
IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-28, NO. 2, APRIL 1980 145 

[ 191 B. Gold and L. Rabiner, “Parallel processing techniques  for  esti- 
mating  pitch  periods  of speech in  the  time  domain,” J. Acoust. 
SOC. Amer., vol. 46, p. 442,1969. 

[ 201 E. M. Hofstetter, P. E. Blankenship, M. L. Malpass, and S .  Seneff, 
“Vocoder  implementations  on  the  Lincoln digital voice termi- 
nal,”  in EASCON ’77Rec., Sept.  1977. 

[21] R. J. McAulay,  “Design  of a  robust  maximum  likelihood  pitch 
estimator  for speech in  additive  noise,”  Tech.  Note  ,1979-28, 
M.I.T. Lincoln  Laboratory,  Lexington, MA, June  1979. 

Robert J. McAulay (S’63-M’67)  was born  in 
Toronto,  Ont., Canada,  on  October  23,  1939. 
He received the B.A.Sc. degree in engineering 
physics with  honors  from  the University of 
Toronto in 1962,  the M.Sc. degree in  electrical 
engineering from the University of Illinois, 
Urbana,  in  1963,  and the Ph.D. degree in elec- 
trical engineering from  the University of Cali- 
fornia, Berkeley, in  1967. 

In  1967  he  joined  the Radar Signal Processing 
Group of the M.I.T. Lincoln  Laboratory,  Lex- 

ington, MA, where  he  worked  on  problems  in  estimation  theory  and 
signal/fiiter design  using optimal  control  techniques.  From  1970 to 
1975  he was a  member  of  the Air Traffic  Control Division at Lincoln 
Laboratory,  and  worked  on  the  development of aircraft  tracking al- 
gorithms, optimal MTI digital signal processing, and on  the  problems of 
aircraft  direction r iding for  the  Discrete  Address  Beacon  System. On 
a leave  of absence from Lincoln Laboratory  during  the  winter  and 
spring of 1974,  he was a Visiting Associate  Professor at McGiU Univer- 
sity, Montreal, P.Q., Canada. Since 1975  he  has  been  a  member of the 
Speech  Systems  Technology  Group at Lincoln  Laboratory,  where  he 
has  been involved in the  development of robust  narrow-band  speech 
vocoders. 

Impact of the  Ocean  Acoustic  Transfer  Function on 
the Coherence of Undersea  Propagations 

ALBERT A. 

Abstract-Multipath  propagation,  in  conjunction  with  source  motion, 
creates  a  splitting  and  spreading of the received source-signal energy 
over the  time  register  time  scale-factor  (ambiguity) plane. This  splitting 
of the received signal energy is manifested  as  correlation  interactions 
between both; the  set  of eigenray signal arrivals (comprising the  multi- 
paths) at  each receiving sensor,  and  the set of eigenray signal correlation 
pairs comprising two (or more) sensors. The  more  tightly  the  sets of 
eigenray signals are clustered in the  ambiguity  plane,  the  stronger will 
be the signal component  interactions at  each sensor and the less will be 
the  expected  correlation  degradation  between sensors. However, the 
greater will be the variance. Conversely, the  more  diffuse  the  cluster- 
ing, the weaker will be the signal component  interactions  and  the  greater 
will be the expected  intersensor  coherence  degradation. Also, the less 
will be the variance. Criteria  which  define  the degree of signal compo- 
nent  interactions  in  terms of the signal and  the  ocean  transfer  function 
parameters have been  defined  and  are  displayed  in  graphical form. 

A 
INTRODUCTION 

S A consequence of  multipath  acoustic  propagation,  a 
remotely received  signal  will  consist  of the weighted su- 

perposition  of a number  of  source signals both slightly com- 
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pressed  (or expanded)  and translated in time [ l ]  . The  time- 
variable compression  factor  is a stochastic process which 
reflects the  fluctuations  inherent  in  both  the  medium  and  the 
source  motion.  The signal physics are depicted  in Fig. 1 for a 
three eigenray-path  model.  The diagram is distorted in that 
the vertical  scale is highly  exaggerated in comparison  with the 
horizontal scale, and  for long ranges  (greater than  about 200 
m i )  the number of path cycles  would  range from  about 7 to  
greater than 30 (instead of the single  cycles  shown). The  three 
eigenray paths shown  consist of two  purely refractive (RR) 
paths  and  one refractive surface-reflected (RSR) path.  Other 
paths are also  possible 121, [3] . 

The  source  signal  arriving  over each eigenray path differs in 
relative amplitude A (depicted  by the weight of  the  path), ini- 
tial time  delay r 0 ,  and  time scale-factor shift (or Doppler  ratio) 
6. For  a  motional source, the relative amplitudes  and the Dop- 
pler ratios will be time variable.  Signal-wise, the source signal 
time-scale “t” is transformed into “kt” upon being projected 
into  the medium where k = 1 t 6 is the  time scale-factor and 
8 is the  minute scale-factor shift or Doppler  ratio.  Mathemati- 
cally, 6 is a  form of running  time average of  the scalar or  “dot” 
product  between  the source  velocity and  a unit vector along 
the  eigenray path  at  the source, divided by  the sound speed 
at  the source [l] . The  Doppler ratios differ as a consequence 
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Fig, 1. Ray  diagram depicting  three eigenray  signal propagation  paths  between  a  source S and  a receiving  sen- 
sor R .  The received  signal is the  superposition  of the source signal  arriving  over the eigenray paths.  Each 
eigenray  signal at R is characterized  by  an  amplitude level A ,  an initial  time delay 70, and  a  time scale- 
factor  shift (or Doppler  ratio) 8 .  

SOURCE 
s ( t 1  u q  I CORRELATOR I 
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Fig. 2. Communications  channel  representation of intersensor  coherence processing. 

of the different eigenray depression (or elevation) angles at the 
source. 

The system under consideration is shown in Fig. 2. The 
ocean medium (including source motion) is represented as 
transfer functions between the source and the  two receiving 
sensors. The ocean transfer characteristics modify (or distort) 
the source signal  arriving at  the receiving sensors in  the manner 
depicted in Fig. 1. This distortion will  be different for widely 
separated receiving sensors. The impact of this  distortion  on 
the coherence between two received  signals  is the problem be- 
ing  addressed in this paper. A number of approaches covering 
the many facets of this problem is  available  in the literature 
[2] -[9] . This paper will be concerned with determining the 
expected efficiency of coherent multisensor processing in "a 
deep ocean basin as a  function of the signal and medium pa- 
rameters for  a relatively shallow source and deep receiving 
sensors. 

DUAL-PATH SIGNAL ANALYSES 
Received Signal Relations 

Experience has shown that in many instances the number of 
significant multipaths are reducible to two. For this reason, 
and for  the insight it provides into  the signal physics, it is well 
to study the dual-path situation in some detail. Consider,then, 
that dual-path narrow-band signals from a moving source are 
received at two remote receiving  sensors. Further,  let  the re- 
ceived  signal at each sensor be preprocessed to equalize the 
amplitude, time delay, and Doppler shift of the primary (or 

stronger) eigenray signal at each receiving sensor. The result- 
ing compensated receiving sensor outputs can then be written 

s l ( t>=u( t )+a lu(k l ( t -71)}  (1 a) 

s z ( t ) = u ( t ) + % u { k z ( t -  72)) (1b) 

and 

where 

u ( t )  is the primary (or stronger) of the narrow-band 
eigenray signals at each sensor after compensation, 

01 < 1 is the ratio of the rms  levels of the  two eigenray 
signals after compensation, 

7 is the residual time difference in  arrival of the 
secondary eigenray signal (relative to the primary 
signal) after compensation, 

k = 1 t 6 is the residual time scale-factor of  the secondary 
eigenray signal after compensation, 

6 << 1 is the corresponding time scale-factor shift (or 
Doppler ratio), 

and where the subscript denotes  the relevant  receiving sensor. 
(For purposes of  this paper, the above equations assume noise- 
less  signal channels.) 

A vector diagram of the received dual-path signal  is shown in 
Fig. 3. The primary eigenray signal is the  unit vector and the 
secondary signal  is the (II vector. The amplitude A(w;  t)  and 
phase B(o; t)  of the resultant received  signal  (relative to the 
primary signal) is the vector sum of the two eigenray signals. 
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Fig. 3. Vector diagram of a received  dual-path signal. (Amplitude parameters  are assumed  constant over the 
analysis interval T.) 

As a consequence of  the residual Doppler difference, the a vec- 
tor will  slowly rotate (from its initial phase position) relative 
to the  unit vector. This is depicted by the lightly shaded area 
over the observation or analysis interval T. The more heavily 
shaded area depicts  the relative  phase modulation resulting 
from  the signal bandwidth B. The diagram illustrates the in- 
fluence of  the signal and transfer function parameters on  the 
resultant received  signal characteristics. It should be evident 
that when the eigenray signal amplitudes vary  over the obser- 
vation time,  the resultant vector locus pattern will no longer 
be circular, but will become somewhat distorted. 

Without loss of generality, it will be assumed that  the vari- 
ance or average power of u (t) over the analysis interval is unity. 
In  this circumstance, the variances of  the  two sensor signals be- 
come (averaging  over the analysis time T )  

02 1 - - (S l ( t ) )=l+@: 2 +2ar,y(71;6,) (2a) 

and 

=(s l ( t )>= 1 +a; +2a,y(72;62) (2b) 

where y(7, 6) is the ambiguity function  of u( t )  (that is, the 
autocorrelation of the signal  over the time-delay and Doppler- 
shift dimensions). It can  be  seen that when the secondary sig- 
nal is widely separated from  the primary signal  (in the 7-6 
plane), the ambiguity function will be near zero and the aver- 
age power of  the received  signal  will  be essentially 1 t @'. 

This is the case when the received eigenray signals are uncorre- 
lated. On the  other  hand, when both the time difference and 
Doppler separation are sufficiently small, the value of  the am- 
biguity function can approach ?1.  In this event,  the average 
received power will vary between approximately (1 + a)2 and 
(1 - a)2,  depending on the phase difference between the re- 
ceived eigenray signals. 

The signal physics can  be understood from the geometric 
vector representation illustrated in Fig. 3. When B T ~  and 

a0 f, T are both much less than one (over the analysis interval 
T),  the vector diagram (locus of resulting signal vector) will be 
more or less static. As a consequence, the power of the re- 
ceived  signal (resultant signal vector) will be highly dependent 
on the mean phase  angle of  the Q vector (secondary signal) 
relative to the  unit vector (primary signal). In  this case, the 
magnitude of the resultant signal vector can  range between ap- 
proximately 1 + a! and 1 - a, depending on the relative phase 
between the eigenray signal vectors. On the  other  hand, when 
B T ~  and/or 6o  f, T is much greater than  one, the mean power 
in the received  signal  will  be the average of the power over  all 
angles about  the circle or 1 + d . 
Intersensor  Correlation  Functions 

The two-dimensional correlation function between the  two 
sensor channels may be written simply as 

+ %7(7 + 7 2  , 6 - 62) 

+ a , a 2 y ( 7 + 7 2  - T I , $ + & ,  - 4 2 ) ]  (3) 

where the indicated smoothing is computed over the analysis 
interval T. This relation indicates that  four discrete correla- 
tion peaks (independent of sidelobes) will occur in the twin 
dual-path situation, provided the two-dimensional correlation 
pulsewidth is sufficiently narrow to resolve the peak separa- 
tions over the 76 (ambiguity) plane. 

For narrow-band signals, y(7,6) will take  the  form [4] 

y(7,S) = x ( 7 , 6 )  cos 77 (2 + 6)f,7 (4) 

where X(T,  8) is the two-dimensional correlation envelope (or 
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coherence) function, cos n (2 + 6 )  f c r  is the carrier function, 
and f, is the signal mean frequency. When ( T ~  a 2  t 72 6 1 )  f, << 
1,  it may be shown that  the envelope  of yl, (7, 6 )  (or coher- 
ence function) will  be 

1 

01 0 2  

+ 2xo(X1 COS nbl + x 2  COS nb2 + x21 COS nb3) 

x1,2(7,6)=-  [xi +x: + x; + x% 

+ 2(X1X2 cos nb4 -+ X l X Z l  cos nb2 

t x2 xZl cos nbl )] ' I 2  (5) 

where 

x0 = x(7, 6)  
x1 =a1x(7--71,6 + S I >  

x 2  = azx(7 + 7 2  2 6 - 6 2 )  

x21 =a1azx(7+72 - 71,6 + 6 1  - 6 2 )  

bl = 2 f,'.; (mod 2) 
b2 = 2 f,'ri (mod 2 )  
b3 = b2 - bl 
b4 = b2 + bl 
f,' = (1 + 6/2)f, 
7; = 7 1  - (6 1 - 71 

7; = 72 - (62/2)(7 + 72). 

The first four  terms in ( 5 )  are the coherence functions  of 
the  independent pairwise  eigenray  signals between  the  two 
channels.  The  remaining six terms  express the coherence inter- 
action  between  the  correlation pairs. When the peaks of  the 
independent correlation pairs are sufficiently separated  over 
the ambiguity  plane, the interaction  terms will  be  negligible. 
Otherwise, the coherence topology  of the sensor  signals  will 
depend on  the relative phase between  the received  eigenray  sig- 
nals (b parameters). 

The  preceding relations are considerably simplified when 
only  one  of the two sensor  channels  includes a significant sec- 
ondary eigenray path  (that is, when either a1 or a2 is zero). 
Letting a2 = 0, (3) reduces to 

1 
y1 ,2 (776)= i  [ Y ( 7 , 6 ) + a ~ ( 7 - r o 7 6 + 6 0 ) 1  ( 6 4  

where c = ul , CY = a l ,  T~ = r l ,  and = 6 The correspond- 
ing  coherence function reduces to 

1 
x1,2(7,6)=;  [X2(7,6)+a2X2(T-7o,6 '60) 

t 2aX(T, 6)  x(7 - TO,& + 6 0 )  COS nb]'" (6b) 

where b = 2f,' [ T ~  - (60/2)(~ - io)] (mod  2).  In this  event, 
one can expect  a twin correlation peak  (ignoring sidelobes) 
when either  or  both ro and 6 o  are sufficiently large to resolve 
the correlation peaks separately. 

Envelope  Partitioning  Over the Ambiguity Plane 
To study  the effect of the system  parameters on  the  inter- 

sensor  coherence topology,  it will  be  necessary to specify the 
correlation envelope function x(r, 6). Unfortunately,  the  en- 
velope  ambiguity function will depend  on  the specific source 
signal employed. However, in  the neighborhood  of the coher- 

1 DELTA (AS =5.919 x TAU (Ar=0.515 SEC) 

SOLID "DOTS" ON ABOVE CURVES 
ARE T H E O R E T I C A L  PREDICTIONS 

T = 640 S E C  

Fig. 4. Envelope  ambiguity  function  for  a  pseudorandom signal of 
bandwidth 0.25 Hz and mean frequency 33 Hz. (Note: in the dia- 
gram, AT rz 1/86! and A6 1/8fcT define  the  measures  between 
"tic" increments  on  the  two correlogram cuts through  the  coherence 
peak.) 

ence peak, and for  a random  narrow-band  signal of  informa- 
tion  bandwidth B and mean frequency fc, a suitable approxi- 
mation of x(7,6) is  given  by [lo] 

sin n6 f, T sin nBr 
n6fc T n& 

x(?., 6) = -- . 

That this is a suitable representation of the envelope  ambiguity 
function is demonstrated in Fig. 4. This is the measured  ambi- 
guity function  for a pseudorandom  frequency-modulated 
source  signal  of  center  frequency 33 Hz and information  band- 
width 0.25 Hz.  The analysis time  was 640 s. (The  upper two 
curves are cuts  through the correlation peak  along the r and 6 
axes, respectively.) The theoretically computed  points  on  the 
two upper  curves  were obtained using (7). 

The  envelope  ambiguity function as a  function  of  the rele- 
vant  system  parameters  can be computed  from (6b)  using (7). 
The effect on the coherence function topology  will be demon- 
strated varying the three parameters T ~ ,  6 o, and b in selected 
sequence.  In  Fig. 5, the parameters b, a ,  and 2B7,, have  been 
fixed at 1, 0.95, and 0.50, respectively, and the parameter 
260fcT was  varied in  steps over the range  of 0-2.00. (For 
convenience, the symbols AT and A6 are used to define the 
values 1/2B and 1/2fcT, respectively. They  represent the 
Nyquist-equivalent bounds on the incremental  sampling of the 
two ambiguity function variables.)  The  value  of b = 1 implies 
that  the  two eigenray  signals  arrive essentially 180" out  of 
phase  (see  Fig. 3). The  arrows  along the axes  of the  two  cor- 
relogram cuts (in  each  diagram  of  Fig. 5) show the  location  of 
the secondary  eigenray  signal  in the ambiguity plane. (The lo- 
cation  of  the primary  signal  will  always  be 0, 0.) In the se- 
quence  of  diagrams, the value  of 6,/A6 is varied from values 
below ro/Ar to values greater than ro/Ar. 

Two significant aspects  of the coherence  topology are to be 
noted.  First, it is seen that  the separation  of the  two promi- 
nent topological  peaks is essentially constant and  well in ex- 
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Fig. 5. Correlation  envelope  topology,  resulting from a dual-path channel,  showing  the effect of the  relative 
locations of the primary and  secondary  eigenray signals (in  the  ambiguity  plane) on the  partitioned  enve- 
lope  geometry. Arrows along the abscissa of the T and S cuts  (located  above  each  correlogram)  show  the lo- 
cation  at  the  secondary  signal. The  primary  signal is located  at 0, 0 in each  case. 

cess of the separation of  the  two eigenray signal locations in 
the ambiguity plane. The peaks are also nearly symmetrically 
spread about  the  locations 0, 0 and ro/Ar,  60/A6. This phe- 
nomenon we have chosen to call  “envelope partitioning in the 
ambiguity plane.” It occurs whenever ro and 6o are both less 
than  about 2 AT and 2 A6, respectively, and the parameter b is 
close to unity. The second thing to note is that  the secondary 
peak rotates  about  the primary peak as the magnitude of 
a0/A6 approaches and then exceeds the magnitude of ro/Ar. 
When these two parameters are equal, the location of  the  two 
peaks lie  along a 45’ line  over the normalized ambiguity plane. 

Data given on each diagram include the peak correlation co- 
efficient y p ,  the rms ‘signal  level of the  dual-path channel u, 
and the value y p  u. This last  value  is the effective rms level of 
the  dual-path channel from  a  detection  standpoint. (That is,  it 
represents the rms  level of an ideal single-path channel which 
would produce the same peak coherence output as the given 
dual-path channel.) Thus, when 7, u is  less than  one, the pres- 
ence of  the secondary eigenray signal is destructive to correla- 

tion processing. On the  other  hand, when ypa is greater than 
one,  the presence of the secondary signal enhances correlation 
processing. In the case of Fig. 5, the presence of the second- 
ary signal path is destructive to correlation processing until 
Fo/A6 equals or exceeds about 2 .  For very  large  values of 
Fo/A6,  the value of y p  u approaches unity. 

In Fig. 6, the parameters b and a are  again fixed at 1 and 
0.95, respectively. The parameters io /Ar  and 60/A6 are set 
equal and varied in steps over the range of 0.25-3.00. It may 
be noticed that  the topology remains relatively invariant until 
the values of the two parameters exceed about 1.89. Beyond 
this critical point,  the secondary coherence peak separates 
from the partitioned-envelope state and becomes relatively in- 
dependent of  the primary coherence peak. More generally, 
breakaway from  the partitioned-envelope state occurs when 
the  root mean square of the parameters T o / &  and 60/A6 ex- 
ceeds approximately 813. Below this critical value, the separa- 
tion of the  two primary peaks in the normalized (illustrated) 
ambiguity plane is approximately equal to 813. Beyond this 
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Fig. 6 .  Correlation  envelope  topology, resulting from  a  dual-path  channel, showing the  effect of the separa- 
tion of  the  primary  and  secondary eigenray  signals (in the ambiguity  plane) on the twin envelope peaks. 
Arrows along the abscissa of the 7 and 6 cuts  (located  above each  correlograrn) show  the  location of the 
secondary signal. The primary signal is located at 0, 0 in each case. 

critical point,  the  two eigenray correlation pairs  are only 
weakly interactive, and the  detection sensitivity of  the correla- 
tion processor approaches that which would be realized from 
the presence of  the strongest of the  two eigenray  signals alone. 
The presence of the secondary signal then serves merely to 
spread the coherence topology over the ambiguity plane. 

A study of the parameter tabulations  on each diagram in 
Fig. 6 reveals that  the  detection sensitivity of  the dual-path 
channel increases with increased values of the parameters out 
to  the point where these values are approximately 2. Beyond 
this point, there occurs a minor cyclical undulation  of rp cr 
which asymptotically decays to unity  for large  values of  the 
parameters. 

In the correlograms presented up to this point,  the presence 
of the secondary eigenray signal has proven generally destruc- 
tive to the cause of correlation processing. This is a result of 
the  fact  that  the parameter b was chosen as precisely unity, 
which dictates  that  the frequencies of  the dual-path signals be 

effectively 180" out of phase (see  Fig. 3). In this  situation, in- 
creasing the separation of the eigenray  signals in the ambiguity 
plane generally improved the  detection sensitivity of the corre- 
lation process (reduced the destructive effect of the secondary 
eigenray  signal). It will now be  well to examine the effect of 
the parameter b on  the coherence topology when the  other  pa- 
rameters are held fixed. 

In Fig. 7, the parameter a! is fixed at 0.95, and T ~ / A T  and 
&,,/A& are both fixed at 0.50. In this set of diagrams, the pa- 
rameter b is  varied  in steps from l to +OS0 (corresponding to 
a phase difference between 180 and +90"). It will be noticed 
that as b deviates from 1, the envelope partitioning effect rap- 
idly decays until  only  a single  peak occurs for b less than  or 
equal to about 0.8.  Moreover,  since b can be considered a ran- 
dom variable with uniform probability density over the range 
+1, it can be concluded that envelope partitioning will be evi- 
dent over  less than 20 percent of the  time. As the absolute 
value of b is reduced from 0.8 to 0, the sharpness of the result- 
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Fig. 7. Correlation  envelope  topology, resulting from  a  dual-path  channel,  showing the influence of the  phase 
parameter b in  producing the  partitioned envelope  state. Arrows  along the abscissa of the T and 6 cuts (lo- 
cated above each  correlogram)  show the  location  of  the secondary eigenray  signal. The primary  eigenray 
signal is  located at 0,O in  each case. 

ing  single peak, as  well as the peak correlation coefficient and 
average  received power, will increase. The system becomes op- 
timum when b equals zero. 

It may further be noted  that whereas the secondary eigenray 
signal is generally destructive to the cause of correlation pro- 
cessing for b in the neighborhood of 1 ,  the secondary path will 
enhance correlation detection over the greater portion  of  the 
permissible  range of b. However, the peak signal degradation 
exceeds the peak signal enhancement to at least partially offset 
the greater range of b over which enhancement occurs. For 
the example shown (Fig. 7),  enhancement occurs over about 
63 percent of  the range of b, while degradation occurs over 
only  37 percent of the range.  On the  other  hand,  the maxi- 
mum coherence enhancement is 5.39 dB, while the maximum 
degradation is -7.33 dB. The average  over  all b is in favor of 
enhancement by  about 1.7 dB.  Overall it appears that second- 
ary eigenray signal paths enhance (in a statistical sense) the 
peak correlation over that realized by  the primary paths alone. 

However, the presence of the secondary signals  can markedly 
increase the variance of the intersensor peak coherence (and 
thus  the target detectability) over time. 

Calculation of the Time Scale-Factor Shift Parameter 
It is of interest to determine the  amount  of time scale-factor 

shift (or Doppler ratio)  that can be expected between eigenray 
signals in practical applications. This,will determine  the degree 
of peak coherence separation over the ambiguity plane which 
can be expected from  the set of intersensor eigenray correla- 
tion pairs. 

It has been shown that  the expected time scale-factor shift 
for a signal projected into  the propagation medium (Fig. 1) is 
essentially the scalar or  dot product of the source velocity and 
a unit vector along the eigenray path of the source divided by 
the sound propagation speed at  the source [ 11 . Therefore,  the 
expected difference between the time scale-factor shifts of  two 
eigenray  signals can be written simply as 

- 
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R a,, = - (cos (pm - cos (0,) 
C 

where k is the effective range rate of the source to the receiv- 
ing sensor, c is the sound speed at  the source, and pm and (p, 
are the depression (or elevation) angles of the relevant eigenray 
paths at  the source (Fig. 1). For long-range signal propagation, 
the magnitudes of  the significant  eigenray depression angles 
will be small  (generally  less than 15"), so (sa) can be approxi- 
mated as 

6,, X 5.29R(p; - & > X  lo-' 

= 1.058Ri&,A(pnm X (8b) 

where 

R is the effective range rate in knots, 
(pm and (pn are the relevant eigenray depression angles in 

Vnm is the mean of the two depression angles in 
degrees, 

degrees, 

- 

AVnm is equal to the difference pn - pm in degrees, 
and a sound propagation speed of 2880  knots is assumed. The 
frequency difference between the  two eigenray signals  is  essen- 
tially 6,, f,. Consequently, eigenray signal frequency differ- 
ences of only a very  small fraction  of  a  hertz can be expected 
in practical applications. The  phase migration between the 
relevant eigenray signals  over the analysis interval will be essen- 
tially 2 7 ~ 6 , ~  f ,  T (see Fig. 3). 

GENERAL MULTIPATH ANALYSES 
In the preceding analyses, only a single dual-path channel 

was  used to demonstrate  the influence of  the system parame- 
ters  on  the resulting intersensor coherence topology. When 
both signal channels comprise dual-path signals, the complex- 
ity of the analysis  is  increased appreciably due to the additional 
transfer function parameters which must be taken  into consid- 
eration. And when one considers greater than  two  paths  for 
the sensor channels, the problem becomes prohibitive to ana- 
lyze in detail. However, by utilizing the source signal parame- 
ters to normalize the scales of the ambiguity plane, and by 
representing both  the received  sensor  signals and the resulting 
intersensor coherence function as vector sets, some very useful 
conclusions can  be formulated for  the general multipath prop- 
agation case. In the analyses to follow, a rather comprehensive 
insight will be obtained of how both  the signal and the transfer 
function parameters determine the effectiveness of correlation 
processing in practical applications. 

Eigenray Vector  Sets 
A study of Fig. 1 reveals that  the ocean transfer function is 

characterized by  the set of parameters Ai( t ) ,  rei, and 6 , ( t )  
where i = 1 , 2, . . . , rn denotes the eigenray paths of signifi- 
cance  over  some analysis interval T .  In  addition,  a narrow- 
band signal source can typically be characterized by a mean 
frequency f ,  and an information bandwidth B over the analy- 
sis interval T. For convenience, new  variables and q are de- 
fined as 

normalizing the ambiguity function variables r and 6.  This 
wiU have the effect of merging the signal parameters with the 
medium parameters. Under these circumstances, the signals at 
the  two receiving sensors (Fig. 2) can  be represented as sets of 
triads or eigenray vectors which comprise the received  signals. 
Thus, over the relevant analysis interval T 

and 

where ux  ( t )  and uy (t) are comprised of m and n eigenray sig- 
nals, respectively, and 

The  above vector representation of the received  signals  is 
shown schematically in Fig. 8. The  eigenray  signal amplitudes 
are displayed by  the height above the tq plane, and the loca- 
tions  are  distributed over the plane. Due to the time variable 
nature  of the eigenray signals, the vectors may wander (or fluc- 
tuate) along the A and q dimensions over the observation time 
T .  This wandering is due both  to the source motion and the 
medium fluctuations; however, the effects of the  latter are 
generally  small compared with  the effects of the  former. 

In traset Comelation 
To assess the correlation interaction between members of a 

given set,  a  unit circle is drawn around the location of each 
eigenray vector in the tv plane (Fig. 8). Where the unit cir- 
cles for particular vector locations do  not overlap other cir- 
cles, the intracorrelation of these members with  the  other 
members of  the set  will  be  negligible.  The energy from these 
signals will add directly in determining the  total energy (or av- 
erage power) of the received  signal. Where particular circles 
overlap but  do  not enclose each other's origins, the expected 
intraset correlation will  be  low to moderate. However,  where 
particular circles overlap sufficiently to enclose each other's 
origins, the expected intraset correlation between the relevant 
members can be moderate to high. The exact correlation be- 
tween the relevant members in these latter two cases  will de- 
pend on  both the degree of unit circle overlap and the relative 
phase between the signals  at the receiving sensor. The contri- 
bution to the received  signal energy in these latter two cases 
will depend on  the amplitudes of the relevant eigenray signals 
as  well  as the intraset correlation coefficient. In the example 
illustration (Fig. 8), none of  the unit circles overlaps.  In this 
event, the received  signal energy from each sensor channel is 
simply the sum of the energy in each of  the eigenray  signals 
comprising the set. Should all (or several) of the unit circles 
overlap, the expected received  energy would exceed this sum. 
However, the variance would be  such that greater or less than 
this sum could be realized. 

Comeletion-Pair Set 
From Fig. 8, one can  perceive that two-dimensional cross 

correlation of the  two sensor channels results in the superposi- 
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tion of m times n cross-correlated eigenray  signal pairs where 
the correlation peaks of  the discrete pairs are distributed over 
the ambiguity plane. Consequently, it will  prove convenient 
to represent the two-dimensional cross correlation of  the sen- 
sor channels as the vector set 

Y x , y ( 7 , G ) ~ { Y p k ; l k , q k ) m n  ( k = 1 , 2 , * * ’ , m n )  (1la) 
where the vector components are the magnitude and location 
of the peak coherence for  the mn discrete correlation pairs 
considered individually. The relationship to the eigenray  vec- 
tor components is 

{ T p k ;  l k ,  q k )  - {Fi , j (AxjAyj ) ;  {xi - Fyj, q y j  - q x i ) .  (1lb) 

The  above relation implies that  the pairwise coherence peaks 
will occur at  the locations tX j  - tyj, qyi - qXi over the ambi- 
guity plane, and the magnitude of  the peak coherence will be 
a function of the  product  of  the relevant  eigenray  signal  am- 
plitudes. For  stationary eigenray vectors, the magnitude of 
the peak coherence will be directly proportional to the  prod- 
uct of  the relevant  signal amplitudes. However, due primarily 
to source motional characteristics, coherence degradation can 
be expected for  the individual correlation pairs [ 111 . Thus, a 
simple formulation  of  the magnitude of  the pairwise peak co- 
herence is not possible in the general case. In  any event, the 
concept of the discrete eigenray correlation-pair set is an ex- 
tremely useful one, as will be demonstrated  shortly. 

Intersensor Correlation 
To assess the intersensor correlation, a unit circle may be 

drawn around each correlation-pair location  in the ambiguity 

UNIT CIRCLE 

Fig. 9. Correlation-pair  vector  locations  in the gq plane. Unit circles 
define  the  boundaries of correlation  interaction  between  members of 
the set. Three degrees of correlation-pair  interaction  are  demon- 
strated by the relative overlap of the  unit circles. 

plane as shown in Fig. 9. Where the circle for a given correla- 
tion pair does  not overlap any of the circles from  the remain- 
ing correlation pairs, the coherence of the relevant pair will be 
essentially independent  of  the  other signals and may be treated 
separately. The effect of this correlation on  the remaining 
correlations will  also be insignificant. Where two or more cir- 
cles overlap but do not enclose each other’s origins, the  ex- 
pected correlation interaction between the relevant pairs will 
be  weak to moderate. On the  other  hand, where two or more 
unit circles overlap sufficiently to enclose each other’s origins, 
the expected correlation interaction will be moderate to strong, 
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Fig. 10. Twin dual-path signal correlograms showing the  effect of the  correlation-pair  locations  and eigenray 
signal phases  on  the  resultant  topology.  In  each case, the  dud-path eigenray  signals  are  essentially uncor- 
related. The  locations of the  independent pairwise correlation  peaks (as  well  as the  location of the resul- 
tant coherence  peak) are shown  in  the plan-view t~ plane. 

permitting a wide variety of coherence topologies to occur in 
their immediate neighborhood. The resulting intersensor co- 
herence topology will depend on the number and degree of 
unit circle overlap, and on  the relative amplitudes and phases 
of the relevant eigenray signals at  the two receiving sensors. 

Examples 
To demonstrate the principles expounded above, (5) was 

used to compute  the coherence topology for  two dual-path sig- 
nal channels. In all  of the examples to be presented, the ocean 
transfer function parameters will  be  assumed stationary over 
the relevant  analysis interval. The amplitude ratios of the 
secondary-to-primary eigenray  signals for  the  two channels 
are  set to 0.90 and 0.75, respectively. The relative locations 
and phases of  the eigenray signal pairs will be varied (in or- 
dered sequence) to demonstrate their effect on  the resulting 
intersensor coherence topology. 

In  the first set of examples, the separation of the eigenray 
signal vectors (in the ambiguity plane) is made sufficiently 
large so that  the unit circles do  not overlap. In this  situation, 
the received  signal power will remain essentially unchanged in 
these examples. The results from four examples are shown in 
Fig. 10. Each illustration displays a listing of  the assigned and 
computed parameters, the resulting coherence topology, and a 
plan view of the normalized ambiguity plane showing the loca- 
tions  of  the eigenray correlation-pair set. The “b” parameters 
are a measure of the phase difference between the dual-path 
eigenray signals in each channel [see (5)], and can  range  over 

rtl. The u’s are the received  rms  levels of each channel, and 
7, is the resultant peak coherence (or correlation coefficient) 
between channels. The parameter 7polu2 is the equivalent 
single-path cross power which would give the same  peak corre- 
lation as the twin dual-path channels. When this value is 1, the 
equivalent single-path channels are simply the  two primary 
eigenray  signals.  When this value is less than 1, the presence of 
the secondary signals actually degrades the correlation of the 
primary eigenray signals alone. When this value is greater than 
1, the secondary eigenray signals enhance the correlation of 
the primary signals. 

In Fig.  lO(a), none of the  unit circles overlaps, so the result- 
ing intersensor coherence is simply the sum of the coherence 
for  the eigenray correlation pairs taken singly.  The correlation 
interaction terms [see (5) ]  are essentially zero, so that varying 
the phase parameters wiU have a negligible effect on  the result- 
ing coherence topology. In this case, the peak of the resulting 
correlogram occurs at  the peak of  the correlation pair compris- 
ing the  two primary eigenray  signals.  (In the example, this is 
located in the second quadrant of the ambiguity plane, as 
shown.) Although specific values  are  given for  the  two phase 
parameters (b, and b 2 ) ,  the resulting coherence topology is 
essentially independent of these parameters. 

In  the remaining three examples of Fig. 10, the locations of 
the eigenray signal vectors are fixed and only the phase param- 
eters are  varied. Ht will be observed that  only in the neighbor- 
hood of the overlapping unit circles is the coherence topology 
affected. And only in Fig. 1O(c) is the resultant peak coher- 
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Fig. 11. Twin dual-path signal  correlograms (as  in  Fig. 10) for the case where the dual-path eigenray signals 
are correlated. The  influence of the dual-path  signal phase parameters (bl and b2)  becomes highly signifi- 
cant when the  unit circles enclose  each other's origins. 

ence enhanced over that of  the  two primary eigenray signals 
alone. (In these examples, the peak coherence of the  two pri- 
mary eigenray signals lies in the  third  quadrant  of  the ambi- 
guity plane.) Thus, when the eigenray signals of the  two sen- 
sor channels are all uncorrelated,  the peak coherence of the 
two channels is no worse (and generally no  better)  than  the 
peak coherence of  the primary eigenray signals alone. 

In  the second set of examples, the separation of  the dual- 
path signals in  the ambiguity plane has been decreased so that 
the  unit circles about  the eigenray vectors overlap. In  this  sit- 
uation, nonnegligible correlation can exist between the eigen- 
ray pairs, and interaction between correlation pairs can be 
anticipated. Six examples showing the resulting coherence to- 
pologies are shown in Fig. l l .  In Fig. 1 l(a)  the  unit circles 
about  both  the eigenray vectors and the correlation-pair vec- 
tors overlap only slightly. In  this event, the  expected  intra- 
and intercorrelation interaction will be  weak to moderate, 
producing only modest changes in  the coherence topology 

with variations in  the phase parameters. It may be noticed 
that  the  location of the resultant peak coherence is slightly re- 
moved from the  location of the peak coherence of the pair- 
wise primary eigenray signals alone (second quadrant  of the 
ambiguity plane). 

In  the remaining five examples, the separation of the eigen- 
ray vectors has been reduced to the  point where the unit cir- 
cles enclose each other's origins. In these examples, the loca- 
tions of  the eigenray vectors are held fixed,  and  the phase 
parameters alone are varied. A study  of Fig. 1 l(b)-(f) reveals 
the wide variety of coherence topologies (including envelope 
partitioning) realizable with changes in the  two eigenray phase 
parameters. Of  significance  also is the corresponding variation 
in both  the magnitude and  the  location (in the ambiguity 
plane) of  the resultant peak coherence. All of these variations 
are manifested as fluctuations,  in real-world applications, since 
the phase parameters are truly random in character. In  this 
strong correlation interaction situation it is evident that  the 
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expected peak coherence is enhanced by the presence of the channel axis, the temporal distribution of  the received  eigen- 
secondary eigenray signals; however, the variance is also quite ray signals can be rather erratic [13]. Also, the  temporal  ex- 

range, and is generally iess than  about  2 s/lOO nmi of transmis- 
CORRELATION INTERACTION ZONES sion  range. Based upon limited observations, suitable bounds 

In the previous analysis, the unit circle  in the ambiguity for  the eigenray separation in the t dimension are estimated as 
plane provided a direct and graphic measure of  the degree of 
interaction to be anticipated between members of  the eigenray BR/2000 < I t m  - E n \  <BR/2QO (134 

high. tent of the significant multipaths is not  a  smooth  function  of 

and correlation-pair vector sets. It will be of interest,  there- 
fore, to transform the  unit circle criteria into boundaries 
which can  be interpreted in terms of the relevant system pa- 
rameters. To accomplish this, it will be recalled  (see  Fig. 8) 
that  the separation between eigenray vectors along the t and 
dimensions are, respectively, 

where the subscripts m and n denote  two  arbitrary members of 
the eigenray vector set. The separation between correlation- 
pair vectors is a  little more complicated, but should follow the 
same statistical trend as the eigenray vectors. That is, where 
the eigenray vector sets of the  two sensors are tightly clustered, 
the corresponding correlation-pair set  will be equally tightly 
clustered. On the  other  hand, where the eigenray vector sets 
are  widely dispersed, the corresponding correlation-pair set 
will  also be widely dispersed. The latter  set, however, may 
comprise many more members than either of  the  former, so 
that limited subset clustering can occur in the correlation-pair 
set even when the eigenray vector sets are widely dispersed. 
[This is what occurred in the example shown in Fig. lO(b)- 
( 4 . 1  In any event, the separation of the eigenray vectors pro- 
vides a useful measure of the coherence interaction to be ex- 
pected in practical applications. 

In the real ocean environment, both the time delay and the 
depression angle differences are functions  of many variables 
(range, source and receiving sensor depths, sound speed pro- 
files, etc.).  And the ensemble of probable values for each of 
these differences would provide a basis for their distribution 
functions. If sufficient data were available, one could deter- 
mine the distribution  functions  for  the variables - ~~~l 
and I Cp,, Aqnm 1, and select suitable upper and lower bounds 
for these variables. Unfortunately, an accurate description of 
the relevant distribution  functions is not known, so a purely 
intuitive estimate of roughly the 10 and 90 percent probability 
bounds on these variables  will  be made by the  author. 

In  the case of the propagation delay,  the temporal extent  of 
the significant multipath arrivals appears to be proportional to 
the propagation range for ranges greater than  about 100 nmi. 
This is not necessarily a  smooth linear function,  but simply a 
general trend. Within the SOFAR channel, the temporal dis- 
tribution  of  the  multipaths is smooth  and  amounts to about 
1 s/lOO nmi of transmission range [12], However, for  a 
source and/or receiving sensor located remote from  the sound 

where R is the source-to-sensor range  in nautical miles and B is 
the  information bandwidth of  the signal in hertz. 

In the case of the Doppler ratio difference, the  extent of the 
significant depression angles  is  generally  less than  about 215". 
Consequently, suitable bounds for the eigenray separation in 
the n dimension are estimated as 

where R is the source range rate in knots, f ,  is the mean signal 
frequency in hertz, and Tis the analysis time in minutes. 

Although somewhat arbitrary, these bounds can  be  used to 
interpret  the unit circle criteria in terms of the relevant system 
parameters for long-range propagation. The bounds given by 
( 1  3) are displayed graphically in Fig. 12. This zonal map illus- 
trates  the statistical implications of the unit circle criteria in 
terms of parameters more readily assimilated by  the applica- 
tions engineer. The map is partitioned into three interaction 
zones, with shading depicting the relative degree of expected 
correlation interaction over the area. The strong interaction 
zone represents the area  where the ensemble of eigenray and 
correlation-pair vectors generally fall within each other's unit 
circles.  The  weak interaction zone represents the area where 
unit circles about  the ensemble of eigenray and correlation- 
pair vectors generally do  not overlap. The transition zone rep- 
resents the area where a mixed situation is likely to occur. 
The dimensions of the  two scales are interesting in that  the 
ordinate is the  product  of  the mean  signal frequency and the 
change in range  over the analysis interval, while the abscissa is 
the  product of the range and the change in the signal fre- 
quency (bandwidth) over the analysis interval. The  magni- 
tudes of these two factors determine the efficiency of intersen- 
sor coherence processing in practical applications. 

CONCLUSIONS 

Multipath propagation is manifested as a splitting and spread- 
ing of the eigenray  signal energy over the ambiguity plane. 
Due to the  nature of the ocean medium, the received  signal 
distortion will  be different  for widely separated sensors in the 
medium. Consequently, one can expect a certain degree of 
peak coherence degradation between sensors. When the eigen- 
ray signal vectors are widely dispersed  over the ambiguity 
plane, coherence interaction between eigenray correlation 
pairs  will be weak, and the resulting peak intersensor coher- 
ence  will be equivalent to having  received only the strongest 
of the eigenray signals at each sensor. That is, the presence of 
the secondary eigenray signals, although increasing the re- 
ceived  signal  energy at each sensor, contributes  little to noth- 
ing to the peak cross power (coherence) between sensors. Qn 
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Fig. 12. Map of  coherence  interaction  zones,  transformed  from the  unit circle criteria,  for long-range acous- 
tic  propagation  in  the  deep  ocean.  Shading is intended to depict  the relative  degree  of correlation  interac- 
tion over the graphical  area  and the  fact  that  the zonal  boundaries are somewhat  arbitrary. 

the  other  hand, when the eigenray vectors are tightly clustered 
in the ambiguity plane, the coherence interaction will be 
strong. Under these circumstances, the peak intersensor co- 
herence (as well  as the received  signal energy at  the sensors) 
will depend on  the relative phases of the ensemble of eigenray 
signals. The expected peak  cross  power between sensors will 
exceed that due to the  two primary eigenray  signals alone; 
however, the variance of this cross-power statistic can  be quite 
high. Thus, on the average, the secondary eigenray signals  will 
contribute to intersensor correlation in this case. The coher- 
ence interaction zonal map, presented in the last section,  pro- 
vides a convenient means for assessing the efficiency of  inter- 
sensor correlation in long-range undersea acoustic applications. 
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Correlator  Compensation  Requirements  for Passive 

or Receivers 
Time-Delay  Estimation with Moving 

Absfract-An analysis is given  of the effects of source  or receiver 
motions on the  output of  a cross correlator used to estimate the source 
time-delay difference  across  a baseline. For  both narrow-band and 
wide-band  correlators,  the  need  for time-varying correlator  delay  com- 
pensation is quantified  for  the  case  of a quadratic signal  delay-difference 
variation. Two useful  concepts  which emerge are 1) the three-dimen- 
sional delay/delay-rate/delay-acceleration mean  ambiguity  function  of 
the source signal, and 2) the  equivalent .r-domain filter, which trans- 
forms  the  source  autocorrelation  function into the mean output of the 
mismatched  correlator. 

The required  correlator  compensation is approximately  a  quadratic 
delay  modulation  matched to  the  input delay-difference  function. For 
3 dB peak  output loss with a narrow-band signal, the maximum allow- 
able  delay-rate  mismatch will produce 158" of  phase rotation  at  the 
centroid  frequency fo during  the  correlation  integration time T ,  while 
the  maximum  allowable  delay-acceleration  mismatch will produce 156" 
of quadratic  phase  rotation  at fo between the center (t = 0)  and each 
edge ( t  = f T / 2 )  of the  correlator  integration window. For broad-band 
signals, the mismatch  tolerances  become about 11 percent tighter. 

G 
I.  INTRODUCTION 

IVEN two sensors separated by a  baseline,  passive esti- 
mation of the time-delay  difference between signals re- 

ceived from a common source  may  be  accomplished  by  cross 
correlating the appropriately filtered [ l ]  sensor outputs. 
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When source or  receiver motions cause the delay  difference to 
vary,  during the correlator  integration  time T,  by more  than 
the correlation  time width of the source signal, then  the  out- 
put correlogram  is  degraded  (smeared)  unless the correlator 
implements a compensating delay modulation during T. In 
many cases the simple expedient of reducing T causes an  un- 
acceptable reduction in processing  gain. 

For a  linear  delay-difference  variation  during T,  the  opti- 
mum correlator delay modulation is  also  linear  in time during 
T, so that  one receiver output is time scaled  (compressed or 
expanded) by  a constant  factor before cross  correlating [ 2 ] .  
For a narrow-band signal, this compensation can be approxi- 
mated by  a constant frequency shift [ 3 ] ,  [6], [7]. 

For a quadratic delay-difference  variation  during T,  the 
optimum  correlator delay modulation is approximately 
quadratic in time during T, so that one receiver output is time 
scaled  by  a  linearly  varying factor before  cross  correlating. 
For a narrow-band signal,  this compensation can  be approxi- 
mated by  a  linearly  varying frequency shift [3]. If the corre- 
lator can only implement a  linear  delay modulation (or its 
narrow-band approximation by  a constant frequency shift), 
then  the maximum allowable  value of Tfor a  specified  correlo- 
gram degradation becomes  a function of the geometry and 
motion scenario, together with the centroid and width of the 
source spectrum [ 3 ] ,  [4]. 
All these  effects for either broad-band or narrow-band corre- 

lators  are  treated  in a unified manner by  employing analytic- 
signal representation, assuming  a stochastic source emission, 
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