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A Two-Parameter Family of Weights  for 
Nonrecursive  Digital  Filters and Antennas 

ROY L. STREIT 

Abstract-We derive analytically  a two-parameter family of weights 
for use in finite  duration nonrecursive  digital  filters and  in  finite  aper- 
ture antennas.  This  family of weights is based on the Gegenbauer or- 
thogonal polynomials, which are  a  generalization of both Legendre and 
Chebyshev  polynomials. I t  is shown  that  one  parameter  controls  the 
main lobewidth  and  the  other  parameter  controls  the sidelobe  taper. For 
a fixed main lobewidth,  it is observed that  the Gegenbauer  weights can 
achieve a dramatic decrease in sidelobes “far removed” from  the main 
lobe  in exchange for a ‘‘small” increase in  the fist sidelobe adjacent to 
the main lobe. 

The Gegenbauer weights are  derived first  for discretely  sampled aper- 
tures  and filters. An appropriate  limit  is  then  taken to produce  the 
Gegenbauer weighting function  for  continuously sampled apertures 
and filters. The  continuous Gegenbauer weighting function  contains 
the Kaiser-Bessel function as a special case. It is thus established that 
the Kaiser-Bessel function is implicitly based on Chebyshev polynomials 
of the second  kind. Furthermore,  the Dolph-Chebyshev/van der Maas 
weights are  a  limiting case of the  discrete/continuous Gegenbauer 
weights. 

T 
I. INTRODUCTION 

HE choice  of  weights  in the design of  nonrecursive digital 
filters  and antenna  apertures is an  important  problem  for 

which  there is a large literature.  In  this paper we present the 
Gegenbauer  weighting function, so named  because it is  based 
on  the Gegenbauer  orthogonal  polynomials [ 1 1. The Gegen- 
bauer  weights  may be applied  equally well to nonrecursive 
digital  filters  and both discrete  and continuous  antenna  aper- 
tures.  The  resulting FIR filter  coefficients  can be  used as a 
shading function  for  the  spectrum analysis of  sampled data  to 
reduce  sidelobe leakage. Our discussion in this  paper will be 
restricted to h e  antenna  form  of  the  problem merely to avoid 
unnecessary  complication  in  the  presentation. 

The Gegenbauer design is a  two-parameter  family  of  weight- 
ing functions.  One  parameter, zo, is used to control  the beam- 
width.  The  other  parameter, p, is  used to achieve sidelobe 
taper.  Both zo and p may be  varied continuously  and  indepen- 
dently of each  other.  The Gegenbauer design  is  especially  use- 
ful  in achieving dramatic  decreases in  distant  sidelobes  in  ex- 
change for “small” increases in  the first  sidelobe  adjacent to 
the main  lobe.  Conversely,  dramatic increases in distant  side- 
lobes  can  be  exchanged  for  “small”  decreases  in the  first side- 
lobe.  This will be clarified by  the examples. 
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The Gegenbauer  weights are  derived first for a  finite dis- 
crete  aperture. An appropriate  limit  then gives the Gegenbauer 
weighting function  for a bounded  continuous  aperture. Many 
similarities  between the Gegenbauer  weights and  the Dolph- 
Chebyshev/van,der Maas weights [2], [3] will be  evident from 
the derivation. In fact, these latter weights  are  limiting  forms, 
as p+O, of  Gegenbauer  weights. Also, the Kaiser-Bessel 
weighting function  [4,  pp. 232-2331  for the  continuous  aper- 
ture is the special  case p = 1 of the Gegenbauer design. This 
shows that  the Kaiser-Bessel function is implicitly based upon 
Chebyshev  polynomials of the second kind, a  fact  which seems 
to have  escaped notice  until  now. This  is interesting  since, as 
is  well known,  the Dolph-Chebyshev/van  der  Maas  weights  are 
based on Chebyshev  polynomials  of the first  kind. 

One drawback to the van der Maas  weighting function  for  the 
continuous  aperture is that  it has 6-function spikes at  the aper- 
ture  endpoints.  The  Gegenbauer  function  does  not have this 
feature:  that is, the  Gegenbauer weighting function  for  the 
continuous  aperture is a bounded  continuous real-valued func- 
tion  across the whole  aperture.  However, since the van der 
Maas function is a  limiting case  of the  Gegenbauer function as 
p + 0, the Gegenbauer function must  approximate  this  be- 
havior  in the  neighborhood of p = 0. The  Taylor design [5] is 
an alternative way to overcome  this  6-function behavior  of the 
van der Maas function,  but  it is unrelated to any of the Gegen- 
bauer designs. The  proof of this statement is  self-evident from 
the  examples  presented later. 

The Gegenbauer  polynomials Cg(x)  are  defined  here  pre- 
cisely as in Szego [ I ]  which is used  as our  standard  both  in 
function  definition  and  notation,  with  only  two  exceptions. 
Szego  uses the  notation PAp)(x) instead of Cl(x) and refers to 
them as the  ultraspherical  polynomials.  This  paper will not  at- 
tempt  to recapitulate  any of the  known  facts  about  the  poly- 
nomials that can  be referenced in Szego. It  suffices to say here 
only  that C,”(x) is a real valued polynomial  of degree  precisely 
n ,  and  that  the  system {Cg(x) ,  Cf (x),  @(x), . . .} is orthog- 
onal on  the real interval [- 1, +1] with  respect to  the weight 
function (1 - x2)p-1/2 provided p > - i, p # 0. Moreover, by 
taking  appropriate  limits  and using their  hypergeometric 
functional  form, C,”(x) can  be defined  for all real p. See [l , 
eq. (4.7.711.  In particular, if T,(x) and U,(x) denote  the 
Chebyshev  polynomials of the first  and  second  kinds,  respec- 
tively, then [ 1 ,  eq. (4.7.8), (4.7.1711 
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and [ 1, eq. (4.7.211 

CA (x) = Un(x), n 2 0. (2) 

The  derivation  of  formulas  more  general than are  perhaps 
necessary in  the  antenna  application is relegated to  the Appen- 
dix.  Special cases of  these  formulas will be extracted as needed 
and used without  comment  in  the main body  of  this  paper; 
however,  every effort will be made to  motivate  the discussion. 

11. GEGENBAUER WEIGHTS FOR A 
DISCRETE  APERTURE 

The  Gegenbauer design for  a  finite  discrete  aperture is de- 
rived for  a single frequency  half-wavelength  equispaced  linear 
array of omnidirectional  elements.  Other  than  the  steering 
factor, we will always  assume the  aperture (discrete or  con- 
tinuous) is symmetrically  weighted about  the  geometric  center 
of the  array. The  array  axis is taken  to be the x-axis and all 
angles are measured from  a line  normal to  the array  axis. 

Let N be the  number of  elements  in the array  (hence N > 2), 
and  let  the  positions  of  these  elements be xk = kh/2, k = 1 , 2 ,  
. . . , N ,  where h is the wavelength  of the design frequency.  (In 
the Appendix, h denotes  an  arbitrary  real  variable,  not  fre- 
quency.) If the  array is steered to  look in the  direction d l ,  
-7112 < ~ / 2 ,  and  if the array receives a  plane wave of 
wavelength h from  the arrival  direction ea, -n/2 < 0, < 71/2, 
then  the  complex  transfer  function of  a  linear  beamformer  is, 
given by 

N 
F(u)  A wk exp  (-inku) 

k= 1 

where 

u & sin 8, - sin (4) 

and { w k } y  are the individual  element  weights.  Symmetrical 
weighting  is  assumed, so w ~ - ~ + ~  = wk for all k.  Positive 
weighting  is  desirable, but  not necessary. 

The  Dolph-Chebyshev design proceeds  as  follows for  a design 
specification of - S dB  peak  sidelobe level. Let 

zo = A 1 2 { [r + @-7] + [r - 4-1 I / n } ,  

r 10sJ2O (5) 

and n 4 N -  1. Notice that  zo > 1 if and  only if the peak  side- 
lobe level is lower than  the level of the maximum  response 
axis, or MRA. From  (A20) of the  Appendix,  the expansion 

Tn(zo  cos u )  = c ~ , ~ ( z ~ )  cos [(n - 2k)uI ( 6 )  
L nP1, 

k=O 

clearly  exists,  where the prime on  the  summation means that 
3 the last  term  in the sum is taken if n is even, and all of it is 
taken if n is odd.  From (A21) we have explicitly 

ck, a(zo) = n(n - k - l)! 
k (m)k-m(z; - l)"zt-2" 

m=O m! (k - m)! (n - k - m)! ' 

(7) 
The  coefficients c ~ , ~  (zo) were  first given in this  form  by van 

der Maas [ 3 ] ,  who derived them using a  method  different  from 
that  in  the Appendix. By inspection,  notice  that ck, n ( ~ O )  > 0 
for all k whenever  zo > 1. The  coefficients ck, Jz0) yield the 

element  weights {wk}f when we define 
for N even: 

for N odd: 

(9)  

Thus,  the complex transfer function (3) is given explicitly  for 
these  weights  by 

F(u)=e'"(N+l)u/2T N-I(ZO cos (i Tu)); (10) 

F(O) = TN- 1(zo); (1 1) 

the  maximum  response  occurs  for u = 0, 

and the smallest  positive value of u such that F(u)  = 0 is given 
by 

uo = - arccos (2 cos (2(N- l))). ) 2 71 

71 

The  half beamwidth as  measured to  the first  null  from  the 
MRA  is precisely uo. 

The  Gegenbauer design proceeds  in an analogous  fashion. 
We replace the  old  constant zo by a new  variable z,, which will 
be defined  later (30); however,  for y = 0, z,, is still  defined by 
( 5 ) .  Now, in  the  expansion 

Ln/21, 
C$(Z, cos u )  = b k , n ( ~ p )  cos [(n - 2k)ul 

k=O 

the  coefficients bk, .(z,,) depend on z,, and are given explicitly 
by 

Both of these  identities  are  special cases of (A1 8) and  (A19)  of 
the Appendix.  Note that b k , n ( ~ O )  > 0 for  all  k,  provided that 
z,, > 1 and y > O .  Note also that,  by  (l), (14)  reduces to  (7) 
in  the limit  as y -+ 0. For  numerical computation,the following 
form is preferred to (14). Let A = 1 - z;*, so that 0 < A  < 1 
when z,, > 1,  and  then  compute  the right-hand  side of 

bk,n(Z,,) - 1 p + n -  k -  1 
2yzE n - k  

m = o  k -  m 
The  binomial  coefficients  are  defined  here for  any real  number 
cy and  any nonnegative  integer p  by 

(1 6 )  
although  they are  best computed recursively using 
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to avoid floating  point  overflow at some  intermediate  point  in 
the  computation. 

It  should be pointed out  that (15)  can  be  evaluated  numeri- 
cally for all p since, for fixed n and k ,  (15) is a  polynomial  in 
p. However, (15) is correct  only if p # - 1,  -2, -3, . . . . if co- 
efficients  are  required  for,  say, p = - 5, both sides of (13)  must 
first be  divided by p t 5 and  the limit taken as p + 5 -+ 0. Con- 
sequently,  in  (15),  the  factor p + 5 must be divided out alge- 
braically  before  numerical computation begins. 

The  coefficients bk, n(z,) yield  element  weights {w,}? when 
we define 

for N even: 

1 - 
WN-k+l - wk 9 bt(k),N-I(Zp) I N 

2 N 
2 

k =  1 , 2 ,  * . ,- (18) 

t ( k )  4 - - k 

for N odd: 

1 
WN-k+l = wk A b t ( k ) , N - l ( Z b )  

N % 1  
2 

t ( k )  A - - k 

With these  weights, the  complex  transfer  function (3) is given 
explicitly  by 

q u )  = e i n W +  1)@ CL$ - 1 (z!, cos (3 TU)). 

F(0)  = C& l(z!,). (21 1 

(20) 

The  maximum  response  of F(u) should  occur  for u = 0, and is 

(For  a discussion of  unusual  situations  when the M R A  might 
not occur at u = 0, see below in  this  section.) 

The smallest  positive  value of u satisfying F(u)  = 0 is  given 
by 

up g - arccos ($ x$> 1) 
2 
71 

where xp! is the largest zero  of  the Gegenbauer  polynomial 
Ck- (x). Thus,  for p > - 1/2, x$! must lie in the  open  inter- 
val (- 1, +1). In  fact,  it  must  be very near  +1 for values of p 
of interest  in  this  application. An explicit  analytic  expression 
for x,$? is not  known  except in  certain special  cases ( e g ,  the 
Chebyshev  polynomials) and so must  be solved for  numerically. 
Thisminor  difficulty  isreadily  overcomeusing  Newton-Raphson 
iteration. Recall n = N -  1. Since [ l ,  eq.  (4.7.14)] 

d 
dx 
- c: (x) = 2p c;:; (x) (23) 

the Newton-Raphson  iteration is 

The  ratio  in  (24) is perhaps  best  evaluated  by  computing  two 
different  sequences 

{c; (Yk)}F= 1 and {c;+' (Yk) } ;=  1 (25) 

numerically from  the  fundamental recursion [ 1, eq.  (4.7.17)] 

PCP" (x) = 2(p + a - l)XC,.- 1 (x) - (p + 2a - 2) cP"- 2 (x), 

p = 2 , 3 , 4 ; . .  , n  (26) 

c; (x) = 1, cp (x) = 2 m .  
The  recursion  (26) is  valid for a # 0, - 1,  -2, - 3 ,  . . . . This 
method  may have  weaknesses  whenever p is  very  close to 0 
(say, 1p1 < because of the division by p in  (24);however, 
p would  normally  be  taken  either  equal to 0 (to give the Dolph- 
Chebyshev design) or else sufficiently  different from 0 to affect 
sidelobe levels appreciably.  This  latter  stipulation seems to re- 
quire lpl> In the  antenna  application,  then,  computa- 
tion  of  the  Newton-Raphson  iteration  step  from  the recursion 
(26)  seems  perfectly safe whenever a special precaution is taken 
for p = 0. In practice  this author has never  seen the  iteration 
require more  than  four  steps,  and  he  has never  seen it converge 
to  the wrong  point.  If,  however,  it  should ever happen to con- 
verge to  the wrong point,  the  Newton-Raphson  iteration can 
be  restarted  with  the new initial  point y 1  = 1.  Also, the in- 
equality [ 1, eq.  (6.2  1.3)] 

implies that 

which  can serve as a  check.  Incidentally,  inequality  (27)  holds 
for all the positive zeros CL (x), not  merely  the largest one. 

The  reason  for all this  concern over calculation  of the half- 
beam  width  (22) is simply to be  able to make  fair  comparisons 
between  sidelobe levels of different  Gegenbauer designs, that is, 
different values of p. It is  well known  that  the sidelobe levels 
in Dolph-Chebyshev  beam patterns are sensitive functions of 
the  beamwidth,  and  there is every reason to expect similar be- 
havior in  the Gegenbauer designs. Therefore,  as p is varied it  is 
helpful to maintain  a fixed beamwidth;  specifically, we always 
require up = uo for all p. This in  turn,  from  (22)  and  (12), 
gives 

or, converting  convenience into a  definition, 

From (30) it is now clear that  computing  the largest zero, x$- 1 ,  

of CG- (x) is of  considerable  importance. 
With the definition  (30), all Gegenbauer  designs with  different 

values of p and  fixed zo  have the same  beamwidth as measured 
to the first  null  off  the MRA. Thus,  the  beamwidth is  varied 
simply  by changing the value of zo  in  exactly  the same  way as 
in  Dolph-Chebyshev, i.e., (5). 

An interesting  consequence  of (30) is that z!, might not always 
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be greater than 1 for all p 2 0. This  observation  follows  imme- 
diately  from  the derivative (27).  Hence, for some  critical  posi- 
tive value of p, say p*, we  have zfl* = 1.  In  (15) the number A 
is  negative for p > p*, so the positivity of  the weights  cannot 
be guaranteed  without  direct  calculation because (1 5) is an al- 
ternating series for p > p*. At the critical  point p*, A = 0 and 
the  sum in (1 5) collapses to a single term. Simplifying gives 

bk ,n ( zp*)  = 2 (“ - ”* - ’) ( ) (31) 
k t p * -  1 

n -  k 

which  can  be found also in Szego [ I ,  eq. (4.9.19)]. The weights 
for the critical case p = p* can  now  be varied merely by chang- 
ing p*. In particular,  for p* = 1, (31) gives the uniformly 
weighted array;  that  is, wk = 1  for  all k.  The  beamwidth  ob- 
tained  from  the weights (31)  depends on”(and  only on) the 
critical value p* because p* implicitly  depends on zo . 

Since Gegenbauer designs  have the  two  parameters zo and p, 
with zo controlling  main  lobewidth, the parameter p must  con- 
trol sidelobe  behavior. From  (20)  and (30) we  see that side- 
lobes  occur for u satisfying 

I zp cos (3 nu)/ < cos (a nuo) < 1. (32) 

cos 4 = ZP cos (4 nu), 0 < (b < 71. 

In the sidelobe  region, then, we  can define 

For  the  moment  let us suppose 0 < p < 1. Then,  from Szego 
[ 1,  eq. (7.33.5)] 

(sin@)P / C ~ ( C O S ~ ) /  < 2 ’ - P p p - l / r ( p )  (33) 

so the  transfer  function F(u)  must  satisfy 

I F ( u ) ~  < ( I  - 2; COS* ( ~ n ~ ) ) - ~ ~ 2 z l - ~ , ~ - ~ / r ( p )  (34) 

throughout  the sidelobe  region  defined by (32). For p outside 
the (0,  1)  interval,  but excluding p = 0,  - 1, - 2 ,  . . . , the  sharp- 
ness of  the inequality  (34) is lost. A special  case of  a  result given 
in Szego [ 1,  eq. (8.2  1.14)  with p = 11 implies that 

. t O ( n p - ’ )  (35) 

throughout  the sidelobe region defined by (32).  For p outside 
(35) is asymptotic to np”-’ / I ’ (p)  as n + m, so the leading term 
of  the right-hand side of  (35) is asymptotic to  the right-hand 
side of  (34).  For fixed p, the right-hand side  of (35)  appears 
to be an  excellent  envelope for  the sidelobes  of the Gegenbauer 
designs. 

For p > 0, it is  clear from  (35)  that  the sidelobe  envelope 
must  steadily  decay as u approaches  endfire, i.e., u = 1. Since 
[use (2611 

the inequality  (35)  leads to the conclusion that  (36) is an  excel- 
lent  approximation to the sidelobe  envelope for  both even and 
odd n. Thus, we utilize  (36)  for all n.  Applying  results  proved 
below  in another  context [specifically,  set u = 0 in  (54)  and 
(55)] gives an  approximation  for  the  maximum response 

(37) 

with r defined  by ( 5 )  and 

r 2 [(arccosh r)2 t n2/4 - j j -  1/2 J 112 (38) 

where jp -  1/2 is the smallest positive  zero of  the Bessel function 
.IG- 1/2 (x) of  the first  kind  and  order p - 1/2,  and IP- 1/2 (x) 
is the  modified Bessel function  of  the first  kind  and order 
p - 1/2.  Therefore,  we have the relative level 

(39) 

This  result  happens to be  exact  for p = 0, the Dolph-Chebyshev 
case, as can be easily verified.  Evidently  this  result also implies 
that  the  sidelobe height  at  endfire is a function  of n ,  even when 
p and  the  beamwidth  parameter zo are fixed. In other  words, 
the sidelobe  tapering  effect of a given value of p depends  on 
n, unless p = 0. ’ Numerical  examples  bear out  the n-” depen- 
dence in (39). 

An  important  observation based on (35)  and  (39) is that 
for p < 0 the sidelobes  may well steadily  increase as p.  ap- 
proaches  endfire. That  this is in  fact  the case  is borne  out  by 
the examples given later. 

It  should be  emphasized that although the Gegenbauer  weights 
must be positive if 0 < p < i*, they might not necessarily be 
positive  if p < 0 or if p > p*. For p < 0 it can happen  that 
all are  positive,  or that some  are negative. Only  numerical com- 
putation can  show  which is the case. If  some  of the weights  are 
negative, it  becomes a  possibility that  the  maximum response 
might not  occur  for u = 0. 

For the Gegenbauer  weights it is readily  shown that a  suffi- 
cient  condition  for  the MRA to  be at v = 0 is that Cg(x)  attain 
its  maximum over the interval [- 1, 11 at x = 1. By a  well- 
known result [ l ,   eq.  (7.33.1)] the maximum of C;(x) occurs 
at x = 1 if and  only if p > 0. Thus,  a sufficient condtion  for 
u = 0 to be the MRA  is that p 2 0 :  For p<O. the MRA de- 
pends  on  the size of zp and  must be  verified numerically. From 
[ 1,  eq. (7.33.1)] the  maximum of Cg (x) occurs at or  near x = 
0 when I-( < 0; therefore, if the MRA  is not  at u = 0, then  the 
MRA must be at  or  near  endfire.  This  observation is rendered 
quite  reasonable  when  considered in  the light of  the examples 
presented  later.  This author has never experienced  a case where 
the MRA  was not u = 0 for p > - l /2   and reasonable values of 

1” 
zv .  

if n odd  It  would be  interesting to know  how  much  energy is contained 
in the main lobe  of a Gegenbquer  design. From  (20)  and  (30), 

c; (0) = this  requires  a  tractable form  for  the integral 
( - l ) m r t z -  ’), i f n = 2 m  

we  have LU0 [c; (ZP cos (3 m))]  du (40) 

IF(1)l = /c;(o)l =2’-’1 n ’ 1 - 1  m.4 (36) which we do  not have. On the  other  hand,  the  total “weighted” 
approximately,  for n even. Contrasting  this  approximation  with energy  contained  in all of  the sidelobes is the smallest. possible 
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for ,u > - 1/2. Specifically, if T ,  denotes  a  polynomial of 
degree at  most n - 1,  then [l,  eq. (4.7.1 5)] for p > - 1/2 

Furthermore, if Fn- (x) is the minimizing  polynomial,  then 
[ l ,  eq. (4.7.9)] 

c: (x) = 2" ( )(x" - ?"- 1 (x)). 
n + p -  1 

Substituting x = zp cos ( m / 2 )  thus establishes our claim.  How- 
ever,  a  problem  with  this  formulation is that  part of the main 
lobe energy is included  in  the total weighted  sidelobe  energy. 
The  reason is that  the  x-interval  [xip), + 13 is transformed [use 
(12) and  (30)] to  the u-interval 

which is a  subset of the main lobe region.  For the Dolph- 
Chebyshev case /.I = 0, this  u-interval goes from  the first  null 
up  to  the point on  the main lobe  equal to  the overall sidelobe 
level and, so, is not considerable.  For larger  values  of p,  this 
u-interval grows larger because  of (27)  and  thus  contributes 
progressively more significant  portions to  the weighted  sidelobe 
energy  estimate. 

111. GEGENBAUER WEIGHTS FOR A 
CONTINUOUS  APERTURE 

The Gegenbauer  weights  derived  for the discrete  finite  aper- 
ture have a  limiting  form as n -+ 00 with  total  aperture  length 
2L held  constant. This is essentially the high-frequency  limit 
of  the weights as functions  of design frequency.  The  limiting 
form is a continuous real-valued function defined on  the whole 
aperture  and  must be nonnegative if 0 < p < p*. The case p = 0 
develops &function spikes at  the  aperture  endpoints; Le., the 
case ,u = 0 gives the van der Maas function.  For p > p* the limit 
is still continuous,  but we cannot  guarantee  by simple inspec- 
tion  that  it is nonnegative across the  entire  aperture.  For p<O, 
the integral (60) below diverges. 

Let the  continuous  aperture  be  taken  to be the closed inter- 
val [-L, L ]  on  the  x-axis. Rewriting (3) gives 

F(u) = W, (x) exp (-i.rixu) dx JI" (43) 

where 

N 
WO (x) wk 6(x - k). (44) 

k =  1 

(The  integral  in  (43)  includes all of  the impulses at 1 andN.) 
Scaling the interval [ 1, N ]  to  the given aperture [-L, L ]  and 
using the  fact  that  the weights {Wk}? are symmetric gives 

where I 

n = N -  1 

n5 n + 2  x=-+- 
2L 2 

u = - - -  m u  
2L (49) 

In  order to take  the limit in (5 1) as n + m, we need to establish 
the  asymptotic behavior 

where r is defined by (38). The  proof uses the  asymptotic 
results 

and 

zo = cosh (t arccosh r )  

(arccosh r)' 
2n2 

E l +  , n + m  

Zsec  -arccoshr , n + 00 (: ) 

Apparently  (54) was first given in  [6] ; it follows  directly  from 
the  definition of the Chebyshev  polynomials and  the  fact  that 
r > 1. On the  other  hand,  (56) follows from  the Mehler-Heine 
result, (A2) of  the  Appendix,  by specializing it to  the Cegen- 
bauer  polynomials using [ l ,  eq. (4.7.1)]. Now, from (30), 

zp sec (+ arccos! r) cos(+) sec (2) , n -+ 

with 7' defined by (53). We point out that if 7' is pure  imaginary, 
then  the  hyperbolic secant  can  replace the secant  in (52). The 
possibility  of  imaginary r' does  not  affect  the validity of the 
following  argument. 

Finally,  from (5 l), normalizing by  the  factor n1 - 2P/(2,u) to 
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keep G(u) bounded gives 

where (58) is merely  (A6)  of the  Appendix.  Thus, (58) gives 
the beam pattern of the  continuous Gegenbauer  weighting  func- 
tion on the interval [-L, L] . The  first  null ofH(u) is 

uo = - [(arccosh r)2 + r2/4] 1’2 
1 
L (59) 

which is derived from  (58)  by using (53). Note  that uo is inde- 
pendent  of p because of (30). 

The  beam pattern (58) is easier to  derive than  the  continuous 
Gegenbauer  weighting function. Although  one  can  find the 
Fourier  transform  of .(58) as a  special case of Sonine’s second 
finite  integral,  (Al.), the assertion that  this  transform is  indeed 
the limit  of the Gegenbauer  weights  for  a  discrete  aperture  re- 
quires  a  separate  proof.  Conceivably the Gegenbauer  weights 
might diverge even though  the  limit  (58)  exists.  This  in  fact 
happens  only  for p < 0. The  proof  constitutes  about  half  the 
attention  of  the  Appendix; see especially  (A8),  (A22),  (A26), 
(A27),  and  (A29).  The  final answer can be  found by  specializing 
(A29), using (A25), to yield 

The  continuous  Gegenbauer  weighting  function  on  the  aperture 
is obvious on setting .( = Lt .  The  continuous  Gegenbauer  func- 
tion depends on  the parameter p,  which we must  restrict to 
p 2 0 for the integral to converge  [see  (A23)] . It also depends 
on  the beamwidth  parameter zo through  the variable 7‘ defined 

The Kaiser-Bessel window is a  special case of (60), as is easily 
seen by  setting p = 1. Since the Gegenbauer  polynomials G(x) 
for p = 1  are, from  (2),  the Chebyshev  polynomials  of the second 
kind,  it is clear that Kaiser-Bessel must be their  continuous  ana- 
log. Also, our claim that  the van der Maas weighting function 
is a  limiting case of (60) as p -+ 0 can  be seen from 

by  (53). 

lim x!J- ’ ZP- (x) = - z1 (x) + 26(x). 
X (61) 

p-+ O+ 

Substituting  LT‘ d p  for x in  (61)  and  then  substituting in 
(60)  yields the van der Maas function. The  result (61) was 
pointed  out  to  the  author by A. H. Nuttall  in  a  private  com- 
munication [7] while the present  paper was being  drafted. 

Note  that  the beam pattern  function (58) is a  well-defined 
function  of u for all real and  complex values of p (in fact,  it is 
an  entire  function  of v for all p) so that  it can be computed  and 
inspected in the absence  of any corresponding  weighting  func- 
tion.  In  particular, for negative p the beam pattern  function 
(58) grows  with  increasing u just as might be expected  from  the 
discrete  aperture case. However, the beam pattern  (58)  for 
p < 0 is not realizable as the  cosine  transform  of a continuous 
function  on  the closed  interval, or  aperture,  [-L, L ]  . 

IV. EXAMPLES 
The  five  examples  presented  here  are for the discrete  aperture 

with  100  elements  at  a half  wavelength  spacing  and  steered 
broadside.  The  half beamwidth, measured from  the MRA to 
the first  null, is 2.565588’  and is the same  for all five examples. 
This is accomplished by defining zp as  in (30) and  computing 
it  in  the manner  described  in  detail  in  Section 11, (23)-(28).  The 
remaining  free  parameter, p,  we take equal to  0.4,0.2,0.0, -0.2, 
-0.4, successively. The  Gegenbauer  weights  are computed  in 
the suggested form  (15), and the resulting  beam  patterns  for 
these five values of p are given in Figs. 1-5,  respectively.  The 
independent  variable  in  these  patterns is the angle e,, not u ;  
the vertical  axis is 20 log,, IF(sin ea)[ .  

Perhaps the  most  prominent  feature of these five beam  pat- 
terns is that  the sidelobe structure for a fixed  positive value of 
p is “reciprocal” to  that for -p.  Consider p = k0.4,  for  instance. 
If the reader  takes  a  Xerox  of both beam  patterns  and  turns  one 
of them upside down  on  top of the  other (literally) and  holds 
the pair up  to  the light, then  it will be  abundantly clear  what 
“reciprocal”  means in this  context. The  cause of  this  attrac- 
tive matching of sidelobe  envelopes is that  the  bound  (35) is, 
in  fact, very reflective  of true sidelobe  taper.  Thus,  for  positive 
p the sidelobes  decay,  while  for negative p the sidelobes  grow. 
For p = 0 the sidelobes  neither grow nor  decay;  they remain 
constant.  The case p = 0 is, of course, the Dolph-Chebyshev 
design. The author  has  not  undertaken  any  further  studies to  
determine  the accuracy of  the sidelobe  envelope factor. 

Another  important  feature is that  the first  sidelobe alone 
seems to be extremely  important  in determining the possible 
size of the remaining  sidelobes.  Although  this  is not  a rigorous 
statement, it  does seem to be borne  out by  these  examples.  For 
p = 0.2  the  first  sidelobe is increased  by about  1 dB to  -29 dB, 
the second  sidelobe  seems  unchanged  at -30 dB,  and all the re- 
maining  sidelobes  are  uniformly  (and  progressively)  lower  than 
the -30 dB  Dolph-Chebyshev case (p  = 0) with  the last  sidelobe 
depressed about 34 dB. Similar but ccreciprocal”  remarks hold 
for the /J = -0.2 case. For p = 0.4 (p = -0.4)  the second  side- 
lobe is slightly  higher  (lower) than - 30 dB,  but the  point made 
here is still  substantially true. 

The  weights for  the cases p = 0.4,0.2, and 0.0 are all positive. 
For the cases - 0.2 and - 0.4, the  only negative  weights  corre- 
sponded  to  the  elements adjacent to  the  end elements. 

All five examples have 49 sidelobes on  either side  of  the MRA. 
This can be attributed  to  the fact that  the Gegenbauer  poly- 
nomial C l ( x )  has all its n zeros  in the open  interval (- 1,  +1) 
when p > - 1/2. Thus, from (20), F(u) must have N - 1 = 99 
zeros in the  open u interval (0, 2). By Rolle’s theoren  of  ele- 
mentary calculus, F(u) must have 98  points  (i.e.,  sidelobe  peaks) 
interior to  (0,2) where IF‘(u)l = 0. Since IF(u)/ is an even func- 
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Fig. 1. Gegenbauer 100 element  array; p = 0.4; first  null = 2.565588" 
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Fig. 2.  Gegenbauer 100 element  array; p = 0.2, f i s t  null = 2.565588". Fig. 4. Gegenbauer 100 element  array; p = -0.2;  first  null = 2.565588". 
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ANGLE  FROM  LOOK  DIRECTION  (DEC) A N C L E ~ F R O M   L O O K  DIRECTION (DEG) 

Fig. 3. Gegenbauer 100 element  array; 1.1 = 0;  first null = 2.565588'. Fig. 5. Gegenbauer 100 element  array; p = -0.4; first null = 2.565588". 
(This is  classic Dolph-Chebyshev.) 

tion  of u ,  half of these  sidelobes  must  be on each side of  the small  values of p has  not been  determined.  A  careful  mathe- 
MRA. matical  proof of approximate p linearity  of  the logarithm of 

of sidelobes at  sufficiently  great  distances  from  the MRA. This 
feature is  also an  artifact  of  the sidelobe  envelope factor ( 3 5 ) .  v. DISCUSSION AND SUMMARY 

Taken  together,  these  examples  indicate  that  the  ratio  (39) The  Gegenbauer weighting functions  for the discrete  and  con- 
is, on a log plot, roughly  linear in p for  fixed n and  beamwidth tinuous  aperture, as  well as for  nonrecursive digital filters,  per- 
parameter zo. Whether  this  linearity is true  only  for reasonably mits the designer to maintain  a  fixed  specified  beamwidth as 

All five examples  exhibit  a  plateau  in the  decay,  or  growth,  (39) would  be nice to  have. 
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defined via (30)  while  scanning  continuously  in p to discrimi- 
nate against  spatially  distributed noise sources and/or  extra- 
neous signals by tapering the sidelobes.  The  required  weights 
can be calculated  quickly  and  accurately by  the  analytic  for- 
mulas  provided  here;  hence, it might be possible to choose p 
adaptively to  achieve  some  objective  such  as  maximizing signal- 
to-noise  ratio.  The  beam patterns  for negative p are  particularly 
interesting  in that  it may be possible to discriminate  against 
noise  sources that lie nearby  (in  bearing) the desired signal 
source,  and  thereby  enhance tracking  capability. 

One  advantage  of the Gegenbauer  weights is that  they are 
derived  for  a  discrete  aperture  exactly,  and the  continuous aper- 
ture weighting  function is then discovered as their  limit. If only 
a  continuous  aperture  function is defined,  then  it  must be sam- 
pled at  a  finite set of  points  in any  application to a  discrete 
aperture. How this  sampling is best done is not  commonly dis- 
cussed, and it leaves a  certain  ambiguity in the discrete  aperture 
weights.  The  discrete  Gegenbauer  weights given by (18) and 
(1 9) above  do not have this  problem. 

When steering  a  Gegenbauer  array  design, no different  prob- 
lems  should  arise than what is normally  expected  in the usual 
Dolph-Chebyshev design. Gegenbauer designs can  be  steered 
nearly to endfire  before  encountering  the  first  grating  lobe. 

A difference  beam pattern can be constructed  from  the Gegen- 
bauer  weights in the usual way of  changing the signs of the 
weights on one-half  of the  array. If this is done,  the difference 
beam pattern is proportional to  ICt(z, sin (~ru/2)) I. This is 
easy to show from  the  constructions  (18)-(20).  The  result is 
a  beam pattern  with  a null at u = 0. 

All the nulls  of the Gegenbauer  beam pattern seem to shift 
strictly  away  from  the MRA as p increases.  This  effect is evi- 
dent in the examples.  It is quite possible to use this  effect to 
deliberately control null  placement to cancel  localized noise 
sources. A mathematical  proof that  the nulls  must  shift in this 
manner  requires  knowledge of the relative size of the derivatives 
(with  respect to p)  of all of the zeros of Cg (x). Although  this 
information is not  known  to  the  author,  it is not really  necessary 
to have it in order to utilize the null  shifting  effect  in  practice. 

The  Gegenbauer  weights  for  discrete  and  continuous  apertures 
was derived  by the  author between March and May 1981. The 
mathematical  results  contained in the Appendix  first  appeared 
in [ l l ] .  

For  the case of real p and X, a  fourth  proof is  given here  that 
depends  in  an  essential  way on  the  identity (A7).  In  this  con- 
nection,  the particular form  of  the  coefficientsak,n(y) is impor- 
tant;  that is, the easily  derived identity  (A10) does not seem to 
be all useful, but  the  identity (A8)  is  exactly what is needed.  It 
facilitates the investigation  of the limiting  form.(A27) ofak,,(y) 
as n tends  to infinity.  The  identity (A8) is apparently  new;  how- 
ever, the special case o f y  = l was known  to Gegenbauer. 

Equation  (A8) is interesting  in  another regard as well. A sim- 
ple inspection  suffices to  prove that ak,,(y) > 0 for all n and k 
whenever y > 1 and p 2 X > 0. The  coefficients  remain  positive 
in  the  two limiting cases p > 0, X = 0 and p = X = 0, as  can be 
seen from (A18)-(A21).  In fact,  it was only  this  positivity  re- 
sult  that  the  author originally  sought. 

The  result  (A3)  of the Mehler-Heine type is apparently  new. 
It is needed to  prove (Al)  by  our  methods.  It has  additional 
interest  in thatit duplicates the result  givenby Szego (A2) simply 
by setting y = 0. Mathematically,  however,  (A2) and (A3)  are 
equivalent.  The  special cases (A4a) and (A4b) involving Cheby- 
shev polynomials  are  particularly  striking. 

Let a and /3 be arbitrary  real  numbers.  For  any  complex  num- 
ber x, the Mehler-Heine theorem  states  that 

where J,(x) is the Bessel function of the first  kind of order a 
[ l ,  eq.  (1.71.1)], [2, sect.  3.1(8)].  A  straightforward  proof of 
(A2)  can be found in Szego [ 1, Theorem 8.1  .l] . Szego's proof 
can be readily  modified to show that 

for all complex x and y .  Like the Mehler-Heine result,  this  for- 
mula holds  uniformly  for x and y in every bounded region of 
the  complex  plane.  The  special case a = /3 = - 1/2 gives the in- 
teresting  result 

APPENDIX 
MATHEMATICAL DERIVATIONS AND RESULTS 

Sonine's  second  finite  integral [8, p. 3761  may  be  written  lim T, (5) = cos 4- (-444 

where T,(x) is the Chebyshev  polynomial of the first  kind 11, 

n + -  

J o = I 2  
J,(X sin e )  ~ ~ ( y  cos e) sinp+ e COS'+ ' e de 

- - XPY' J p +  '+ 1 (-1 (All  eq.  (4.1.7)] , while the special case a = /3 = 1/2 gives 
(@-T j7 ) f i+ *+  ' 

for all complex x and y ,  and is  valid when both Re(p) > - 1  and (1:;)- slnn 
Re@) > - 1. At.least  three  proofs  of  this  result  are  known.  One lim n-' un - - (A4b) 
involves expanding the integral in powers of x and y; another 
involves integration over subsets  of the surface  of the  unit sphere 
in R 3 .  Both are given in [8] . The third  proof using the gener-  where Vn(x) is the Chebyshev  polynomial  of the second  kind 
alized Laguerre  polynomials Lg)(x) is mentioned in [ 121 , [ 1,  eq.  (4.1.7)] . These  follow  from  (A3)  by using Stirling's 

n + -  
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formula  and the well-known  results [ 1 ,  eq. (1.71.2)] k (n - 2k f A) ( p ) n - m  yn-2m 
ak,n(y) = c (- l)" m! ( k  - (X) ( A  10) 

1 / 2  m=o 
J-l /2  (2)  = (2) 

n - m - k + l  
COS Z ,  J112 (z) = (:r2 sin z .  (A5) 

712 - - yn-  2k (n - 2k + A) Qk(2y2 - 1 )  (A1 1 )  

We will need another special  case of  the general  result; specifi- where Qk is a  polynomial  defined  for  general  complex  argu- 
cally, for p > - 1 ,  ment u by 

For  arbitrary a and 0, the  Jacobi  polynomial  of degree k 2 0 
can  be written J p -  1 / 2  (-1 =m 2 p q p  + 1 )  ( d m ) " -  112 (A61 

P p q u )  = (- 1)" 
k (k+cu+P+ l ) k - m  ( k -  m + P +   l ) m  

where C[(x) are  the ultraspherical,  or  Gegenbauer,  polynomials m =  0 r n !  (k - m)! 
[ l ,  eq. (4.7.1)]. (Szego  uses the  notation PLp)(x) instead  of 

We derive Sonine's  second  finite  integral by finding  an  alter- 

lowing  result.  For p > h > 0, the  coefficients ak,,(y) in  the 
expansion 

c!xx>.> . (y)"" (A131 

nate form for the side Of (A6). This requires the fol- which  follows frorn [ I ,  eq. (4.21 ' J ) ]  using the  identity [ I ,  eq. 
(4.1.3)]. Setting a = p -  h -  1 and /3= h + n  - 2k in (A13) 
shows that 

are  given explicitly by 

. ?  ( p  - h + m)k-m (y - 1)" yn -  2 m  

m = o  r n !  ( k -  m)! (h)n-k-m+l  

Expanding  the  Jacobi  polynomial  in (A14) using [ 1 ,  eq. 
(4.3.2)] 

Ppp' (u) = 
k (l + @)k ( l  P)k ___-- 

m = o  m! ( k -  m)! ( 1  + a ) ,  ( 1  + P ) k - m  

(A8) and  substituting u = 2y2 - 1 gives 

where we take 0' = 1 and(0)o = 1 whenever they  occur.  Setting Qk(2y2 - 1 )  = ( P ) ~ -  
y = 1 in (8) gives m=o 

k 

( p - h t m ) k - m  (v2 - l ) m y z k - 2 m  
(n - 2k + h) (pin- k (II - h)k 

k!  ( A h -  k +  1 

, .  
(A91 

. (A16) 
ak,n( l> = m! ( k -  m)! (h)n-k-m+l  

Thus, (A16) and (A1 1 )  establish (A8). 

which is due to Gegenbauer [ l ,  eq. (4.10.27)]. Furthermore, 
for real y > 1 and p > h > 0, the coefficients ak,,(y) are all 
positive as can  be seen by inspection  in (A8). n 

the expression [ 1, eq. (4.7.3 l ) ]  

Two  limiting cases of (A7) are easily derived from [ l ,  eq. 
(4.7.a)l 

The  formula (A.8) is derived  as follows.  Let p 2 X > 0. In fco x = Tn(x)' ' , '  (A171 

and  are worth recording.  Thus, for p > 0, 

we replace x with xy,  substitute 

and collect terms  to get ( A  19)  
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and 

where 

(m)k-m (Y2 - 1) Y . m n-2m 

m! (k  - m)! (n k - m)! 
C k , n ( Y )  = n(n - k - l)! 

(A2 1) 
The notation X' means that 1/2 of the last  term  in the sum is 
taken if n is even, and all of it is taken if n is odd.  Note  that 
inspection  shows  that y > 1 implies that b k , n ( Y )  and C k , n b )  

are  positive. 
Sonine's  second  finite  integral is now derived from (A6). 

Fix x and y .  Let N = [n/2] . From (A7) 

will be  finite. Iff  = lim f n  and g = lim gn,  the  bounded conver- 
gence theorem [9, p.  1101  implies 

(-424) 
Let 5 in (0, 1 )  be rational.  Then 1 - 5 = 2k/n for sufficiently 
large k and n,  so that 

80 - l) = g,(1 - 0 
n + -  

' 1-<=2k/n 

2k)l-" 
2X 

with  the last  step  following  immediate from (A6). Thus, (A25) 
holds  for  all 5 in [0, 11 by  continuity. Similarly, from (A8) 
and  for all 5 rational  in (0, l ) ,  

/ \  

= lim 2 ({ +) l 1 n - k -  1 
n-2(P-h- 1 )  (1 - t : ) ( p -  h + m ) k - m  sin2mY 

n 
n - t -  m = o  

Y 
n 

Interchange the limit and  the  summation,  and evaluate the limit 
of the  mth  term  (convert Pochhammer  symbols to gamma  func- 

(A261 
1 - p =  2kJn {l-" COS" -m! ( k -  rn)! ( h t  l ) n - k - m  

where  we have defined  for 0 < ( < 1 

N ) v t ' - 2 ' 1 ( 1  t N )  1 tions,  apply  Stirling's  formula,  and use k(n - k )  = (1 - f 2 ) n 2  /4)  
f n ( l  - 5 )  = kgo zn - 2k) I - 2h uk,n (cos -- .,> Ysk(l - 'I to  obtain 

- {'*(I - t * ) ~ - ~ - l  r ( h t  1) 

2 2 ' 1 - 2 h - 1  r(P + 1.) N (n - 2k) ' -2h  f(l - t) = 

c,"- 2k (,Os :) %k ( l  - 5 )  m=o g n ( 1 - 3 . ) =  2h k= 0 . ( + Y m ) 2 m  

and x~~ is the characteristic  (indicator)  function  of  the  interval rn! r(p - X t m) 

- ~ ~ ~ ( 1 -  p ) ~ - ~ - ~  r(ht 1) 

r(P -t 1) 
- 

22'1- 2 A -  1 

where l , ( z )  denotes  the modified Bessel function  of  the  first 

It  can be verified that xEk (2kln) = 1 for k = 0, 1, . . . , N .  

bounded above by integrable functions of {. To  do  this, it 
will be seen that we must  restrict attention  to h > - 1/2,  p > 
- 1/2,  p > X ,  so that  the integral [ 1, eq. (1.7.4)] 

order v (see [8, sect. 3.7(2)] ). We must  require p > h in (A27) 
to have convergence.  Continuity again assures that (A27) holds 

Assume for the moment that bath If"(')' and l g n  ('Ii are for  all { in (0, 1 ) .  Now,interchanging  the  limit  and  the  sum was 
valid because  an  upper bound  for  the  total sum can be found. 
Since  the  absolute value of the  mth  term in (A26) is bounded 
by 
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where 

the  total  sum in  (A26) is bounded by 

for  some  constant L independent  of 5. The series in  (A28) is 
a continuous  function of { on [0, 13 if p > h. Hence, from 
(A23), F(c) is  an integrable function  that  bounds lfn({)l for 
all n. 

From (A24),  (A25), and (A27)  we have 

with the last equation  from  (A6).  Substituting 5 = sin 0 and 
y = iy ’ in the last two  formulas,  and  setting 

p ’=X-  - ; > - I  and h ’ = p -  A -  1 >-1  (A301 

yields Sonine’s second  finite  integral (Al). The  only  thing  left 
to prove is that lg,({)1 is bounded by  an  integrable function  on 
[0, 11 . Szego’s argument [ 1, p. 1921 in the  proof  of (A2) can 
be  modified easily to show Ign(t)i is bounded by  a constant. 

The  proof  of (Al) presented  here was intentionally  restricted 
to real p and A. However, it is not  hard to see from  (A23)  and 

(A30) that  the  proof can be carried out  for  complex p and X, 
provided  appropriate  remarks  are  made  in  appropriate places 
about  the  complex case. If such  remarks  are  made, our deri- 
vation  proves (AI)  for  Re(p) > - 1 and Re@) > - 1. Divergence 
of (A23) is seen to be the cause of  the  restrictions  on p and h. 

The  material  contained  in  this  Appendix was first  documented 
in [ IS] .  
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