rule’s ability to ac-
curately discriminate a match signal from all the nonmatches
(noise). It is calculated as ten times the log of the ratio of the
signal power to the average noise power. In order to equate with
communications theory, in this application, the normalized rule
function values are interpreted as voltages driving a normalized
resistor. The result is a continuum of values from zero to one. A
detection or a Boolean “match” value is an independent calcu-
lation and determined during scanning if the signal strength is
greater than the predefined threshold value

The results can be seen in Fig. 4. A large SNR indicates
a more specific detector, while a low value is indicative of a
general detector. A specific detector is able to find a pathogen
with a low false-alarm rate. As the SNR decreases, the proba-
bility of generating a false-positive detection increases. How-
ever, a general detector is able to cover a larger subset of the
self/nonself space. This must be balanced with an appropriate
affinity threshold value. Together, the matching rule and the
threshold define the specificity of the detection process. The in-
herent tradeoff is between accuracy and coverage.

The Kulzinski measure produces a disproportionately large
SNR. This measure would produce the most specific detector.
The Hamming distance and the Sokal functions produce the
lowest SNR, pulling a signal only about 6 dB above the noise
floor. These would result in much higher false-alarm rates on av-
erage. Interestingly, the landscape-affinity measures did not per-
form much better. The-contiguous-bits rule produced a SNR
of almost 17. The increased stringency in this rule compared to
the Hamming distance, where matching can occur anywhere, re-
sults in a detection rule that is almost three times more specific
than the Hamming distance.

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 259

Fig. 5. Normalized-matching rule distribution functions, part I.

For this application, a balance between generality and speci-
ficity in the detector is desired, with a tendency toward the
specific. A general detector allows the antibody to cover a
greater portion of the nonself region, at the expense of possibly
overlapping a small portion of self. Since we are using the
negative-selection approach, the impact of general detectors
would be a greater difficulty in generating the required number
of antibodies (due to a higher probability of a match on self).
Additionally, small areas of nonself (holes) in the landscape
could be overlooked [36]. Another design goal for the CDIS is
to increase the sensitivity of the detector by reducing the detec-
tion threshold. This allows the system to increase its awareness
for a possible infection based upon outside notification or the
recent occurrence of an attack. For this reason, a matching
rule with the ability to pull the signal out of the noise floor,
but not too high, is desirable. A SNR between nine and 12 is
probably sufficient, which corresponds to the Rogers corre-
lation-coefficient-squared and the Jaccard measures. In order
to down select among these, the function value distributions
are plotted.

The various values produced by the comparison functions are
scaled and plotted using histograms in order to understand the
density functions of the various measures. These can be seen in

Figs. 5 and 6. Ideally, the density function for this application
should approximate Fig. 7. This corresponds to a SNR of 8.05
dB. The ideal density function would allow for a low false-pos-
itive rate with a smooth scaling in sensitivity as the detection
threshold is moved to the left. In the ideal case, the density func-
tion value at 90%–100% should be , which in-
dicates only one exact match and all other similarity values are
less than 90%. Additionally, a low variability, especially in the
higher affinity values, is desired. This would indicate consistent
performance from the detector.

Evident in these histograms are the reasons for some of
the SNR values as well as confirmation of the generality or
specificity of the matching rules. The Kulzinski measure’s
histogram dramatically depicts this rule’s ability to perform
as a highly-specific detector. Likewise, the-contiguous-bits
rule is quite heavily weighted at the lower affinity end. The
landscape-affinity physical measure produces the worst dis-
criminator, with a naturally high false-positive frequency along
with large variability in all the other value bands. Additionally,
it has an almost uniform distribution in value frequencies, indi-
cating poor discrimination. The Hamming distance and Sokal’s
measure, which possess identical SNR values, also show their
equality in their density functions. Further investigation reveals

260 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 6. Normalized-matching rule distribution functions, part II.

Fig. 7. Ideal-matching rule distribution function.

that the Sokal and Michener function is equivalent to the
normalized Hamming similarity.

Based on their SNRs, Rogers, the correlation coefficient, and
the Jaccard measurements are the most applicable to this ap-
plication. Both the Rogers and Jaccard rules produce distribu-
tion functions that are only slightly better than the Hamming
distance in terms of specificity. These two also have large gaps
in their frequency distributions between an exact match of one
and the values of lesser matching affinity. The Rogers mea-
sure is the best of the two because of its low variance in fre-
quency values. The correlation-coefficient-squared produces a
close-to-uniform distribution, which would scale well in sen-

sitivity, but it has a very high false-positive frequency. This
false-alarm rate renders the correlation coefficient unacceptable.
For these reasons, the Rogers and Tanimoto measure is the best
choice. Its density function is a fairly good approximation of the
ideal case, but its greatest deficiency is the gap between a posi-
tive match and the next lowest frequency band. This either needs
to be accounted for with a scaling of the threshold reduction or
it allows for a sensitivity gap where the threshold would have
to be reduced 40% before additional sensitivity is encountered.
Heightened sensitivity could also be gained by the replacement
of the Rogers function with the Sokal function. This would give
the system the same performance as the Hamming distance if
more generality is required.

The Rogers and Tanimoto similarity measure is the best
matching rule for this application. It provides a good compro-
mise between a specific versus a general detector and can also
accommodate increased sensitivity through detector threshold
reduction, although a fairly large reduction is required.

For each of these matching rules, additional mathematical op-
erations such as squaring, scaling, or taking the absolute value
can have a dramatic effect on the density function histogram
and the SNR. The Yule discriminator produces a value between

1 and 1. Scaling with the absolute value produces a density
function that almost exactly matches the ideal case. However,

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 261

Fig. 8. Output values using a 4-B block comparison.

this folding of the density values about the origin produces in-
valid results because a value of , the result of two completely
dissimilar strings, then becomes equal to an exact match. Other
items to consider are the matching methodology and the sensi-
tivity of the measures. The-contiguous-bits measure is highly
sensitive to bit changes near the middle of the string, while less
sensitive at the outer edges. One bit flip in the middle can cut the
measure’s value in half, while an end bit change only decreases
the measure by 1. This could be overcome if wrapping of the
string is allowed. Finally, the matching methodology, whether
block compare or sliding window, can produce very different
results. By only comparing in successive-bit blocks, infor-
mation is lost (see Fig. 8). Calculations of the effect of block
size on information loss show exactly this [36]. Most of our
matching functions completely miss the exact match at position
14 because it is sandwiched between two successive 4-B blocks.
The correlation coefficient comes close due to a false-positive
match at position 16. It is hypothesized that the block compare
methodology would only be useful in reduced instruction set
computers, where instructions and data are aligned on prede-
termined boundaries. The chunk size would have to be exactly
matched to the processor word size to be effective. Indeed, the
entropy calculations in [36] show that local minima occur at in-
struction-size (4-B) boundaries. However, in complex instruc-
tion set computers (those running Microsoft DOS and Win-
dows variants are host to the greatest number of viruses), in-
struction length is variable. Therefore, using a block compare
strategy would miss important instruction and data structures.
Conversely, for scanning packets, fields within the data stream
are reserved for specific values. Therefore, block comparison in
this problem domain makes sense.

VIII. I MMUNE-SYSTEM MODEL DEVELOPMENT

The components, processes, and results of the BIS show it
to be an effective model for self-defense. It is desirable to con-
struct a CDIS based on this model in order to overcome the reac-
tive, nonadaptive, centralized, and monolithic nature of current
computer-security solutions. However, the fundamental differ-
ences between biological and digital systems make a mapping
between these domains difficult.

A. Biological Immune System Features

In order to construct an effective isomorphism, the following
features, functions, and organizing principles [37], [38] of the
BIS must be understood.

1) Parallel and Distributed:The immune system is a mas-
sively parallel architecture with a diverse set of compo-
nents. These components are distributed throughout the
body and communicate through chemical signals.

2) Multilayered:No single mechanism offers complete im-
munity. Each layer operates independently, yet also in
concert with all the other components, to provide de-
fense-in-depth.

3) Autonomous:Each entity of the immune system operates
under independent control. There is no central authority
and hence no single point of failure. The multitude of
independent agents work together resulting in the emer-
gent behavior of the immune system.

4) Imperfect Detection:A detection event does not require
an single exact match, but rather, the exceeding of an
affinity threshold. Imprecise detectors allow for gener-
ality in the matching process, which further allows each
detector to cover a larger subset of the nonself space.

5) Safety:The system contains checks-and-balances, such
as costimulation or a second confirmation signal, and
activation thresholds to ensure that detection errors are
minimized.

6) Diversity: Diversity in the composition of each indi-
vidual’s immune system ensures that the entire popu-
lation does not succumb to the same single pathogen.
Additionally, each immune system cell only carries one
form of detector. A large population of cells with a di-
verse set of receptor types enables the body to cover a
large portion of the nonself space.

7) Resource Optimization:It is combinatorically expensive
and too resource intensive to maintain a complete set of
nonself detectors. Through the use of programmed cell
death and cell division, the system maintains a random
sampling of the search space at any one time.

8) Self/Nonself Detection:Through nonself receptor death
and generation, the immune system has the ability to
detect and respond to the presence of pathogens, even
those that have not been encountered before.

9) Selective Response:After a detection, chemical signals
and the identification method effectively classify the
antigen. This determines the exact response to an
infection.

10) Memory:Memory B cells enable the immune system to
“remember” past infections and prime the system for an
improved response upon later infections by the same or
similar antigen.

11) Adaptive:The system evolves through clonal selection
and hypermutation to improve the antigen recognition
capabilities and therefore improve the overall system
performance.

B. Artificial Immune System Model

At a high level of abstraction, the main structures of the im-
mune system map logically into information system entities (see
Fig. 9). The BIS correlates to a CDIS, whose function is to
detect and eliminate digitally malicious pathogens. These anti-
genic programs and network packets are made up of symbolic

262 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE II
BIOLOGICAL-TO-COMPUTATION DOMAIN MAPPING

Fig. 9. Biological to computational domain top-level mapping.

string (i.e., bits, bytes, or words) patterns that detection algo-
rithms search for by employing pattern-matching functions.

The previously identified BIS features, functions, and orga-
nizing principles are further decomposed into lower level infor-
mation system entities and operations. The mapping between
these functions and organizing principles can be seen in Table II.
The autonomous, multilayered, and distributed features of the
BIS suggest a distributed MAS utilizing a diverse array of agent
detectors. These detectors maintain “antibody” search strings
that are censored at creation via the negative-selection algo-
rithm. The detectors are deployed with a pattern-matching func-
tion that produces a relative affinity based on the similarity of
the antibody and antigen strings.

If a detector exceeds an affinity threshold, then it is activated.
If multiple antibody strings are activated, “affinity maturation”
is used to maintain only those detector strings that best match the
malicious code. This process and the “programmed cell death”
of nonactivated strings results in a continual searching of the
nonself space along with a retention of only the best matching
antibody strings. A match that exceeds the affinity threshold

also requires a costimulation signal in order to reduce false-pos-
itive errors. A confirmed valid detection results in a selective re-
sponse that utilizes the best means available, either repair, dele-
tion, or quarantine for files or port blocking for intrusions. A
repair can occur if an exact classification of the infecting virus
can be made and a known “antidote” algorithm is available. Oth-
erwise, the infected file must be deleted or immobilized (quar-
antined) in order to not pose a risk to the infected system or its
neighbors.

C. System Logical Hierarchy

The deployment of an agent-based CDIS should be dis-
tributed with redundant links and no centralized control in order
to realize the fault tolerance and no-single-point-of-failure
feature present in the BIS. However, a logical system hierarchy
is required to apportion functional, management, and reporting
tasks. These levels facilitate the dissemination of preventative
information as well as the recognition and early suppression of
computer-virus epidemics or coordinated network attacks (see
Fig. 10). These communications links need to be encrypted
and participants authenticated to ensure system integrity. This
layered hierarchy is divided into the system, network, and local
levels that map to a larger biological abstraction of populations,
communities, and individuals (see Table III). The assignment
of functionality to the three layers borrows from the structure
and operation of the self-adaptive CVIS [6]. Similar layered
architectures can be found in the Computer Health System [26]
and Dasgupta’s general ID framework [13].

1) System Level:

a) provides health status of the community;
b) identifies problems, durations, trends, and locations;

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 263

Fig. 10. Model logical hierarchy

TABLE III
SYSTEM HIERARCHY DOMAIN COMPARISON

c) promotes system health awareness by providing pre-
vention information and sharing community status,
thresholds, and vaccinations;

d) provides a global storehouse for memory detectors.

2) Network Level:

a) focuses on the local community of machines;
b) sets system priorities by controlling activation thresh-

olds and system responses;
c) collects local system status;
d) reports local status to the system level;
e) dispenses vaccinations and preventative information.

3) Local Level:

a) responsible for detection, response, and memory;
b) implements innate and acquired immunity through

self/nonself detection;
c) generates infection warnings;
d) implements local memory.

D. Local Model

At the local level, detectors encompass the features ofcells,
cells, and antibodies into a unified detection entity. In order to

reduce the overhead of maintaining multiple separate instances
of detector objects each with a separate antigen receptor, each
detector contains a set of detector strings. These strings are ini-
tially censored via negative selection and also have a finite life-
time, unless they are promoted to a memory “cell.” False-posi-
tive errors are reduced through an affinity threshold and an ex-
ternal costimulation requirement. These processes infer the an-
tibody scan string lifecycle model (see Fig. 11) introduced by
[12] and expanded upon in [2] and [8].

Fig. 11. Detector string lifecycle model.

IX. DOMAIN-LEVEL DESIGN

The domain-level design involves defining agents and their
interactions. This process is accomplished through use-case
modeling. The biological, system hierarchy, and local models
of operation imply a suite of operations performed by a
federation of interacting agents. The identified operations of a
computer-security AIS are the following.

1) Generate Nonself Strings:

a) the generator creates a nonself detector string;
b) the generator tests this string against all known self;
c) if a match on self occurs, the string is destroyed and

a new string is generated. This process is repeated
until no match occurs and the string graduates to an
immature state;

d) if a detector string is set to memory type, the gen-
erator adds this string to nonvolatile storage;

e) the generator logs all actions performed.

2) Detect Foreign Bodies:

a) the detector opens the input source;
b) the detector performs pattern matching using one or

more generated strings;
c) if a match occurs that exceeds the affinity threshold,

the detector raises a warning and stores a pointer to
the offending entity;

d) after a designated time period, if a detector string
has not been elevated to a memory type, the de-
tector destroys the detector string and signals the
generator to generate a new one;

e) the detector logs all actions performed.

3) Monitor Warnings:

a) the monitor coordinates the activities of the local
agents;

b) if a warning message is received, the monitor raises
an alarm and signals the helper;

c) if an alarm is received from an adjacent monitor, the
local monitor decreases the local affinity threshold;

264 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

d) the monitor communicates the local status to the
controller;

e) the monitor logs all actions performed.

4) Costimulation:

a) if an alarm is raised, the helper reports the alarm and
asks for costimulation;

b) if no costimulation is received or a negative costim-
ulation is received, the helper signals the detector
to destroy the detector string;

c) if costimulation is received, the helper signals the
classifier and signals the detector to graduate the
detector string from immature to memory state;

d) the helper logs all actions performed.

5) Classify:

a) the classifier gets the pointer to the malicious entity
from the detector;

b) the classifier compares the data bits with known
virus signatures or network intrusions;

c) if a match is found, the classifier signals the re-
pairer;

d) if no match is found, the classifier signals the killer;
e) the classifier logs all actions performed.

6) Remove/Kill Foreign Body:

a) the killer notifies the helper that no known cure is
available;

b) the killer asks the helper to confirm the deletion of
the infected file, blocking of the port, or the shun-
ning of an IP address range;

c) if a confirmation is received, the killer deletes the
file or updates the firewall rules;

d) if no confirmation is received, the killer asks the
helper to confirm the quarantining of the malicious
code or the routing of traffic to a honey pot;

e) if no confirmation for quarantine is received, the
killer warns the administrator of the presence of
active malicious code on the system;

f) if confirmation for quarantine is received, the killer
moves the infected file to a safe location and ren-
ders it unexecutable;

g) the killer logs all actions performed.

7) Repair:

a) the repairer notifies the administrator that a known
cure is available;

b) the repairer asks the administrator to confirm the
application of the repair;

c) if a confirmation is received, the repairer repairs the
file, or resets the connection;

d) if no confirmation is recieved, the repairer asks the
helper to confirm the quarantining of the malicious
code;

e) if no confirmation for quarantine is received, the
repairer warns the administrator of the presence of
active malicious code or active network attack on
the system;

f) if confirmation for quarantine is received, the re-
pairer moves the infected file to a safe location and

Fig. 12. Decomposition of use cases to agents.

renders it unexecutable or routs network packets to
a honey pot;

g) the repairer logs all actions performed.
8) System Control and Reporting:

a) the controller provides metrics to the administrator
on system operation;

b) the controller provides the health status of the com-
munity;

c) the controller provides preventative information to
the monitors;

d) the controller coordinates information passing be-
tween nonlocal monitors;

e) the controller logs all actions performed.
The design of agent types is completed by decomposing the

use cases into individual agents. A base set of seven agent types
are identified and the mapping of use-cases to agents can be seen
in Fig. 12.

The antibody agent encapsulates the generation and mainte-
nance of search strings. The detector agent uses the services of
multiple antibodies in order to scan an input string for mali-
cious code or network intrusion signatures. The monitor con-
trols the local area detection thresholds, communicates with the
controller and other local monitors, and generates alarms to be
acted upon by helper agents. Helpers perform the tasks of inter-
facing with the administrator, such as soliciting costimulation
in order to overcome the problems of imperfect detector strings.
Classifiers identify the exact infector or attack responsible and
send the appropriate cleaner to fix the problem. Cleaners re-
move the virus or network attacks from the system using the
best means available, repair, deletion, quarantine, or shunning.
The definition of agent types concludes with assigning goals and
services to the individual agents.

The agents with their goals and services can be seen in
Table IV. The services provided by the agents are requested
through interactions with other agents. These interactions are
carried out by message passing “conversations.”

A. Agent Conversations

Agent “conversations” define possible interactions between
agents [19]. Conversations are used by an agent to request the
services of another in order to fulfill its goals. Through the coor-
dinated use of each other’s services, the CDIS as a whole is able
to detect, identify, and remove malicious code from the system.
The required coordination is accomplished through conversa-
tions.

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 265

TABLE IV
AGENTS, GOALS, AND SERVICES

TABLE V
AGENTS AND THEIR CONVERSATIONS

The conversations are developed from the use cases, where
interagent interactions are described. Each interaction becomes
a conversation or part of a more complex interaction. The
use-case interactions generate the conversations shown in
Table V.

B. System Design

The system can be defined as a set of any number of different
agent types [19]. The minimal set would be a monitor and a
detector. However, a realistic system would include multiple in-
stances of all the agent types running on distributed nodes.

The efficient mapping of agents to physical machines requires
the considerations of parallel algorithm design. This is accom-
plished through two major components: 1) the identification of
parallel components and 2) the mapping of tasks to processors to
minimize communication [39]. The division of tasks into those
that can operate concurrently occurs as part of the agent decom-
position. The second part of a good parallel agent deployment
is the consideration of communications costs. For example, file
detectors need to be local to their file system to avoid passing

large amounts of data (conceivably the whole disk) across a net-
work. The network intrusion detectors would need to be placed
on a network border machine, probably just behind a firewall.
In general, attacks or infections are rare, so detectors run locally
and send messages to their associated monitors in order to min-
imize network traffic. Due to input–output (I/O) considerations,
the classifiers and killers should also be located local to the input
source. These agents perform file operations or update firewall
settings, which can induce considerable network loading if done
remotely.

A major system consideration is the need for low resource
overhead. The CDIS should be unobtrusive to the user. Because
infections and detections are rare, helpers, killers, and cleaners
are not used often. Therefore, in order to not waste central pro-
cessing unit (CPU) cycles or memory on busy waiting, these
agents are instantiated only when the need arises. Helpers only
send messages and perform costimulation. It is logical that they
be colocated with the monitor for simplified user interaction.
All these considerations are embodied in an example physical
deployment diagram (see Fig. 13).

266 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 13. Agent deployment diagram.

X. AGENT COMMUNICATIONS

This CDIS is designed as a multiagent system. These au-
tonomous system entities collaborate with each other in order to
produce an immune system behavior. This collaboration, which
is inherent in distributed multiagent systems, requires the use of
a network backbone and a communications software layer. The
Java language was chosen for this project because it was de-
signed to operate over networks and, hence, provides compre-
hensive network communication support. However, low-level
TCP/IP socket construction, manipulation, and optimization is
not the goal of this research. In order to develop the distributed
agent-based CDIS prototype, a communications library that ab-
stracts away the low-level details of network communication
is desired. There are many approaches to this problem of dis-
tributed computing, including shared memory, message passing,
distributed objects, and agent development kits.

The ideal communications library would provide an efficient
abstraction above the low-level implementation issues while
supporting the needs of agent collaboration, the immune system
model, and the desire for fast prototyping. Foremost is the
need for low startup and transmission overhead. The bottleneck
in many distributed applications is the communication time.
In order to further minimize communication costs or to not
undo the efforts of effective agent decomposition, an efficient
communications library is required.

The needs of the agent design require the use of one-to-one
and one-to-many send routines. For example, vaccinations
should be broadcast to all the appropriate detector types, while
virus detection warnings need only be sent from a single AV
detector to a monitor agent. A messaging system that only pro-
vides one-to-one capabilities could be used by making multiple
sends to a list of recipients, but this would be less efficient,
especially in a local area network (LAN) environment, where
packets are broadcast to all nodes anyway.

On the receive side, asynchronous messaging is desired. An
infection and later detection of the malicious code occurs with a
relatively low frequency. Responses to an infection are driven
from the detection event. Therefore, an asynchronous event-
driven messaging system is desired. Next, agents can pass these

Fig. 14. AgentMOM operation.

messages between each other, within possibly multiple sepa-
rate conversations. A communication layer that supports mul-
tiple channels over a single connection would be ideal.

The system is designed as a collaborating federation of
agents. These agents could conceivably join or leave the group
at any time; for instance, if workstations were turned off at the
end of the day. For this reason, it is desired that the commu-
nications library supports the ability to join and separate from
the system, or subscribe and unsubscribe to message-passing
channels.

Finally, with an eye to the future, the system should be able
to incorporate a security layer. In order to make a fielded system
resistant to infiltration or spoofing, encryption of messages and
the authentication of agents would be required. Such features
are beyond the scope of this prototype, but would be necessary
in an actual deployment.

Along with this diverse set of functional requirements, a com-
munications layer that is easy to use and understand is desired.
This facilitates later understanding and expansion of the design.
Two communications systems are selected to implementation
the CDIS multiagent communications. The CDIS communica-
tions infrastructure and agent messaging components are real-
ized by combining the strengths of message-oriented middle-
ware (MOM) and the Java Shared Data Toolkit (JSDT).

A. AgentMOM

AgentMOM is a communications framework developed
by the AFIT Agent Research Group [40]. It is designed to
explicitly implement the communications required in MASs
engineering-designed architectures. Although agentMOM is
termed as a MOM for agents, it is actually devoid of mid-
dleware services commonly associated with MOMs, such as
automatic message routing or queuing. However, it has been
proven effective for implementing agent conversations.

Agents utilizing this framework implement two components:
1) the message handler and 2) the conversation (see Fig. 14).
Agent communication occurs via conversations in a multiagent
systems engineering environment. When an agent wants to col-
laborate, it begins a conversation as a separate thread. The ini-
tial message is sent across a socket connection to the recip-
ient’s message handler. The message handler monitors a local
port for incoming messages, which it passes on to an agent’s

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 267

receiveMessagemethod. ThereceiveMessageroutine processes
that message and, if appropriate, begins the other side of the
conversation in a separate thread. After that initial contact, the
conversation is handled by the two conversation threads. Uti-
lizing threads for conversations eliminates agent busy waiting
during blocking communication calls.

Messages in this framework are sent as the content in
peer-to-peer conversations. AgentMOM does not directly sup-
port one-to-many multicast messaging. This would have to be
simulated by using multiple one-to-one calls. The agentMOM
architecture utilizes asynchronous event-driven messages
and multichannel messaging is accommodated via multiple
conversations all running as separate threads. AgentMOM does
not use subscription-based channels, instead conversations are
initiated and torn down as required. This is potentially more
efficient if conversations are infrequent, as is the case with
those initiated on virus detection. This lack of a subscription
service also alludes to agentMOM’s low level of abstraction.
AgentMOM requires the programmer to specify socket ad-
dresses and ports. However, because operations are at this
level, performance gains can be realized through tailoring of
the operations to the exact problem domain. Additionally, this
facilitates the addition of extra functionality. For instance, at
this level, security is not implicitly offered; however, the socket
constructor could easily be replaced by one that implements
secure socket layer (SSL).

AgentMOM offers a medium-level abstraction for agent
communication. Instead of middleware services, as the name
implies, the library provides base classes and functionality
to the individual agents. AgentMOM partially defines the
structure of the agents themselves, not just the communications
mechanisms. For instance, the passing of received messages to
an agent’sreceiveMessagemethod is specified. An additional
benefit of the lower abstraction is performance improvements
gained by a reduced number of object layers as well as the
capability for implementation tailoring. AgentMOM provides
an ideal architecture and agent functional description for
implementing conversations, but it lacks some communications
services desired for our system. Therefore, its overall architec-
ture is combined with the JSDT.

B. Java Shared Data Toolkit

The JSDT is a communications library that is designed to
support collaborative applications [41]. This set of classes pro-
vides an abstraction above the basic networking functionality to
offer communication sessions between objects, with each ses-
sion capable of supporting multiple separate data channels. The
low-level networking communication can utilize sockets, hy-
pertext transfer protocol (HTTP), light-weight reliable multi-
cast package, or remote method invocation for its basic con-
nection. The exact method can be specified by the programmer
during session creation. Since most of these protocols are built
on sockets, it makes sense to utilize the basic socket for effi-
ciency.

This architecture can efficiently support multicast messages
with point-to-point being a special case. There is also support
for both synchronous and asynchronous message delivery,
with the latter being the default. In the asynchronous mode,

Fig. 15. Session-level logical view.

Fig. 16. Channel-level logical view.

a channel consumer’sdataReceivedmethod is called when a
message arrives, thereby providing an event driven operational
model. Channel consumers indicate their interest in a particular
session:channel combination by subscribing to it. Additionally,
the library supports managed sessions. A session manager
can invite clients to join a session channel or even expel them
from an existing connection. Inherent to a managed session is
a security layer consisting of a challenge/reply authentication
between the manager and the joining client. Additional security
can be added by utilizing a SSL instead of regular, unsecure
socket connections. Utilizing this capability is as simple as
adding two source code lines at the beginning of a JSDT
application.

C. CVIS Communications Design

The JSDT constructs are combined with the agentMOM ar-
chitecture to provide a hierarchical communications network
that supports the system, network, and local CVIS levels (see
Section VIII-C). By utilizing the JSDT session constructs, the
implementation can create multiple sessions to logically isolate
conversations at the appropriate level (see Fig. 15).

The system-level session encompasses the regional (or
global) controller agents and their assigned network monitors.
At the network level, various sessions connect local Monitors
in order to pass on virus epidemic or large-scale network
attack warning messages. Finally, many local sessions connect
the monitors to their assigned agents. Within these sessions,
multiple channels are created in order to carry on interagent
communications (see Fig. 16). Each of these conversations is
implemented as a separate thread.

268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE VI
TEST INPUTS

The operation of conversations are based on agentMOM con-
structs. However, because JSDT channels are used, the message
handler is unnecessary and agents can use the session members
list as a naming service to invite other agents to join a conversa-
tion. Conversations are implemented as separate threads in order
to allow multiple concurrent conversations within a single agent.
This also enables agents to better enforce accountability in mul-
ticast type conversations. The following is the agent conversa-
tion process.

1) The agent joins a session.
2) The agent looks up the other agents in their shared session

to begin a conversation with one (or more) of them.
3) The agent creates a new conversation thread.
4) The conversation creates a new managed channel within

the session.
5) The conversation invites the other agent to join the

channel.
6) The agents converse by passing messages back and forth.
7) The initiating conversation thread expels the other agent

from the channel.
8) The conversation thread closes the channel.

By utilizing the capabilities of the JSDT, combined with the
overall architecture of agentMOM, a solution that meets all of
the system requirements is obtained. Furthermore, this imple-
mentation elegantly captures the agent conversation paradigm.

XI. TEST PLAN

The purpose of the system experiments is to understand the
performance implications of the CDIS agent components. The
objectives of system experimentation are to gain insight into the
efficiency and effectiveness of this prototype system.

A. Influential Variables

The influential variables are those items that may be
controlled or uncontrolled and have an effect on system per-
formance [42]. Each of these involve engineering tradeoffs in
system design and they may not be independent. The variables
and some of their effects are listed below.

1) Affinity threshold:the level of detection required to raise
an alarm. The threshold can affect Type I and Type II error
rates.

2) Antibody length:the number of bytes in an antibody
string. String length can affect memory usage and anti-
body effectiveness.

3) Number of antibodies in a detector:the number of anti-
body strings in each detector can affect the probability of
detection.

4) Contents of self and nonself:the degree to which the
self/nonself data appropriately represents all possibilities
can affect the Type I and II error rates. Lack of specificity,
where some self data is indistinguishable from nonself,
can lead to an autoimmune reaction.

5) Length of self and nonself:the size of the data sets,
whether the total file system size or the total number of
allowed network requests. Data set size affects scan time
and negative-selection time.

B. Test Inputs

There are three basic sources of test problems: 1) those that
arise naturally in practice; 2) ones that are specially constructed
to test a particular aspect of the code; and 3) randomly gener-
ated problems [42]. Additionally, it is desirable to test against a
common industry benchmark. Our testing uses all four.

The test problems for a CDIS are sets of self and nonself
strings. In order to test the operation of the antibodies, some are
assigned to predetermined values. To test the CDIS’s ability to
function in a large search space, randomly generated sequences
are used. Finally, the system is tested against actual user pro-
grams, viruses, and captured network traffic in order to under-
stand the system’s applicability to the real-world problem do-
mains. The complete set of test inputs can be seen in Table VI.

Of particular use for the real-world computer-virus problem
set is the European Institute for Computer Antivirus Research
(EICAR) standard AV test file [43]. This file contains of a set
of 68 B of ASCII printable characters. The purpose of the file is
to provide a safe target for testing the operation of AV software.
The file is easy to use and noninfecting. It is an executable file
that only prints the messageEICAR-STANDARD-ANTI-VIRUS-
TEST-FILE!. Most commercial AV software products have scan
strings that recognize the EICAR test pattern.

One of the key reasons for utilizing an immune system model
of operation is to recognize as of yet unknown viruses. There-
fore, a modified version of the EICAR test string is used as a
new unknown “virus.” For this purpose, EICAR was modified
so that it now printsPaul Harmer-s test Virus XxXxXxXx!!in-
stead. This new noninfecting strain of EICAR goes undetected
by Norton AntiVirus (NAV).

Testing the system against a common industry benchmark is
desired in order to compare the efficiency and effectiveness of
the proposed CDIS against other solutions. Unfortunately, there

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 269

TABLE VII
TEST CASES

does not exist such a baseline. This prototype represents one
of the first CDISs constructed that addresses the virus problem.
However, tests were performed in [30] to validate their-con-
tiguous-bits theoretical derivations against actual data. For these
tests, the TIMID virus [24] was used to infect COM files. We
also chose to use TIMID for testing.

TIMID is a simple file infecting virus [24]. It only infects one
file on each execution. Its targets are COM files residing only in
TIMID’s local directory. It does not hop across directory struc-
tures. Additionally, TIMID has the nice feature of outputting the
name of its victim.

TIMID is an appending file infector that adds 5 B to the be-
ginning of a file and an additional 300 to the end. No stealth
capabilities are employed, so victim files sizes can be seen to
grow by 305 B, along with an appropriate file date alteration. All
these features make TIMID an excellent test subject because it
can be controlled and its effects are known. Furthermore, it is a
commonly known virus that can be detected and removed by all
current AV suites. TIMID, EICAR, and the generated problem
sets become inputs to the test cases.

For real-world network intrusion testing, a combination of
captured network packets and probe seeding is used. At first,
randomly-generated packet sets were utilized, but they did not
prove very useful. It was thought that the use of generated data
would make evaluation of the algorithm easier; however, even
when limiting the generation range to a few fields and a fairly
small range of parameters, the highly random distribution of the
data prevented achieving consistent test results. Generating a
more structured data set would have solved some of the prob-
lems, but would have had to be done with extreme care so as to
model actual traffic in a useful way. Therefore, all testing on the
ID aspect of CDIS was completed using captured data.

MIT’s Lincoln Laboratories (LL) completed an ID evaluation
for which they created a corpus of ID data [44]. The LL data
was designed and generated with this type of research in mind
and its use made the evaluation of CDIS feasible. The entire ID
corpus contains both network and host sensor logs, as well as
file system dumps and directory listings (among other things)

for a national Air Force base. For this effort, only a small subset
of the network data captured outside the test firewall was used.
Negative selection was performed using only the LL training
data—data without intrusion attempts. For scanning, a small
number of malignant packets generated by the Nessus security
analysis tool were added [45].

C. Test Cases

The test cases are designed to gather effectiveness or effi-
ciency data. In each test case, either an influential variable is
changed or a static system property is measured to understand
system performance. The test cases are enumerated in Table VII.

Each test is run five times. Regarding the number of para-
metric and nonparametric experiments required in generating
viable statistics, it depends upon the specific experiment and
desired confidence interval ([46, p. 431]). Also, the experi-
mental goals must be considered, which drives the selection
of experimental parameter values as well as the performance
metrics. Metrics are of the effectiveness category (such as
solution quality) or efficient category (such as computational
effort or algorithm efficiency) [47]. The intent of the efforts
reported here are to give an appreciation of possible qualitative
statements with little emphasis on efficiency since the goal
is focused on feasibility. As to the number of experiments,
an increasing number is always required until a distribution
of results is achieved resulting in an underlying statistical
model. This model, based upon quantitative data, can then
be employed to make qualified statements with a high level
of confidence. Our limited experiments give a consistent, but
limited view of performance. In the future, more extensive
statistical experiments are required using different parameter
values and associated sensitivity analysis in order to reflect
performance means and variances and confidence levels across
a wide range of realistic intrusion test data. Such analysis
could achieve a much higher level of confidence in the utility
of our suggested virus and ID process. It is not the intent of

270 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

our current efforts to show a high level of confidence in the
parameter space because of the extensive and abnormal testing
required over incomplete intrusion data. However, we do desire
to convince the reader of the feasibility of the approach, which
we hope we have done from an unbiased perspective.

D. Testing Platform

The CDIS is tested on the AFIT bimodal cluster (ABC)
pile of personal computers (PCs). This is a heterogeneous
system consisting of 22 variously configured Pentium II and
Pentium III CPUs connected by a fat tree gigabit and 100baseT
switched Ethernet backbone. Each machine within the cluster
is dual bootable as a Windows2000 or Red Hat Linux system.
All systems are booted as Windows2000 systems to reflect
the most common virus target platform and current Air Force
server standards. All network intrusion testing was completed
within a segregated laboratory. The network intrusion agent
was hosted alongside the Objectivity 5.2 database on a single
Windows2000 computer. Tests on the detector agents were
performed using simple system architectures consisting of one
controller, one monitor, and one detector. Testing of system
scaleability and agent performance were conducted utilizing
one controller and two monitors, each with two detectors. The
testing of the ID and AV detectors were performed separately,
although each detector-type integrates well into the larger
hierarchy.

The ABC is a closed environment that is representative of
a PC LAN network, the target implementation platform of the
CDIS. Increasing the test platform to include Win95 or even So-
laris machines would be a good test suite for understanding the
performance of the CDIS in the enterprise environment and the
effectiveness of the network intrusion detector in actual deploy-
ment conditions. Exploration into a more robust, fieldable CDIS
platform is left for future research.

XII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Negative-Selection Time

The negative-selection algorithm represents an investment
that the system must make in order to remove the possibility of
false-positive errors (see Section VI-A). The current algorithm
sequentially checks each antibody against all bytes in the
known self space. For the virus detection antibodies, this
requires adding each byte from self to the sliding window
and then comparing each antibody bit by bit or checking
each packet within the known self database in the case of ID.
negative selection is performed after each antibody string is
randomly generated. If a match on self occurs, the antibody is
regenerated and retested from the beginning of self. Alterna-
tively, a pool of previously generated antibodies could be run
through the negative-selection process together. Theoretically,
the negative-selection time should grow linearly with respect
to the number of antibodies, the length of each antibody, and
the size of known self. This is because each byte in every AV
antibody must be checked against every self byte.

Number of antibodies.
Antibody length
(bytes).

Fig. 17. Computer-virus negative-selection time versus the number of
antibodies per detector.

Size of self (bytes).
Sliding window
shuffle.
Bit compare.
Negative selection.

This linearity is somewhat deceiving however. For ana priori
defined number of initial antibodies, it is true. It can be consid-
ered a lower bound, but the number of antibodies required to
protect a system with a chosen probability of detection grows
exponentially with the size of self [30]. Therefore, the number
of antibodies would be expected to grow exponentially with
the size of self.

These theoretical results are also representative of the ID
scanner if it were to be deployed against a log file. However,
our tests with packet scanning utilize a database to enable better
experimentation. The negative-selection time and the scan time
are, therefore, dependent upon the database query algorithm.

The experimental results accurately follow the expected
theory as the time tends to double as the number of antibodies
are doubled in the AV detector (see Fig. 17). The network ID
agent performance is similar to the AV agent (see Fig. 18).
These tests were accomplished using the Rogers and Tanimoto
matching rule with a 0.7 affinity threshold against 1 K of
randomly generated application self bytes (for AV) or with
10-K self packets (for ID) from the LL’s set. For these tests, a
candidate antibody pool was not generated, so the variations
in the negative-selection times are due to matches on self. A
match during this process requires the system to regenerate a
new antibody and then compare it against the entire self set.
Because antibody creation is random, the negative-selection
process introduces random variation in the negative-selection
times. It is hypothesized that the probability of a match is low
for this 1 K set of self so that the linear equation holds. With a
higher probability of match, an exponential trend would result.

Fig. 19 depicts the effects of antibody length on the nega-
tive-selection time for the AV layer. The ID antibodies use a
predefined length of 320 bits. Therefore, length is not a factor.
But, for the AV agent, at lengths greater than 2 B, the nega-
tive-selection time grows at an almost imperceptible rate that is
superlinear. The change in length also induces very little vari-
ance in the negative-selection time. However, a 2-B string pro-
duces very dramatic increases in the censoring time with ac-
companying wide variance between runs. This result is consis-
tent with the comprehensive theory developed in [30]. The ob-

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 271

Fig. 18. ID negative-selection time versus the number of antibodies per
detector.

Fig. 19. Computer-virus negative-selection time versus antibody length.

served 25-fold increase in the negative-selection time is due to
the increasing generality of a 2-B string, or the increased proba-
bility of a match during negative selection. Somewhere between
2 and 4 B there is a sensitivity point, before which a very large
number of matches on self occurs. The result is a much larger
negative-selection time in order to find the required number of
2-B combinations that do not match self. The 4-B antibody falls
at the beginning of this trend. It has a negative-selection time
that is slightly greater than the 8-B case.

The previous tests utilized 1 K of self bytes in order to censor
the antibodies. Fig. 20 shows the effect of the length of self on
the AV antibody’s negative-selection time. The comprehensive
theory [30] predicts that an exponential relationship would re-
sult; however, a linear relationship is observed with very little
variation in the experimental times. This variation is visualized
as almost imperceptible error bars in Fig. 20. It hypothesized
that the observed linearity is due to a low probability of match
with the Rogers and Tanimoto rule. More testing and theoretical
calculations are required to fully understand its relationship in
the comprehensive theory, but the testing does give us insight
into the system efficiency. The system produces 16 8-B anti-
bodies against 1 MB of known self in approximately 10 min.
Using the more general 2-B antibodies could cost over 25 times
that on average.

The generation of correctly censored antibodies produces the
core components for virus detection by an AIS. File systems are
large and growing. For example, an 8-GB hard drive is consid-
ered small for commercially produced PC’s. The current perfor-
mance of this system (assuming the linear relationship is main-
tained) would produce 128 4-B antibodies against 8 GB of self
in 1.45 years! Clearly, this is too long to be practical and any

Fig. 20. Computer-virus negative-selection time versus the size of self.

Fig. 21. ID negative-selection time versus the size of self.

reduction in antibody length or detection threshold would only
increase this time. Algorithmic and implementation improve-
ments are required to reduce the negative-selection time to a us-
able duration.

Fig. 18 shows a superlinear, possibly exponential, increase
in the cost of performing negative-selection on antibodies for
network ID. The upswing is likely caused by a combination of
two factors. One factor is inefficiency in the database design,
resulting in nonlinear increases in query service rates for larger
table sizes. This factor is being ameliorated through the develop-
ment of optimized data structures and memory-resident storage
to eliminate disk accesses. Some polynomial growth cannot be
eliminated, however, due to the requirement to find the inter-
section of the responses to multiple queries. The other factor is
related to the diversity of the self data. If the self data is highly
homogenous, then additional data points would have minimal
effect on antibody generation: antibodies describe regions and a
small number of self data points would be enough to eliminate
bad antibodies. However, if the self data are relatively scattered,
then as the number of data points increases, the probability of
generating an antibody that has to be discarded also increases.
Larger data sets imply longer comparison times, exacerbated by
increased probability of having to regenerate antibodies; hence,
a superlinear performance curve results. This phenomenon is
endemic to all inductive learning processes; a useful area of fu-
ture research would be to determine the homogeneity of the LL
and real-world training data sets, thereby providing a basis to
address the question of “How many samples are enough?” so
we can optimize the training process.

272 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 22. Computer-virus scan time versus the number of antibodies per
detector.

B. Scan Time

The scan operation represents the heart of the AIS detec-
tion process. Ideally, the viral scanning algorithm should run as
quickly as possible in order to be unobtrusive to the user. For an
IDS, the algorithm should also be high-speed so that it can keep
up with the flow of data coming over the line. If not, the IDS
either becomes a bottleneck or ineffective as some packets are
skipped. Current systems often fall short of this goal, especially
as data sizes and networking speeds continually increase.

Theoretically, the scan time of this system is directly propor-
tional to the amount of data being scanned, the number of an-
tibodies, and the antibody length. For detecting file viruses, the
scanning algorithm must read in each byte of the file system, add
it to the sliding window, and then compare the window against
the antibody string bit- by-bit.

Number of antibodies.
Antibody length
(bytes).
Size of file system
(bytes).
Sliding window
shuffle.
Bit compare.
Scan time.

This analysis is somewhat irrelevant to an actual deployed
packed-based ID scanner because packets would be read as
they flow by on the wire. In our experiments, however, we
utilize a database loaded with actual captured packets. Here
again, like the negative-selection time, it is expected to be
driven by the database query algorithm; the only difference
being that matches result in a detection alarm instead of an
antibody regeneration and certification process. Therefore, the
IDS average scan times should be slightly shorter than the
negative-selection times, with a smaller variance.

The experimental results hold true to theoretical expectations.
The number of antibodies in a detector directly affects the scan
time (see Figs. 22 and 23). As the number of AV antibodies are
doubled, the scan time is also doubled. Compared to the nega-
tive-selection algorithm (see Section XII-A, Fig. 17), scanning
produces negligible variations in execution time. During scan-
ning, if a match occurs, the offending file and its bound antibody
are added to a list. This requires no regeneration or rescanning

Fig. 23. ID scan time versus the number of antibodies per detector.

Fig. 24. Computer-virus scan time versus antibody length.

as in negative selection. Therefore, scan times are almost con-
stant between runs.

Likewise, the ID times mirror those produced by negative se-
lection, with reduced variations. The result is a much smoother
growth in the time curve. Unfortunately, the time advantages
gained by utilizing the database for testing cannot be directly
related to ID scanning directly from the wire. Because the data-
base can perform the indexing operation ahead of time, con-
siderable searching advantages are gained. However, realistic
growth rates are seen, along with effective operation. Future
research will replace the database I/O component with wire-
sniffing operations in order to fully assess the system usability.

The network attack antibodies are a fixed length, but the AV
antibodies need not be so. Antibody length was expected to af-
fect AV scan time linearly; however, the results indicate a slight
superlinear trend (see Fig. 24). We hypothesize that this is due
to the Java implementation of bit comparisons. In general, these
results give a few specific long antibodies an advantage over
many short strings. Longer strings can be used with only small
performance ramifications. The long antibodies also result in
relatively short negative-selection times due to their specificity
(see Section XII-A, Fig. 19). The tradeoff is in the ability to ef-
fectively search the larger space created by utilizing specialized
detectors.

The experimental results also parallel theory with respect to
file system growth (see Fig. 25). Increasing the file system size
ten-fold also increases the scan time by a factor of ten. The
2-MB file system is scanned in 19.5 min. By extrapolation, an
8-GB file system with 128 4-B antibodies would be expected to
take 1.05 years to scan.

Scanning is faster than negative selection because files only
need to be opened once and compared against all antibodies
(see Section XII-A). The current negative-selection algorithm

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 273

Fig. 25. Computer-virus scan time versus file system size.

Fig. 26. ID scan time versus input database size.

requires opening every file in the system once for each antibody.
Therefore, the I/O system overhead is incurred multiple times
unnecessarily. This observation gives insight into possible algo-
rithmic improvements for negative selection. As with negative
selection, the scan time is too long to be of practical use. Algo-
rithmic and implementation improvements are needed to make
the system usable.

The ID scan times for an increasing number of packets can be
seen in Fig. 26. The results are slightly better than those for neg-
ative selection (see Fig. 21). Since antibodies are not being re-
generated, the probabilistic and diversity arguments posed ear-
lier do not apply. This would appear to indicate that the dom-
inant factor in the superlinear growth of both figures is indeed
an artifact of the database. As mentioned earlier, this factor is
being addressed in ongoing research.

C. Error Rate

The system’s error rates reflect its ability to detect self and
nonself appropriately (see Section V). The false-positive rate
should always be zero. This is ensured in advance by the neg-
ative-selection algorithm. By initially censoring strings against
self, no future self-matches should occur (assuming a static def-
inition of self). The false-negative rate should also ideally be
zero. Any percentage higher than this indicates the system’s
relative inability to detect the presence of nonself. This rate
can fluctuate dramatically because of the stochastic nature of
the problem. The antibody strings are randomly generated, as
are the appearance of viral infections or intrusion attempts. So,
the system parameters, such as antibody length, the number of
antibodies, and the detection threshold, must all be tuned in

Fig. 27. Error rates versus the number of antibodies per computer-virus
detector.

Fig. 28. Error rates versus the number of antibodies per intrusion detector.

order to minimize the false-negative rate. The comprehensive
theory developed in [30] is able to predict the probability of
failure (false-negative rate) given a matching rule probability of
match. Experimental results support this theory. However, this
theory has not yet been adapted to the Rogers and Tanimoto
matching rule that the CDIS utilizes. Therefore, experiments are
performed to understand the feasibility and effectiveness of this
matching rule for AV and IDSs. For these feasibility tests, each
AV or ID detector contains a set of antibody strings. Each test
is run five times and an average error rate is determined.

Increasing the number of AV antibodies generally decreases
the average false-negative rate (see Fig. 27) for the antibody sets.
This test utilizes 4-B antibodies and a 0.7 detection threshold
against 1 K of randomly generated nonself bytes. The error bars
indicate the maximum and minimum values to understand the
complete range of effectiveness for the five test runs. Due to the
probabilistic nature of the problem, even 64 antibodies can fail
to find nonself the same as a single antibody. Conversely, the
best run of 64 or greater number of antibody strings found all the
nonself files. In order to generate a consistently low error rate,
128 or more antibodies are required per detector. However, this
results in higher negative-selection and scan times. A tradeoff
between speed and coverage must be made.

The ID agent is effective at higher antibody counts, but it does
not exhibit as smooth a rolloff as the file infection antibodies
(see Fig. 28). Full detection does not occur until 256 or more
scan strings are utilized. This is due in part to the larger sample
sizes used in the ID tests. The IDS also exhibits a higher sen-
sitivity to antibody numbers. 32 antibodies give a 31% average
false-negative rate and 64 antibodies drops the error down to
20%; not a large effectiveness gain. But, using 32 AV antibodies
gives a 65% average false-negative rate with 64 AV antibodies,
resulting in a 40% rate. The AV detectors produce much wider

274 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 29. Error rates versus computer-virus antibody length.

Fig. 30. Error rates versus computer-virus detection threshold.

swings in performance with changes in antibody count due to
the smaller sample size.

The length of the antibody affects its specificity as a AV de-
tector. The error rate for long detectors should be greater than the
smaller more general strings. This is a by-product of a long de-
tector’s need to search an exponentially larger space in order to
find a match. This trend is evident in Fig. 29. At lengths greater
than 4 B, the antibodies have a complete inability to find 1 K
of random nonself bytes. The extremely general, 2-B strings are
able to find all nonself files with no variance. In the middle be-
tween these two extremes is the 4-B antibody. On average, these
perform better than the longer strings, but they also only detect
nonself 20% of the time. The variance seen with this length is in-
dicative of its position between too general and too specific. The
random generation of 4-B antibodies can place them on either
side of a present or future nonself boundary. For these tests, a
0.7 detection threshold is used. The error rate graph (see Fig. 29)
is a reflection of the probability of a matching value occurring
about this threshold. Therefore, selecting the antibody length
determines its specificity, but this must be matched with an ap-
propriate affinity threshold in order to obtain the desired error
rate. In essence, reducing the detection threshold creates a more
general detector, no matter what its length.

Fig. 30 depicts the effect of the detection threshold on the
false-negative rate for the computer-virus attack. For this test,
each run consists of a detector with 32 8-B antibodies against
randomly generated self and nonself files. The IDS was only
tested against real-world data, so its results are presented in the
next section.

The AV 100% false-negative rate at a 0.7 threshold matches
the same result in Fig. 29. At threshold values less than 0.7, the
antibody set becomes an increasingly effective nonself discrim-
inator. An affinity threshold of 0.55 results in a 100% effective
detector with no variance.

Fig. 31. Virus detection error rates versus file system size.

Fig. 32. ID error rates versus database size

The final laboratory error rate tests examine the effects of the
file system size on the error rate for file infector viruses (see
Fig. 31). The results indicate only a minor influence. This is
not surprising as a larger set of nonself bytes simply gives the
detector more chances to encounter a match. For these tests, de-
tectors used 16 8-B antibodies and a detection threshold of 0.7.
The high threshold value should result in a 100% false-negative
rate (see Fig. 30). The AV detector searched up to a 2-MB file
system containing up to 1 MB of random nonself bytes. In each
case, the file system was made up of one part self and one part
nonself bytes. In practice, the likelihood of 1 MB of nonself ap-
pearing on an individual system is all but impossible. Because
most viruses are smaller than 5 KB [48], the accumulation of
1 MB of nonself bytes would require a significant number of
simultaneous infections or the addition of large infected appli-
cations. This is an event that is so remote that its occurrence is
impossible without sabotage. Therefore, this example is mostly
pedagogical, but the goal was to understand the effect of non-
self size on the system error rates through experimentation. In a
practical environment (5–10 KB of nonself), the size of nonself
has no measurable effect on the false-negative error rate, except
to keep it high.

Fig. 32 presents the results of developing 256 antibodies over
a set of self data (e.g., 1-K packets) and then testing over a
20% larger set for the purpose of ferreting-out surprises. In-
creasing the amount of simulated traffic by including more of
the LL’s self data had minimal effect on the error rates. Only
two to three false-positive errors emerged in the tests with the
larger databases. This tends to imply that the self data is rela-
tively homogeneous; further exploration using real-world data
is required. The other obvious experiment, training on a small
set of this self data and then testing on a significantly larger set,
contributes little beyond a better feel for the homogeneity of
the LL’s data until affinity maturation and costimulation are in-
cluded (areas currently under development).

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 275

Fig. 33. Computer-virus detector’s ability to detect nonself.

These results indicate that each detector should field as many
generic antibodies as possible in order to minimize the false-
negative rate. However, the use of highly generic as well as
large numbers of antibodies contribute to an increased nega-
tive-selection time, but negative selection is necessary to force
the false-positive rate to 0%. An engineering tradeoff must be
made between negative-selection time and system effectiveness.
Once the desired antibody length is selected for the virus do-
main (ID antibodies are 320 bits), the detection threshold must
be tuned to the antibody-matching function probability density
in order to create a system that actually detects nonself with the
desired frequency. This tuning must also take into account the
specific detector domain as the differing domains result in dif-
ferent sensitivities to the various parameters.

D. Real-World Effectiveness

The previous tests have shown that the system operates as de-
signed and is able to successfully detect the existence of nonself
within a set of self strings. However, these results were gained
by testing the system against randomly generated self and non-
self bytes (for AV) or LL’s training set IP packets (for ID). In
order to be truly effective, the system must be able to detect
actual malicious code among a larger set of known self applica-
tions or intrusion attempts within a set of valid network service
request packets.

The first test against other than random bytes uses a polar
input set. For this test, self is made up of all ones, while non-
self consists of all zeros (see Section XI-B, Table VI). Inter-
estingly, the randomly generated 8-B antibodies have a harder
time finding this consistent nonself set (see Fig. 33) than a set
of random bytes 30. Full detection only occurs with an activa-
tion threshold of 0.4 or less. The 100% error rate difference
between 0.45 and 0.4 is indicative of the consistent polar na-
ture of the self and nonself sets. Once one detector is able to
bind with a string of zeros, it is able to bind with all of non-
self. This results in a 0% false-negative rate once the detection
threshold is crossed. This test does not provide much useful in-
formation in itself other than the dramatic effect a proper detec-
tion threshold selection can make, but by comparing with the
similar data obtained using random nonself bytes (see Fig. 30),
an interesting difference emerges. This test shows 100% detec-
tion at a threshold of 0.4, while with random strings, 100% de-
tection occurs at a 0.55 threshold. Previous data indicated that
the detection threshold should be tuned based on the antibody

Fig. 34. Error rates versus ID threshold.

length. Additionally, this test indicates that tuning should also
be done based on the contents of self and nonself, a result that
is further validated by changing the domain to ID (see Fig. 34).

These data also show that antibody generation could be
improved based on knowledge of existing self and nonself
bytes. Ana priori examination of nonself would have revealed
that a single antibody pattern consisting of all zeros could have
matched, with the highest affinity possible, all nonself in this
system (an improvement would seed antibody generation with
known virus, or network attack signatures). Because of the
influence of search space contents on system effectiveness,
tests against actual viruses and captured network intrusion
attempts were conducted.

The IDS test utilizes the LL training set seeded with captured
probing attacks conducted using Nessus [45], configured to sim-
ulate a complete port scan from one machine onto another, both
having LL self data IP addresses. The results indicate a dramatic
difference in the ID domain with respect to the effective range
of threshold values compared to the file infection detector (see
Fig. 34). These results are similar to the polar self/nonself test
above, but much higher threshold values can be used effectively
to give the system 100% detection. The results are also some-
what more sensitive to threshold value than the AV antibodies:
changing the threshold by 0.03 (versus 0.05) results in a differ-
ence between 100% and 0% false-negative rate.

The real-world virus test utilizes test input five (see Sec-
tion IX-B, Table VI). This test suite consists of 196 KB of
application programs and 136 B in the two EICAR “viruses”
(see Section XI-B). This test also reveals the system’s ability
to detect, as of yet, unknown viruses. For example, NAV can
detect the EICAR68 test string 100% of the time, while it has
a 100% false-negative rate for the newly created EICARPAU
test string. Fig. 35 presents the error rates for various detection
thresholds. The detection rates represent the total rate for 90
runs with a variable number of antibodies per detector. A
roughly 10% false-negative error rate is the best result when
using a detection threshold of 0.6 or less.

In general, the system was able to detect the new virus strain
at a rate only slightly less than that of the known virus. Addi-
tionally, the system found both nonself files at a rate equal to
or slightly less than the least detected strain. In these cases, the
addition of affinity maturation or antibody optimization to im-
prove the antibody false-negative rate could be highly useful.
An affinity maturation capability could either evolve antibodies
to recognize one virus very well or evolve a general detector that
binds to both strings equally.

276 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 35. Detection rate for known and unknown viruses.

A tuned detection threshold results in an 89% detection rate
for both strings. NAV produces a constant 50% false-negative
rate. This system out performs NAV for detection thresholds
of 0.6 or below. The introduction emphasizes the inability of
current AV software to adapt and recognize new viruses. This
system is able to detect the new strain with approximately a
9% false-negative rate. The tradeoff with the immune system
methodology is the probability of detection, while current
systems utilize deterministic scanning to give 100% detection
of known viruses. However, through careful tuning, a 0%
false-negative rate can be obtained (see Fig. 30). Beyond this,
additional coverage could possibly be gained by utilizing
distributed detectors that share successful antibodies. It is
hypothesized that an improved error rate can be gained in this
manner through a multiagent collective self-defense.

E. Antibody Candidate Pool Size

The experiments on the system negative-selection time sug-
gest that a performance increase can be gained by over gen-
erating the number of required antibodies and then censoring
this large pool down to the required number. However, such
an algorithm requires understanding what size the initial pool
of uncensored scan strings should be. Forrest’s research on the
-contiguous-bits algorithm validates theoretical results that the

required number of initial strings grows with the the prob-
ability of a match, the number of final strings required, and the
size of self [30]. The Rogers and Tanimoto similarity rule pro-
duces similar results.

This experiment varies the detection threshold and the
number of final antibodies required against the TIMID virus-in-
fected application-suite input 6 (see Section XI-B, Table VI).
The results indicate that the size of increases linearly with
the number of required antibodies and exponentially with a
decrease in the detection threshold (see Fig. 36). The higher
detection thresholds all require the approximately same number
of initial candidates, with a break in this trend occurring at a
threshold of 0.65. The required number of candidates increases
dramatically thereafter. This phenomenon is roughly the inverse
of the results seen in Figs. 30 and 35. As the detection threshold
decreases, the antibodies become more general. This results
in an increased number of matches on self during censoring,
and improved nonself detection during employment. The small
false-negative rates that are required for an effective system
require the upfront investment in a large antibody candidate

Fig. 36. Effects of matching threshold on negative-selection candidate pool
size.

pool. The near 100% detection rate seen at a threshold of 0.6
requires about four times the number of immature strings as
naive ones. In order to obtain a 0% false-negative rate at a 0.55
threshold, a 23:1 ratio is required. This is a reflection of the
increased negative-selection time versus coverage tradeoff seen
in earlier experiments (see Section XII-A). This testing has
not been performed in the ID domain, but similar results are
expected.

Once again, the performance of the system requires a tradeoff
between coverage, speed, and memory. The selection of the
system parameters, such as number of antibodies per detector
and the detection threshold, can have a dramatic affect on the
system efficiency and effectiveness. At a detection threshold of
0.55, generating 128 antibodies requires an initial pool of 3020
candidates on average. Previous results indicate that at least 64
4-B antibodies, at a detection threshold of 0.60 or less, is re-
quired in order to reduce the false-negative error rate to within
effective limits. This requires the generation of several hundred
to several thousand candidate antibodies for censor.

XIII. Q UALITATIVE ANALYSIS

The overall goal is to create an agent-based CDIS. This was
accomplished successfully and two layers of defense have been
implemented. Effective system and local models of immune
system operation were constructed that realize improvements
over current AV and packet-based ID solutions. Based on these
models, the multilayered implementation provides an effective
solution for the detection, identification, and elimination of
computer viruses and network attacks. The prototype was
used to gain insight into the efficiency and effectiveness of an
agent-based AIS. The successful use of agents and the integra-
tion of pattern recognition principles are valuable contributions
to the immunological computation community.

This research was conducted by integrating many different
domains including immunology, immunological computation,
malicious code, multiagent systems, and parallel and distributed
computation. Because of the diverse amalgamation of ideas,
conclusions are discussed from a variety of perspectives. The
conclusions are based on the analysis of this design implemen-
tation.

1) System Models:The system and local models (see Sec-
tion VIII-B) for this CDIS are created based on ideas
from biology, the self-adaptive CVIS [6], the antibody

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 277

lifecycle [12], and parallel computation. The separation
of tasks into a logical hierarchy supports the reduction
of the computational burden by allocating responsibili-
ties to dedicated agents operating at the appropriate level.
By integrating this structure with the prevention focus of
the computer health system [26], a system-wide “com-
putational health management” infrastructure is created
that emphasizes preventative measures through informa-
tion sharing. It is hypothesized that such an infrastructure
will allow for the early identification and elimination of
wide spread attacks. It also provides a forum for a collec-
tive self-defense by enabling the sharing of successful an-
tibodies among individual detectors in the “population.”
This diversity that is used to the advantage of the entire
system is the result of the local model.

Each detector on each node within the system indepen-
dently generates and manages its own antibody set. The
computational burden on individual nodes is reduced by
limiting the local number of antibodies. This distributes
the cost of generation and negative selection across the
system. These tasks can also be performed in parallel.
Even though the detection capabilities at the local node
are limited to the antibodies on hand, the full power of all
the system scan strings can be utilized though informa-
tion sharing via vaccinations. If placed within a broadcast
LAN environment (e.g., Ethernet), then all ID agents can
employ their antibodies simultaneously. Vaccinations
between LAN’s would support an even larger collective
self-defense. Additionally, each node is continually
searching the nonself space through the “programmed
cell death” within the local detector string lifecycle. This
realizes the greatest advantage of this system over current
methodologies, which is the ability to recognize as of
yet unknown viral infections. The power gained through
the partitioning of tasks and the sharing of information is
accomplished through distributed, collaborating agents.

2) Agents:The BIS is made up of many individual entities,
each with their own “goals” and “services.” Because of
this, mapping the capabilities of these entities to software
agents is an intuitive task. Additionally, the BIS compo-
nents communicate through chemical signals. This can be
mapped to message passing in a distributed AIS. For these
reasons, the agent paradigm represents an excellent soft-
ware engineering approach to AIS design.

3) Antibodies:The detector agents each carry a battery of
several antibody scan strings. In this prototype, these are
generated pseudorandomly. This provides a quick pro-
duction method and because the exact locations of nonself
within the search space are unknown, probably provides
as good a method as any given all the possible nonself in-
stantiations.

Testing shows that there exists an engineering tradeoff
between the specificity and generality of an antibody.
Short strings are more general because they reduce the di-
mensionality of the self/nonself space and, hence, cover a
larger area. A 4-B antibody is shown to provide the cov-
erage of a general detector string without the high nega-
tive-selection cost of being too general. Current AV solu-

tions utilize 16-B scan strings in order to help eliminate
the threat of false-positive errors. The CDIS accomplishes
this through negative selection. However, short antibody
lengths will not be able to adequately distinguish between
self and nonself in cases where their differences are fine
grained. The result is undetectable holes in the detector’s
ability to recognize nonself. It has been shown that elimi-
nating holes is impossible with a single matching rule [36]
so multiple approaches are required to completely cover
the nonself space. This discussion alludes to a character-
ization of the self/nonself space, which has not been ac-
complished for either problem domain. Future activities
in this area could lead to the improved generation of anti-
bodies through enhancing the random search by steering
the generation algorithm toward known nonself areas of
the search space.

4) Management Advantage:Current AV and ID solutions are
monolithic and provide little or no system wide manage-
ment capabilities. Each desktop locally runs the complete
AV package and separate network segments do not share
intrusion information in real-time. All decisions for what
and how to scan are left to the user/system administrator.
Even the addition of signature updates, vital to the con-
tinued effectiveness of the system, are often the task of
the individual user to manually integrate. This prototype
CDIS eliminates these problems and provides a frame-
work for system metric reporting.

By using autonomous agents, this CDIS all but elimi-
nates individual user interaction. Vaccinations and infec-
tion responses are controlled and directed by the agents
at the network and system levels. Additionally, current
system status is passed up the chain. This allows for au-
tomated metric collection, system status evaluation, and
trend analysis. With the addition of appropriate logic,
system-wide infection epidemics can be recognized and
eliminated in real-time.

Organizations are increasingly interested in reporting
computer-security incidents. Incident reports must be
compiled and passed up the management chain. With
this architecture, attack incidents are already reported up
the hierarchy. Automated incident report generation and
statistics could be added to the metric generation duties
of the controller agents without much difficulty. This has
the potential to save money and manpower that are cur-
rently being used to generate, report, and collate incident
reports. Also available could be a real-time status display
for infection incidents across the entire system. A live
system status on malicious code or network intrusion
incidents could be generated and pictorially presented.

By integrating the ideas of a system hierarchy [49]
with the management and oversight processes of the
public health system [26], this distributed agent-based
CDIS provides a superior capability for system wide
management and elimination of the virus threat over
current solutions.

5) Issues:There are several issues that remain unaddressed
by this system including security and a time-varying defi-
nition of self. No security layer is implemented in this pro-

278 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

totype: the distributed nature of the system leaves it wide
open to spoofing attacks that can compromise system in-
tegrity. Encrypted channels, digitally signed messages,
and other technologies are required in order to ensure
trusted conversations. JSDT can easily support these ad-
ditions, but what is ultimately required is a quality control
mechanism for critical system components.

In the current implementation, the system could be
“trained” to generate an autoimmune reaction. By per-
forming negative selection on nonself, some censored an-
tibodies could react against self strings. These antibodies
could then be passed on to other nodes using spoofed
vaccination messages. The result would be false-positive
detections and the possible elimination of valid self ap-
plications or the blocking of valid network accesses. A
trusted quality control mechanism is needed to oversee
alarm generation and the dispensing of vaccinations.

Another problem is the steadily changing definition
of self. Programs are routinely added and deleted from
most desktop computers, and new users and network ser-
vices are also added regularly. One of the major differ-
ences between the virus detection portion of CDIS and
the network ID portion is that, realistically, self is not
static in networks. While it is conceivable that, in a corpo-
rate server environment, new applications are installed at
a slow enough rate to assume a static file system, even
fairly consistent networks tend to have traffic patterns
that shift over time. It is unrealistic to expect a zero-per-
cent false-positive rate, for antibodies perfectly-trained on
today’s data may falsely detect acceptable, but new traffic
tomorrow. Under conditions of high network traffic, too
many false-positive errors will become intolerable, essen-
tially creating a self-induced denial-of-service attack.

Similarly, the addition of a new application may re-
quire recensoring of the antibodies. Care must be taken
to ensure the new software is not already infected. An
alternative is to scan with the current antibodies: a pos-
itive detection could indicate the presence of a virus or
recognition that this “self” has not been encountered be-
fore by the system. The decision on whether this is a
false-positive error rests with the system administrator,
and is accommodated by the system through the cos-
timulation function of the antibody lifecycle (see Sec-
tion VIII-D, Fig. 11). This approach is far from perfect,
since it does not provide assurance of detection and elim-
ination, features essential to system effectiveness.

XIV. FUTURE RESEARCH

1) Improved Scanning and Negative-Selection Speed:The
current system can produce naive antibodies in 1.45 years
for an 8-GB drive and scan that drive in 1.05 years. This
prototype system efficiency needs to be improved in order
to be operationally viable.

2) Parallel Censoring:The prototype algorithm generates
and performs negative selection sequentially. The algo-
rithm execution time can be greatly reduced by generating
an excess number of antibodies and then censoring them

all in parallel. During negative selection, those antibody
strings matching self are removed from the candidate pop-
ulation. After censoring, only naive strings remain. A suf-
ficiently large number must be generated initially in order
to ensure that enough remain after negative selection. This
number of initial candidates must be estimated based on
the antibody length, contents of self, detection threshold,
and the number of remaining strings required after nega-
tive selection.

3) Efficient String Matching:Improved methods of string
pattern matching could be integrated to increase the per-
formance of the matching algorithm. A common method
used in spell checking is toa priori construct a directed
graph of the patterns. This is then used to process the input
string against all patterns in a single pass by “walking” the
graph [50].

4) Antibody Creation:The prototype uses a pseudorandom
number generator to create antibody candidates. These
are then censored at a very high rate to produce valid
detection strings. Improved antibody generation schemes
could reduce the censoring rate by directing the creation
algorithm to known areas of the nonself space or seeding
the initial antibody population with known attack signa-
tures. This would improve the generation and negative-se-
lection efficiency.

5) Affinity Maturation The current implementation of de-
ploying randomly generated antibodies can result in mul-
tiple matches on the same antigen. Affinity maturation
could be implemented to conserve resources by only re-
taining the antibody with the highest affinity. This could
be extended to include hypermutation and clonal selection
algorithms to create evolved copies of high affinity anti-
bodies. This has the possibility of improving the system
adaption process and also increasing the detection of re-
lated viral strains.

6) Metrics:One of the goals of the controller agent is to pro-
duce metrics on system performance (see Table IV). This
functionality is necessary for management insight into
system operation and in order to understand the system
wide impact of viruses. Real time displays could also be
created based on the metric information. This function-
ality is not currently not implemented.

7) Additional Detectors:Currently, only file infector viruses
and packet-based network attacks are detected with the
prototype system. Additional agent types need to be cre-
ated in order to detect and remove the other viral threats,
such as macroviruses, or to implement more complex
state-based ID. A complete set of detector types is re-
quired to create a multilayered defense-in-depth.

8) Robust Deployment:The prototype contains very little
code to deal with system failures. However, the system
architecture is designed to one-day accommodate such
functionality. Features should be added to support the
graceful degradation of service in the face of failure,
instead of system collapse. This could include backup
agents, such as monitors that automatically fail over to
their adjacent peers, and communications timeouts with
recovery.

HARMER et al.: AN ARTIFICIAL IMMUNE SYSTEM ARCHITECTURE 279

9) Security: The current system is highly vulnerable to
spoofing and denial of service attacks. For instance,
erroneous vaccinations could easily be sent to a detector,
which could cause an autoimmune reaction. The proto-
type architecture easily supports the addition of security
layers, such as secure socket communication and agent
authentication, but they are not currently implemented.
These would have to be added, especially for a wide area
network deployment, in order to overcome the security
problems associated with system compromise.

XV. CONCLUSION

The system design integrates the power, flexibility, adaption,
and capabilities of the BIS into an architecture realizable in the
information system domain. Based on the models, the prototype
implementation provides an effective solution for the detection,
identification,andeliminationofmaliciouscodeandbadpackets.
The level of effectiveness is tunable through the proper selection
of thenumberofantibodies, theantibodylength,andthedetection
threshold. Thesemust be selected based on the contentsof known
self and with an understanding of their ramifications on negative-
selection time, scan time, and nonself space coverage.

The use of the agent paradigm facilitates the construction of
an AIS because of the performance limitations of a monolithic
implementation and the biological basis for the architecture can
be viewed as a system of collaborating agents [51]. While using
agents improves the understanding of the system design and the
mapping to the biological domain, the deployment of the agents
must be done by considering the principles of parallel software
design in order to improve performance. For an agent-based
CDIS, this involves reducing communication and placing de-
tection agents near their I/O sources.

This CDIS design is scaleable in terms of scope and cov-
erage through the simple addition of new agent types and partic-
ipating system nodes. The prototype implements file system and
IP packet detection, but a more complete multilayered defense
could be realized by adding agent types for monitoring memory,
email, boot sectors, complex intrusions, and more. Additionally,
because the JSDT provides lookup services, agents can join or
leave the system at anytime.

At its current level of maturity, the prototype does not provide
for a practical implementation nor unobtrusive operation. The
Java implementation provides a good prototype environment,
but its speed limits the system usability. The negative-selection
and scanning times measured in years are unacceptable for a
practical system. An implementation improvement to increase
the system speed is paramount to future system viability.

The agent-based CDIS offers detection and management ca-
pabilities that are absent from current deployed solutions. The
abilities of these facets working together promises an enter-
prise-wide computer-security solution. At the heart of CDIS
is the ability to proactively generate antibodies capable of de-
tecting nonself data; the research presented herein investigates
a method of generating antibodies for the computer-virus and
network intrusion problem domains. The preliminary results,
though limited, indicate that this approach holds promise and
deserves continuing investigation.

REFERENCES

[1] P. K. Harmer, “A distributed agent architecture for a computer virus im-
mune system,” M.S. thesis, Air Force Inst. Technol., Wright-Patterson
AFB, OH, Mar. 2000.

[2] P. D. Williams, “Warthog: Toward an artificial immune system for de-
tecting ‘low and slow’ information system attacks,” M.S. thesis, Air
Force Instit. Technol., Wright-Patterson AFB, OH, Mar. 2001.

[3] Symantec. (2001, Oct.) Symantec Security Response—Defini-
tions Added. [Online]. Available: http://www.symantec.com/av-
center/defs.added.html

[4] M. Leon, “Internet virus boom,”Infoworld, vol. 22, no. 3, pp. 36–37,
Jan. 2000.

[5] D. Dasgupta, Ed.,Artificial Immune Systems and Their Applications,
Heidelberg, Germany: Springer-Verlag, 1999.

[6] G. B. Lamont, R. E. Marmelstein, and D. A. Van Veldhuizen, “A dis-
tributed architecture for a self-adaptive computer virus immune system,”
in New Ideas in Optimization. New York: McGraw-Hill, 1999, Ad-
vanced Topics in Computer Science Series, ch. 11, pp. 167–183.

[7] E. Benjamini, G. Sunshine, and S. Leskowitz,Immunology: A Short
Course, 3rd ed. New York: Wiley, 1996.

[8] P. D. Williams, K. P. Anchor, J. L. Bebo, G. H. Gunsch, and G. B. La-
mont, “CDIS: Toward a computer immune system for detecting network
intrusions,” inProc. Fourth Int. Symp. Recent Advances in Intrusion De-
tection, Oct. 2001, pp. 117–133.

[9] J. O. Kephart and W. C. Arnold, “Automatic extraction of computer virus
signatures,” inProceedings of the 4th Virus Bulletin International Con-
ference, R. Ford, Ed. Abingdon, U.K.: Virus Bulletin Ltd., 1994, pp.
179–194.

[10] J. O. Kephart, G. B. Sorkin, M. Swimmer, and S. R. White, “Blueprint
for a computer immune system,” inProceedings of the Virus Bulletin
International Conference. Abingdon, U.K.: Virus Bulletin Ltd., 1997.

[11] S. Forrest, S. A. Hofmeyer, and A. Somayaji, “Computer immunology,”
Commun. ACM, vol. 40, no. 10, pp. 88–96, Oct. 1997.

[12] S. A. Hofmeyr and S. Forrest, “Immunity by design: An artificial im-
mune system,” inProceedings of the Genetic and Evolutionary Compu-
tation Conference. San Mateo, CA: Morgan Kaufmann, July 1999, pp.
1289–1296.

[13] D. Dasgupta. Immunity-based intrusion detection systems: A general
framework. presented at 22nd Nat. Information Systems Security Conf..
[Online]. Available: http://csrc.nist.gov/nissc/1999/proceedings/pa-
pers/p11.pdf

[14] , “An artificial immune system as a multi-agent decision support
system,” inProc. IEEE Int. Conf. Systems, Man and Cybernetics, Oct.
1998, pp. 3816–3820.

[15] K. Mori, M. Tsukiyama, and T. Fukuda, “Multi-optimization by immune
algorithm with diversity and learning,” inProc. Second Int. Conf. Mul-
tiagent Systems, Dec. 1996, pp. 118–123.

[16] E. Hart, P. Ross, and J. Nelson, “Producing robust schedules via an arti-
ficial immune system,”Proc. IEEE Int. Conf. Evolutionary Computing,
pp. 464–469, May 1998.

[17] Her Majesty’s Office of Information. (1996, Sept.)
Antibodies teach computers to learn. [Online]. Available:
http://www.aber.ac.uk/~jot/ISYS/hmoi.html

[18] J. Hunt and D. Cooke, “The ISYS Project: An Introduction,” Univ.
Wales, Aberystwyth, Aberystwyth, U.K., Tech. Rep. IP-REP-002,
1996.

[19] S. A. DeLoach, “Multiagent systems engineering: A methodology and
language for designing agent systems,” inProc. Int. Bi-Conf. Workshop
Agent-Oriented Information Systems, May 1999, pp. 45–57.

[20] R. Skardhamar,Virus Detection and Elimination. New York: Aca-
demic, 1996.

[21] Cult of the Dead Cow. (1999, July) Back Orifice 2000. [Online]. Avail-
able: http://www.bo2k.com

[22] F. B. Cohen,A Short Course on Computer Viruses, 2nd ed. New York:
Wiley, 1994.

[23] L. J. Hoffman, Ed.,Rogue Programs: Viruses, Worms, and Trojan
Horses. New York: Van Nostrand Reinhold, 1990.

[24] M. A. Ludwig, The Little Black Book of Computer Viruses. Show Low,
AZ: American Eagle, 1996.

[25] Symantec Security Response—W32.Nimda.A@mm, Symantec.
(2001, Oct.). [Online]. Available: http://www.symantec.com/av-
center/venc/data/w32.nimda.a@mm.html

[26] K. J. Cardinale and H. M. O’Donnell, “A constructive induction ap-
proach to computer immunology,” M.S. thesis, Air Force Inst. Technol.,
Wright-Patterson AFB, OH, Mar. 1999.

[27] A compendium of NP optimization problems (1999, May). [On-
line]. Available: http://www.nada.kth.se/~viggo/problemlist/com-
pendium.html

280 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

[28] S. A. Hofmeyr, “An immunological model of distributed detection and
its application to computer security,” Ph.D. dissertation, Univ. New
Mexico, Albuquerque, NM, 1999.

[29] C. A. Janeway Jr., “How the immune system recognizes invaders,”Sci.
Amer., vol. 269, no. 3, pp. 73–79, Sept. 1993.

[30] S. Forrest, L. Allen, A. S. Perelson, and R. Cherukuri, “Self-nonself
discrimination in a computer,” inProc. IEEE Symp. Research in Security
and Privacy, May 1994, pp. 202–212.

[31] D. Dasgupta and F. Nino, “A comparison of negative and positive se-
lection algorithms in novel pattern detection,” inProc. IEEE Int. Conf.
Systems, Man, and Cybernetics, vol. 1, Oct. 2000, pp. 125–130.

[32] J. T. Tou and R. C. Gonzalez,Pattern Recognition Principles. Reading,
MA: Addison-Wesley, 1974.

[33] M. Nadler and E. P. Smith,Pattern Recognition Engineering. New
York: Wiley, 1993.

[34] A. S. Perelson and G. Weisbuch, Eds.,Theoretical and Experimental In-
sights Into Immunology. New York: Springer-Verlag, 1992, ch. Prob-
ability of self-nonself discrimination, pp. 63–70.

[35] J. O. Kephart, “A biologically inspired immune system for computers,”
in Proc. Fourth Int. Workshop Synthesis and Simulation of Living Sys-
tems, July 1994, pp. 130–139.

[36] P. D’haeseleer, “An immunological approach to change detection: Theo-
retical results,” inProc. 9th IEEE Computer Security Foundations Work-
shop, June 1996, pp. 18–27.

[37] A. Somayaji, S. Hofmeyer, and S. Forrest, “Principles of a computer im-
mune system,” inProc. New Security Paradigms, Sept. 1997, pp. 75–82.

[38] R. E. Marmelstein, D. A. Van Veldhuizen, P. K. Harmer, and G. B.
Lamont, “A white paper on modeling and analysis of computer im-
mune systems using evolutionary algorithms,” Air Force Inst. Technol.,
Wright-Patterson AFB, OH, Dec. 1999.

[39] V. Kumar, A. Grama, A. Gupta, and G. Karypis,Introduction to Parallel
Computing: Design and Analysis of Algorithms. Redwood City, CA:
Benjamin Cummings, 1994.

[40] S. A. DeLoach, Using agentMOM, 1999.
[41] R. Burridge,Java Shared Data Toolkit User Guide, Version 1.5, Sun

Microsystems, Mountain View, CA, Apr. 1999.
[42] H. Crowder, R. S. Dembo, and J. M. Mulvey, “On reporting compu-

tational experiments with mathematical software,”ACM Trans. Math.
Software, vol. 5, no. 2, pp. 193–203, June 1979.

[43] P. Ducklin, “Standard anti-virus test file,” Eur. Inst. Computer Anti-
Virus Research, Brussels, Belgium, Aug. 1999.

[44] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel,
I. Graf, K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A.
Zissman. Evaluating intrusion detection systems without attacking your
friends: the 1998 DARPA intrusion detection evaluation. presented
at Third Conf. and Workshop on Intrusion Detection and Response.
[Online]. Available: http://www.ll.mit.edu/IST/ideval/pubs/1999/Eval-
uating_IDs_DARPA_1998.pdf

[45] Nessus Ver. 1.0.5 (2000). [Online]. Available: www.nessus.org
[46] R. Jain,The Art of Computer Systems Performance Analysis. New

York: Wiley, 1991.
[47] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. Stewart,

“Designing and reporting on computational experiments with heuristic
methods,”J. Heuristics, vol. 1, no. 1, pp. 9–32, Mar. 1996.

[48] Tally’s Virii Link Reference. (1999, Nov.) Tally’s virus col-
lection statistics. [Online]. Available: http://www.virusex-
change.org/tally/stats1.html

[49] R. E. Marmelstein, D. A. Van Veldhuizen, and G. B. Lamont, “A dis-
tributed architecture for an adaptive computer virus immune system,” in
Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 4, Oct. 1998,
pp. 3838–3843.

[50] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,”Commun. ACM, vol. 18, no. 6, pp. 333–340, June
1975.

[51] K. P. Sycara, “Multiagent systems,”AI Mag., vol. 19, no. 2, pp. 79–92,
1998.

Paul K. Harmer received the B.S.E.E. degree from
the California State University, Long Beach, in 1996
and the M.S.E.E. degree from the Air Force Institute
of Technology, Wright-Patterson AFB, OH, in 2000.

He is currently the Director of Technical Services
of the new high-performance computing distributed
center for the Air Force Research Laboratory, Sen-
sors Directorate, Wright-Patterson AFB. He is also
the Program Manager for the Virtual Distributed Lab-
oratory, which allows geographically distributed re-
searchers to collaborate and share code, data, and pro-

grammatic information online.

Paul D. Williams received the B.S. degree in com-
puter science from the University of Washington,
Seattle, in 1996, and the M.S. degree in computer
science from the Air Force Institute of Technology
(AFIT), Wright-Patterson AFB, OH, in 2001.

His course of study at AFIT centered primarily on
information operations, with significant course work
in the areas of artificial intelligence and advanced al-
gorithm design. He is currently with the Air Intelli-
gence Agency, Lackland AFB, TX.

Gregg H. Gunsch received the B.S.E.E. degree
from the University of North Dakota, Grand Forks,
in 1979, the M.S.E.E. degree from the Air Force
Institute of Technology (AFIT), Wright-Patterson
AFB, OH, in 1983, and the Ph.D. degree in electrical
engineering from the University of Illinois at
Urbana-Champaign, Urbana, in 1991.

He has over 15 years of experience in developing
synergistic computer-human systems through the ap-
plication of artificial intelligence techniques. He is
currently responsible for the information systems se-

curity/assurance (information warfare) curriculum at AFIT.

Gary B. Lamont received the B.S. degree in physics
and the M.S.E.E. and Ph.D. degrees from the Univer-
sity of Minnesota, Minneapolis, in 1961, 1967, and
1970, respectively.

He is currently a Professor of Electrical and Com-
puter Engineering at the Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, where he directs
the parallel and distributed computing and the evolu-
tionary computation research groups. Previously, he
was an Engineering Systems Analyst for the Honey-
well Corporation for six years. He has authored or

coauthored a book, several book chapters, and over 100 papers. His current
research interests include parallel/distributed computation, evolutionary com-
putation (genetic algorithms, evolutionary strategies), combinatorial optimiza-
tion problems (single objective, multiobjective), formal methods, software en-
gineering, digital signal processing, intelligent and distributed control systems,
computational and numerical methods, and computer-aided design.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

