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Motion  Induced Coherence  Degradation in Passive 
Systems 

Abstract-The  problem of correlation  degradation  introduced as a 
result of the track and motional instabilities in  a  transiting  target is 
addressed. The  target is assumed to consist  of  a  narrow-band signal 
source which  is  received at two remotely  located sensors. The  out- 
puts  are processed through  a  correlation-type  detector. 

The  correlator output will, in general, suffer  a  degradation which  is 
nondeterministic  and statistical in  character. Two important  aspects of 
the target  motion  which can significantly  degrade the signal coherence 
are,  the mean target  track  relative to the  source-sensor  geometry,  and 
the  motional instabilities relative to the  mean  target  track.  The  former 
creates  an  absolute  upper  bound on  the useful  coherence  integration 
time which  can be  employed  in the processor.  The latter will depend 
on  the spectral  characteristics of the motional instabilities as well as 
the variance of the target  course  and  speed.  Results of the  expected 
processor  degradation  are  presented  in both functional  and graphical 
form  for  convenience in interpretation  and  data  abstraction. An opti- 
mum integration  time is derived from the standpoint  of  optimizing the 
processor gain for signal detection  in  an  incoherent signal background. 

It is concluded that tillget motion  can be  the most  serious  deterrent 
to the use of  coherent signal processors over exceptionally  long  integra- 
tion intervals. 

I. INTRODUCTION 

C OHERENT signal  processing  is a  proven  technique  for 
detection  and  parameter  estimation  in a number  of prac- 

tical applications. To date,  however,  little is known  about  the 
limitations on  the  integration interval over which  coherent 
processing can be usefully employed. 

The  -subject  paper addresses the  problem  of  correlation 
degradation  introduced as a result of  the  track  and  motional 
anomalies  inherent in a transiting target.  The target is  assumed 
to  emit  a  narrowband signal signature which is  being  received 
at  two  or more  remotely  located signal sensors. The  normal 
signal compensation  controls available  in correlation process- 
ing are;  a  fixed  time  delay  (to align the  two received  signals in 
time register), and  a  fixed  time scale-factor shift  (to compen- 
sate for  Doppler  differences  between  the two signals).  Al- 
though  these  controls have proven  adequate over sufficiently 
small integration intervals, the  correlation  degradation in- 
herent in target motion will become increasingly  severe  as the 
analysis interval (or integration  time) is extended. 

It will be  the  object of this paper to determine, quantitatively, 
the  correlation  degradation  (due to target motion considera- 
tions) to be expected as a function  of;  the  system  geometry, 
the signal center  frequency,  the  correlation  integration  time, 
and the  nature  and characteristics of  the target motional  track. 
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For a given system  geometry, signal center  frequency,  and 
anticipated  motional characteristics then, an appropriate in- 
tegration  time can be  chosen to optimize  the  correlation  pro- 
cessor in some  useful sense. To this end,  the analyses in this 
paper are objectively  conducted. 

11. FORMULATION OF THE PROBLEM 
A. Time Scale-Factor Function 

When a signal source is in  motion  in  an ideal transmission 
medium,  the signal  received at  a remote  point in the medium 
will  be a  distorted replica of  the source signal.  If the  source 
signal  is u(t), and if  we ignore attenuation and  the  propaga- 
tion delay  time, the signal  received at  a  remote  sensor x can 
be written as u(k,t), where k, is the time scale-factor distor- 
tion  due  to source  motion.'  The  time scale-factor function 
k,  will obey the simple dynamics relation 

d(k,t) = dt t ux dt  
C 

= (1 t :) dt 

where u, is the  component  of  source  velocity  along  the  propa- 
gation  path  from the source to the receiving sensor, and c is 
the average velocity  of  propagation over the propagation  path. 
For  convenience,  the  time scale-factor function  may be 
written as 

k,(t) = 1 -I S,(t) (2-2) 

where 6, is  called the  time scale-factor shift between  the  source 
and receiving sensor. Thus, it is  seen that 6, is the  solution to 
the simple first order differential equation 

d d6, 
-((6,t)=t-t6,=-. U, 
dt   d t  C 

It may  be verified that  the  solution  to  the above  equation is 

where a is  an arbitrary  constant.  From (2-4), it is evident that 
the time scale-factor shift function is a form  of  running  time 
average of u,/c involving an arbitrary  constant.  Consequently, 
when u,/c is invariant (constant), 6, may  be  reduced to  a  con- 
stant  equal to u,/c. 

Worthy  of note  at this point is that  the  ratio  of u, to  c is 

See the  Appendix. 
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typically a very  small number for most  problems  of practical 
interest.  Consequently, in the analyses to follow, it shall always x 

be assumed that I u,I <<e. Furthermore, in the analyses to 
follow, the propagation  velocity c will be  treated as a  constant. 
This, in reality, represents no serious restriction on  the prob- 
lem, since c could readily be written as e = co(l + A); where 
e,  is the mean  value of c and Ac, represents the variable 0 

component  of e. The  factor, 1/(1 + A), can then  be  con- 
sidered as  belonging to  the u, factor.  That is, the  factor ux 
(in reality) represents  the  function uJ(1 + A). Fig. 1. Vector geometry of the problem. 

B. Geometry Considerations 
Consider the  system  geometry illustrated in Fig. 1. A target 

source,  located at  point 0, is traveling  along  some course P at 
a velocity u (either or  both of which  may be time variable). 
The  ray paths  from  the  source  to  the receiving points x and 
y emanate along courses Pox and Pay, respectively. 

From  (2-4),  the  time scale-factor shift variables realized at 
the x and y receiving sensors will  be 

6 ,  =<-cos ( P o x  - P)>t,e 
u 
C 

(2-Sa) 

6 ,  = <- cos (Poy - P P t , ,  
u 
C 

(2-5b) 

where dl of the  individual  elements in the above expressions 
can be  considered as variable. 

The  difference in time scale-factor shift that will exist 
between  the  two receiving sensors y and x, will therefore  be 

6 y x ( ~ , P ; P o x , P o y ) = 6 y  - 6 ,  

where 

a = Pox - Poy (2-7a) 

cp = + < P O X  + Poy) - P. (2-7b) 

The  parameter a is  simply the  aperture angle from  the 
source to the  two receiving sensors, and  the  parameter cp is a 
measure  of  the  source  course relative to the  mean angle from 
the  source to the  two receiving sensors. 

C, Turget Motion Considerations 
Assume,  now, that  the relative ranges illustrated in Fig. 1 

are sufficiently large so that systematic  changes in the relative 
geometry  can  be  ignored over the  temporal intervals which will 
be  considered in the analysis to follow. (This presents  no 
serious restriction since the  systematic  geometry variation 
problem  can  be  treated  separately in a  manner similar to  the 
problem being presently  formulated.)  Under  the stipulated 
restrictions, the parameter Pox and POy will  be considered 
constant. 

I t  shall be assumed that  the source  velocity u and  course 
cp are independent variables which  vary in some  manner about 
their individual mean values. Let 

and 

cp = cpo t opt2 (radians) (2-9) 

where uo and cpo are the  mean values of u and cp, respectively, 
(T, and u, are the  standard  deviations  of  the respective  vari- 
ables about their mean values, and E l  and t2 represent 
normalized,  zero-mean,  dynamic variables  whose standard 
deviations are equal to  unity.  For purposes  of  the  subject 
analysis, it shall be assumed that auE1 << uo and u,g2 << 1 
radian. 

Since  now, 

sin, = sin (q0 + opt2) 

(2-10) = sincp, + u,t2 cos cpo 

(2-6)  may  be  approximated as 

6,, = (2 9 sin 2 1 a [ sincpo + (: sincp,) E l  

(2-1 1) 

For  convenience, new  variables bl  and {Z will  be defined 
as follows. Let 

Ci(t) = t (&)t,a, (i = 152) 

(2-12) 

where Ki is a  state variable chosen to make Ti(t) a  zero  mean 
variable  over the analysis interval T. Thus, 

Ki = le ti(.) dr 

(2-13) 

From (2-1 1) and  (2-12) then 
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where 

A 2  
6 ,  = ( t6 ,  )T = 2 ; sin 7 a sin cpo 

uo 1 (2-15) 

is defined to minimize  the  correlation  degradation over the 
analysis interval T  by ensuring that  the mean value  of ( S Y x  - 
&)t over the  integration  time Tis zero. 

From (2-14), it can  be  seen that  the coefficients of  the  two 
terms are in quadrature relative to the  mean  course  parameter 
PO. Thus,  when  the  one coefficient is maximum,  the  other 
will  be zero. As  will become  evident  shortly, (2-14) will play  a 
significant role in the  analyses to follow. 

D. Time Scale-Factor  Correction 
Assume now  that  the target signals,  received at  the x and y 

receiving sensors (see Fig. l ) ,  have been  appropriately aligned 
in time register at some futed  reference  point in time (say at 
t = 0). The  two received  signals  will then differ only in time 
scale-factor. The  two signals can be written as u,(t) = u(k,t) 
and uy(t)  = u(kyt) ,  respectively; where k, = 1 t 6, and 
k,, = 1 t 6,. Therefore, 

u y w  = u, {(kylkx)tl = ux {(I t &>tI (2-16) 

since 

'"lr=L=, 1+6 
k,  1 -k 6 ,  n= 1 

(2-17) 

Because 6, is variable, it cannot  be  compensated  for per- 
fectly  by  a simple  fured time scale-factor change. However, 
6, can be compensated to reduce  the  correlation  degradation 
between  the  two signals to a  minimum.  Correcting  for  the 
optimum  time scale-factor shift then, 

U y  ((1 - & J t I  =ux ((1 t 6, - &,)tI (2-1 8) 
A 

where 6, - 6,,, is  given in (2-14). 

E. The Correlation Integral 
The  relevant cross-correlation function will  involve the 

product  of  the signals from  the  two receiving sensors  after  the 
signals  have been  adjusted in both time register and  time scale- 
factor.  Consequently, when the  two signals are properly 
aligned in time register and  corrected  for  the  optimum  time 
scale-factor shift,  the  product  function will  be 

U x ( t ) U y  ((1 - 8,)t) ux(t>ux - &,x - 6,)tI. (2-19) 
n 

Assuming that ux(t)  is a  narrow  bandwidth signal, it  can be 
represented as 

u,(t) = sin (27rft + 4) (2-20) 

where f is a  parametric variable' with  mean value f,, and 
whose maximum  deviation about f ,  is  small compared  with f, . 
Under  these  circumstances,  the  product  function may be 
written as 

2A parametric variable, in this case,  is one which may be treated as a 
parameter from  the short-term standpoint  (time in the order of one to  
several times l/f,), but can otherwise vary  over long time intervals. 
The parametric restriction is, primarily, on  the rate-of-change of the 
variable. 

U,(t)UY {(l - $yx ) t )  R5 sin (27Tft + @) 

* sin [2n f (1+ 6 ,  - $,It t #I 

- cos [2nf(2 t 6, - 6,)t t 241 1. 
(2-21) 

= ; {cos [27rf(6, - 6,)tI 
A 

A 

And the resulting normalized cross-correlation function, over 
integration  time T (assuming that T is very  large compared 
with llf,), becomes 

When 6, - 6, is zero  (that is, when ou and up are both 
zero), the resulting correlation  function is simply  unity. Con- 
sequently, y,&"') will be  a  measure  of  the  degradation in cor- 
relation coefficient suffered as a result of  the instabilities in 
target (source)  motion. 

A 

111. SOLUTION OF THE CORRELATION 
DEGRADATION FUNCTION 

A .  Definition of Parameters  and  Variables 
Before solving the correlation degradation  function, it will 

be convenient to define new parameters as follows. Let 

and 

From (2-14),  (3-1), and (3-2) then,  the phase  argument in 
(2-22) may be written 

To solve a specific problem,  each  term in (3-3) can  be 
treated  separately  and  then  summed to form the composite 
phase  function, e(t). It will be convenient,  however, to define 
a single  variable and  a single parameter as follows. Let 

= € 1  5 1  ( 0  f € 2  52 0 )  (3-4) 

where 

e=-. (3-5) 

The variance of  the new  variable  will  be 

where p is the  correlation coefficient between the  two vari- 
ables, C 1  (t) and 5 2  (t). When the  indicated variables  are statisti- 
cally independent  or are orthogonal,  the last term in (3-6) will 
be zero.  In  the revised nomenclature, 

and 

a&?) = 2nc f l  = 27Teu&-). (3-8) 
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B. Solution Dependence on pe(O) and ug(T) 
From (2-22) and (3-3), the correlation degradation function 

becomes 

1 m 

= 1 - - o $ ( T ) +  ___ 
m2n(T> 

2 n = 2  (2n)! (3 -9) 

where pe(O) is the  probability  density, u$(T> is the variance, 
and rnk(T) is the  kth  moment of 19 (t) all computed over the 
interval 0 < t < T .  

Consider, now,  that ,$,(t) and &(t)  are random Gaussian 
variables. Under these circumstances, c(t) and O(t) will  be 
zero mean statistical variables with  a Normal probability den- 
sity distribution.  Consequently, yfv(T) is readily determined 
to be 

Consider next that {( t )  is a sinusoidal type of function 
whose amplitude and frequency  may be  slowly varying. The 
probability  density  for  this type of function  may  be shown 
to be 

(3-1 1) 

where p~ ( x )  is the probability  density of the sinusoidal ampli- 
tude variable. Therefore, from (3-9) 

(3-12) 

where Jo(x)  is the zero-order Bessel function of the first kind 
for the indicated argument. 

When ~ R ( x )  is the Rayleigh distribution function, (3-12) 
reduces to (3-10) as would be  expected (since, in  this case, O 
will be Normally distributed). When the sinusoidal amplitude 
is constant (equal to e,), (3-12) becomes simply 

= Jo (OM>. (3-13) 

And, if the  amplitude i s  uniformly distributed over the range 
of 0 < 0 < O M ,  (3-12) reduces to 

vo (T) 

Fig. 2. Correlation degradation as a function of p e ( 8 )  and ue. 

To study  the  effect of a variety of phase distributions  on  the 
correlation  degradation, (3-9) has been computed  for seven 
different (but symmetrical) phase probability  density func- 
tions. The results are illustrated in Fig. 2. The individual 
curves are a  plot of the correlation degradation TN(T) ,  as a 
function of the  standard deviation (To for each phase  dis- 
tribution. The probability density functions chosen, along 
with the  output solutions, are  given in Table I. 

The seven probability density functions chosen span a gamut 
of phase concentrations  from  the  extreme limits "OM to near 
zero. In Curve 1, the phase is concentrated  totally  at the 
outer  extremity limits, while in Curve 2 the phase distribution 
is biased toward the  outer  extremity limits 10,. Curve 3 is 
the result of a uniform phase distribution over - OM < O < OM. 
In curves 4 ,  5 ,  and 6, the phase distributions become more 
concentrated  toward the central  (or zero) position and de- 
crease to zero  at the extremity limits +0,. Curve 7 is the 
result of a Normal (or Gaussian) probability density function 
with zero mean. 

The significant feature of Fig. 2 is the  fact that for values  of 
00 less than or equal to about unity,  the correlation degrada- 
tion is (almost)  totally  dependent on only the value of the 
standard deviation ag and (relatively) independent of the 
phase distribution. For purposes of analysis, this is important. 
It means that knowledge of the standard deviation 08  alone is 
sufficient to accurately predict  the  amount of correlation 
degradation due to motional  trajectory anomalies. This will 
be true just as long as such degradation predictions are less 
than about 4 to 5 dB (ug equal to or less than unity). As the 
correlation degradation increases beyond these lower bounds, 
one is  less inclined to be concerned with the precision of the 
prediction since, in general, the degradation has reached what 
can be considered intolerable levels. In any event, the range of 
correlation degradation is certainly evident from the cluster of 
curves in Fig. 2. 

As a consequence of the above analysis, it is reasonable to 
bound  the correlation coefficient as follows 
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TABLE I 
PROBABILITY DEXSITY AND ASSOCIATED CORRELATION 

DEGRADATION FUNCTIONS 
P ( O ) ,  - O y  < a <OM 1 O M b O  7N (T) 

The  problem  of  determining the standard  deviating U,g , from 
a  knowledge  of  the characteristics of  the variable t(t) will now 
be addressed. 

C. Determination of Standard  Deviation Q(T)  
As defined earlier, the  motional variable t ( t )  is a  zero  mean 

function  with  unity variance  over the analysis interval 
0 < t < T. Thus, over the analysis interval T,  this function  can 
be represented  by the  Fourier series 

( ( t )  = 2 [A,, cos (2nntlT) t A ,  sin (2nntlT)I 
m 

1 

where 

T 
A,, = 1 ( ( t )  cos (2nntlT)  dt 

and 

T 
A,, = [ ((t)  sin (2nntlT)  dt. 

And the variance of k(t) over the relevant interval is, 

where 

T 
3(i2nv) = C;(t)e-i2nvf  dt 

(3-16) 

(3-1 7 )  

(3-18) 

(3-19) 

(3-20) 

is the  Fourier  transform  of ( ( t )  computed over the interval 

Using the relations given in (2-12) and (2-13), the variable 
O<t<T.  

{ ( t ;   T )  = 2 [Acn sin (2nntlT) - A,, cos (2nnt /T)] .  
7 1 1  

(3-2 1 )  
The variance of c(t)  will therefore be 

Since the  power spectral density  of t(t) is 

P~;(v) = I 3 ( i 2 4 1 2  
2 

(3-22) 

(3-23) 

the  standard  deviation of O,g may be readily determined  from 
(3-8),  (3-19), and (3-22). Thus, 

= eX(T)  (3 -24) 

where h(T) is a  factor  that is dependent  on  only  the spectral 
distribution  of  power in the  motional  instability  function t ( t )  
and the analysis interval T (correlator integration time). 

Since the infinite summation involved in (3-24) may (in 
certain instances) be difficult to compute,  a suitable approx- 
imation  for h(T)  may readily be  shown to be 

I 

(3-25) 
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Using the results of (3-24) in (3-15) then,  the correlation 
coefficient may  be  estimated  from 

(3-26) 

D. Example Power Spectral Distributions PE(v) 
To illustrate the  solution of the  correlation  degradation 

function using the relations derived in  the  previous analyses, 
several examples have been  chosen to demonstrate  the in- 
fluence  of  the power spectral distribution  of $(t) on  the 
correlation  degradation. Of particular interest will  be the 
dependence  of  the  standard  deviation oe(T) on  the correla- 
tion integration time T for specific  classes of power spectral 
density  functions. 

1) The Exponentially Decaying  Power Spectrum : Consider 
first the case of  an  exponentially  decaying  power  spectrum 
where the spectral power is concentrated  at  the  low  frequency 
extreme  of 1/T Hz and falls off  exponentially  with increasing 
frequency.  Let the power spectral density  function  be 
represented as 

PE (v) = (vT)-'.  (3-27) 

This  function is unity  at v = 1/T and falls off  at 3 q dB  per 
octave as the  frequency is increased. Using (3-24), it is a 
simple matter  to show that 

(3-28) 

where Z ( )  is the  Riemann  Zeta  function  of  the  enclosed 
argument.  For q = 1, the above function is zero. As q increases 
above one,  the  function increases monotonically  and  ap- 
proaches ET as q goes to infinity. The  dependence of the  func- 
tion q ( T )  on  the  parameter q is illustrated in Table 11. 

2) The Uniform Low-Band Power Spectrum : Consider  next 
a  power  spectrum  which is essentially uniform over the fre- 
quency  band  from 1/T G v < vo, after  which  the  power 
spectrum falls off at  an  exponential rate. Let the power 
spectral density  function  be  represented as 

P v  
1 

E (  = 1 t (v/vo)q' 
(for 1/T < v). (3-29) 

For q greater than  one this function is relatively constant 
out  to the  neighborhood  of v = v o ,  after which  the  power 
spectrum  decays at  a rate approaching 3 q dB octave  at vo. 
When the  parameter 4 is  very large, the power  spectrum  takes 
the shape  of a rectangle of  unit  height  and  width  equal  to 
V O  - 1/T. Thus, 

lim PE(v)=h(v-  l / T ) -   h ( v -  v O )  (3-30) 
q+- 

where h(x) is the Heaviside unit  step  function. 
When 4 = 1, the  standard  deviation oe(T) will be  zero as in 

the previous  example. When q = 2,  the  standard  deviation 
becomes 

> 0.72 e m ,  (for 1 < vo T).  (3-31) 

As q approaches  infinity,  the  standard  deviation  approaches 

< 1.28 E-, (for 1 < voTj'. (3-32) 

3)  The Peak Band-limited Power Spectrum : Consider finally 
a power spectrum  which rises from  an initial value (at v = 1/T)  
to some peak value at v = v o ,  and  then  decays  rapidly as v 
increases beyond vo . Let  the  power spectral density  function 
be represented as 

p E  (v) = ~v /vo )~e l - ( v~vo) ' .  (3-33) 

The above function is maximum at v = vo and falls off  on 
either side of this frequency.  The  peakedness  of  the  function 
in the  neighborhood  of v = vo is a  monotonically increasing 
function of the parameter 4.  As q approaches  infinity,  the 
function  approaches  a singular point  at v = vo. Thus,  for very 
large  values of q ,  the  power spectral density  function  can be 
represented as the Dirac delta function 

Q ( v )  = 6 (v - vo). (3-34) 

When q = 2,  the  standard  deviation Q ( T )  will  be 

<d3 e/vO (for 1 < V ~ T )  (3-35) 

where N (  ) is the integral of  the  Normal distribution function 
for  the given argument. 

As q approaches  infinity, the standard  deviation  approaches 

0 8  ( T )  = E/vo. (3 -3 6 )  

4) Summary Analysis: The results of the  three classes  of 
power spectral density  functions  previously  analyzed are  dis- 
played in Table HI1 for  convenience. 

The results demonstrate that  a gross characterization  of  the 
power spectral density Pt(v) is sufficient to permit  a  reason- 
ably accurate  prediction of the correlation degradation; par- 
ticularly, when the resulting standard  deviation ae@) is no 
greater than  about  one. (When 0 0  > 1, an accurate  prediction 
of yN is of little significance  since the resulting correlation 
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TABLE I11 
DEPENDENCE OF uo( 7‘) AND yd T )  ox P&) 

> cos(f T )  

: e-0.33rZT2 

degradation  has  reached  what  can  be  considered intolerable 
levels.) 

The  analyses clearly indicate that  the more  the power 
spectral density  of [ ( t )  is concentrated  toward  the  low  end  of 
the  frequency  spectrum,  the  more severe  will  be the correla- 
tion  degradation.  Conversely, as the  power spectral density 
becomes  more  concentrated at  the  higher  frequencies,  the 
less will be  the correlation  degradation. For power spectral 
distributions  which fall off at  a rate in excess of 3 dB  per 
octave,  the  standard  deviation oe(T) will  be directly pro- 
portional to the  integration  time T. For  power spectral 
distributions  which are relatively uniform out  to some fre- 
quency vo, after  which  they fall off at  a rate in excess  of 3 
dB  per octave  of vo , the  standard  deviation Oe(T) will  be 
directly proportional to the  square root of T and inversely 
proportional to the  square root of vo. For power spectral 
distributions  which rise at  a rate equal to (or in excess of) 
6 dB  per octave out  to some  peak  frequency vo, after  which 
they fall off at  a rate in excess of 3 dB per  octave, the standard 
deviation will be  independent  of  the  integration  time T and 
inversely proportional to the  peak  frequency vo. In these 
latter  two cases, it is  assumed that  the correlation  integration 
time is greater than  the inverse of the frequency vo . (It  should 
be apparent that as the integration  time T decreases  and  be- 
comes less than  the inverse critical frequency vo , the  latter two 
cases revert to  the first case shown in Table 111.) 

It  is reasonable to speculate that  the  nature of vehicle 
motional instability is more  nearly  represented  by  the  third 
case shown in Table 111. A transiting vehicle will generally 
undulate  about some fxed course  and  speed as a  pilot (or 
helmsman) attempts  to maintain  a  prescribed  speed  and 
heading. It is reasonable to  expect  the  frequency  of  the 
undulation to remain relatively constant over relatively long 
periods of time.  Consequently, if the  correlation  integration 
time is appreciably greater than  the inverse frequency  of 
motional  undulation,  the resulting correlation  degradation 
will be  independent  of  the  correlator  integration  time. In the 
next section, a particular example will be studied  which 

demonstrates  the  correlation  degradation as a function  of  the 
integration  time for  an idealized sinusoidal. target motional 
variation., 

IV. SPECIFIC SOLUTIONS OF THE CORRELATION 
DEGRADATION PROBLEM 

In the previous section,  the general solution to  the correla- 
tion  degradation integral was  discussed in some detail. In 
this section  the  degradation integral will be solved in closed 
form  for specific target motional variables [(t). The  solutions 
will demonstrate  a  number  of  the principles covered in  the 
earlier analyses. 

A.  Sinusoidal Target Motion Variable 
For  purposes  of analysis, consider  a target motion variable 

t(t) which is a  pure sinusoidal fluctuation  with  time,  and 
whose frequency vo may  be  treated as a  parameter. Over the 
interval 0 < t < T,  let  the  motional variable be represented as 

[(t) = A sin (271vOt - +) 

=Asin  2 - - 1  + G ) 
where + = nuo T and  where 

It  can  be  verified that t(t) is a  zero  mean variable  over 
0 < t < T with  standard  deviation  equal to  unity. 

The selected target motion variable  is a  natural  one,  and 
one that is representative of a vehicle transiting a sinusoidal 
track  with  period l/vo. This is a  natural  choice to  study, 
since any guided  vehicle  will follow a weaving path as the 
pilot (or control  system)  continually adjusts the vehicle 
heading to correct  for base course deviations. When the 
parameter + is made very  small (viz. +<< I), the time scale- 
factor variable reduces to the simple linear function. 

(4-3) 

This is representative  of linear change in speed (or a linear 
change in course) over the analysis interval T. 

Applying (2-12) and (2-13), the variable t(t) is computed 
to be 

{ ( t )  = g [T - cos (1 - 2 ;) +] A T  sin4 
(4-4) 

and 

As 4 gets small (4 << 1) the above  functions  approach 

{(t)  = [3(1 - 2t/T)2 - 11 
4 d 7  (4-6) 

and 

= T2/60.  (4-7) 
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Fig. 3. Plots of e ( t ) / e r  for selected  values of @. 

Using (3-7),  plots of O(t)/eT have been computed  for 
selected values of 4. The results are shown in Fig. 3. The 
curves illustrate  the minimal interchannel phase-difference 
error resulting from  the target motional instability. The func- 
tion reaches its lower limiting bound (Curve 1) for 4 approxi- 
mately equal to  n/4.  At  the higher values of @, the phase 
curves will  be sinusoidal in  form. 

B. Correlation  Degradation 
In  the present example, the correlation degradation may be 

solved for  directly by using the first integral representation in 
(3-9).  The  solution becomes 

where 

and 

9 b(9) = ;d+ [I - sin (29)/29]. 

The two integral functions  in  (4-8) are closely related to 
the Bessel functions. In  the particular case where @ =  
mn (vo T = m), (4-8) reduces to 

"/N(T) = J o  ( d m m )  

= J o ( d m o ) .  (4-9) 

On the  other  hand, when 9 < n/4 (voT < 1/4), the correla- 
tion degradation approaches 

cos (;x2) dx 

sin ( ;x2)  dx 

(4-1 0)  

where S( ) and C( ) are the Fresnel sine and cosine integrals 
for the indicated argument. 

Plots of the correlation degradation for selected values of 9 
are illustrated in Fig. 4. It will be observed that when the 
parameter 4 is greater than n, the correlation degradation 
decreases as 4 is increased. On the  other  hand,  the correlation 
also decreases for decreasing values of 4 below n. The limiting 
value  of the function is reached for 4 approximately equal to 
n/4.  Thus,  the lower bound on  the correlation degradation 
function is achieved when 41 = n. This fact could have been 
predicted from the earlier analysis based upon power spectral 
distribution considerations. It will be recalled that the more 
the power in [(t) becomes concentrated at the lower fre- 
quency 1/T,  the larger will be the value of the standard devia- 
tion oo ( T ) .  Consequently, as 4 = nuo T is lowered to  the value 
n, the power spectral density of [ ( t )  becomes maximally con- 
centrated at the  frequency 1/T. As 4 is further decreased 
below the value n, the spectral power of ( ( t )  is partitioned 
into the  fundamental frequency 1/T and the harmonics of the 
fundamental  frequency.  Thus,  the spectral power of [( t )  is 
spread over a wide  range of frequencies and Q ( T )  decreases 
from its maximum value. This phenomenon will become 
evident in the power spectrum analysis to follow. 

C. Power Spectrum PE(v) and  Standard Deviation oe(T) 
It will prove informative to demonstrate  the  standard devia- 

tion  oo(T) approach to the correlation degradation for  the 
specific example selected, since this  approach has more uni- 
versal application. 

From (3-201, (3-23),  and  (4-1),  the power spectral density 
of [ ( t )  may be computed as 

sin nT(v - VO) sin nT(v + vo) 
rT(v - vo) nT(v t vo) 1 (4-1 1) 

and 

when vo T # m (4  # mn). For voT = m (4 = mn) 

0 (for n # m )  

T  (forn = m )  

(4-12) 

(4- 1 3) 
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For voT<  1/4 (@ < 71/4), the  power spectral density 
approaches 

P - = 6T/7r2n2. (3 (4-14) 

Using (3-8),  (3-24), and (4-5), the  standard  deviation  may be 
computed as 

/ 2 [n2 - ( V ~ T ) ~ ]  -2 

~ ( T ; v o ) = e T  
n2  [n2 - (vo T)2  ] -2 

1 

For voT = m (@ = mr) ,  the  standard  deviation is simply 
e/uo = €Tim. And for voT< 114 (@< n/4),  the  standard 
deviation  of 6' approaches 

u e ( T ) = ~ T ~ Z ~ = n f T / ~ ~ 0 . 8 1  ET.  (4-16) 

A plot  of uo (e) as a  function  of uo T (or $/T) is illustrated in 
Fig. 5. Two curves  are shown to delineate the  influence  of 
both the  integration  time T ,  and  the  frequency vo on  the 
standard  deviation 00. 

A study  of Fig. 5 demonstrates a number  of  the  properties 
inherent in the sinusoidal target motion variable. It will  be 
noticed that  for vo fured and voT<  1/4, the value of ue(T) 
will  be proportional to the correlator integration  time T. This 
was predictable since the  power spectral density  of [ ( t )  falls 
off  at  a rate inversely proportional to the  square  of  the fre- 
quency (see Table 111). The  correlation  degradation increases 
with  increased  integration  time up  to  the  point where T 
becomes greater than l /vo.  After this point,  the correlation 
degradation levels off (oscillating slightly about some fixed 
value)  as T is further increased. When T is much greater than 
l / v o ,  the value of ( T )  will be (essentially) independent  of 
the  integration  time T. This was  also predictable since the 

power spectral density  of [(t), given in (4-11) or (4-12), fits 
the general characteristics of  the  third curve in Table 111. 

For a fixed  integration  time, the dependence  of q ( T ;  vo) on 
the frequency vo is given by  the  broken  curve (Fig. 5). This 
curve  shows that maximizes for vo = 1/T as  discussed 
earlier. At this  frequency  the spectral power in [(t)  is maxi- 
mally  concentrated  at  the  frequency 1/T. 

The above example clearly demonstrates  the applicability of 
the  power spectral density  approach to determine  the  standard 
deviation  of  the phase function 8 (t). The  merit  of using uo to 
predict  the  correlation  degradation  should  be  evident  from  the 
earlier  analyses. 

D. Target Motion Step Function 

As a  second specific example,  consider that  the target 
motion variable [(t) is a  step  function,  where  the  step  occurs 
somewhere in the interval 0 < t < T. That is, let 

(It can be readily verified that t is a zero  mean variable with 
unity variance.) Such  a  function  represents  a  fixed  change in 
the target speed (or course) in the  situation where the  time 
required to effect the change  is  small compared  with  the 
integration  time T. In this situation, q, in (2-8) or up in (2-9) 
is simply  equal to 

(4-1 8 )  

(4-1 9 )  

where Av and Ap represent  the  step  changes in speed and 
course, respectively. 

Following the procedures  instituted in the earlier analyses, it 
can be verified that 



10 IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING,  VOL. ASSP-26, NO. 1, FEBRUARY 1978 

I. 2 
1 I I I I I I I I 

0.1 

0 I I I I I I I I I 
0 0 5  I I .5 2 2.5 3 35 4  4.5  5 

u.T= + / T  

Fig. 5. Plot of q ( T )  as a function of Tand V O .  

(4-20) 

and 

Q(T;  = 71 4 F 7 F  ET 

= (“1 - P) f ’ T  (4-2 1) 

where E ’  = € / d m .  The parameter E ‘  is the significant 
parameter (in this case) since, from (4-18) and (4-19), a direct 
substitution of the  magnitude of the step change can be made 
for the standard deviation in the parameter E .  

The maximum value  of 9 ( T ;  p) occurs for 1.1 = 0.5. Thus, 

(T~,, ,(T) = - E’T X 0.45 E‘T. 
71 

4&- 
(4-22) 

Since p may take  on values from 0 to 1 with equal proba- 
bility, the mean or expected value  of the standard deviation 
will be 

(4-23) 

From (4-20) it is evident that f3 will be uniformly distributed 
over the range  of 0 = fp(1 - p)m’T. Consequently, 

yr(T;p) = sin [p(1 - p ) m ’ T ] / p ( I  - p ) m ’ T .  (4-24) 

The  expected value of the correlation coefficient is therefore, 

(44-25) 

E. Variable Geometry Problem 
In  the earlier analyses, the variation of the system geometry 

with target motion  has been assumed to be negligible. The 
basic problem had been  formulated  on  the  assumption that 
only the target course and speed were variable. It will now be 

well to study the correlation degradation due to variations in 
the system geometry resulting from the target motion. For 
this analysis, the target course and speed will  be assumed to be 
constant. 

From  (2-6) and (2-7) it can readily be shown that  the time 
scale-factor shift due to the variation in system geometry may 
be  approximated as 

(4-26) 

when uo T << R, or R,. (That is, when the distance traveled 
by the target over the analysis interval Tis much smaller than 
the distance from the target to  both of the  two receiving 
sensors.) In  the preceding equation,  the velocity units are in 
knots,  the range units are in nautical miles and the units of 
time are in seconds. 

If now,  the target speed uo and the target course are 
assumed constant,  the time scale-factor shift can be reduced to 

6 2 (vo IC) sin + a  sin cpo 

+ 
7200 G c  

(4-27) 

where 

t(t) =+%m(t/T) - 11 * (4-28) 

(The third  term  in (4-26) has been dropped since, in general, 
this  term is much smaller than  the second term and will con- 
tribute negligibly to  the correlation degradation.) 

It will  be noted  that E(t) (in this case)  is identical to  that 
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given in (4-3). Consequently, the solution for { ( t )  will be that 
given by (4-6). 

For convenience,  a  parameter eo will be  defined as 

where 

VO is the target speed in knots; 
fc is the  center  frequency  of  the target source in Hz; 
C is the mean  propagation  velocity in knots; 
R,,R, are the ranges of  the target to the respective  re- 

ceiving sensors in nautical miles; 
P is the angle of  the target course (see  Fig. 1); 
pox, Po, are the angles of  the propagation  path  from the 

target to  the respective receiving sensors (see 
Fig. 1). 

Following  the  procedures  instituted in the earlier analyses, it 
is a simple matter  to show that 

0 ( t )  = - ( E O T ) ~  
2 G  

n 

O,g ( T )  = - ( E O  T)2 X 0.8 1 (eo T)2  
n 
0 

and 

(4-30) 

(4-3 1) 

(4-32) 

where S( ) and C( ) are the  Fresnel sine and  cosine integrals 
for  the indicated  argument. 

It will be  noted  that (4-3 1) and  (4-32) have the same form as 
(4-16)  and  (4-10)  with ET being  replaced by (EO  T)2 .  A plot  of 
the resulting correlation  degradation as a  function  of EOT is 
given in Fig. 6 .  It will  be noted  that  the correlation degrada- 
tion increases rapidly for values  of eo T greater than  about 0.9. 

In any practical problem,  the  combination  of  the variable 
geometry  (due to the  mean target track)  and target motional 
anomalies will both be  present to cause phase correlation 
degradation. To obtain  an  estimate  of  the  combined effect on 
the  correlation  degradation,  one  need  only  incoherently sum 
the phase  standard  deviations  for  each  of the individual con- 
tributors.  Thus, 

0,g ( T )  = Jd1 (TI t 0 8 2  (TI- (4-33) 

The resulting standard  deviation for  the  phase  error  may  then 
be  used with (3-15) or with Fig. 2 to obtain an estimate  of the 
correlation  degradation for  the  combined  distortion  inducing 
mechanisms. 

V. OPTIMIZING THE CORRELATOR INTEGRATION  TIME 
With the  solution  of  the  correlation  degradation integral, the 

question arises  as to what  integration  time  would  be suitable 
or  optimum  when  correlation processing  is to be employed in 
a practical problem.  Since  degradation is never a desirable 
result,  one  would  be  motivated to keep the integration  time 

-4 -3 I‘- 
-5 I -6 

-10 1 

- 13 

-15 

\ 1 
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€ 0  T 

Fig. 6 .  Plot of ~ N ( T )  as  a  function of COT. 

small to minimize  the  correlation  degradation  due to target 
motion  anomalies.  On  the other  hand,  the use of  a large inte- 
gration  time is desirable from  the  standpoint  of  detection 
sensitivity and  motional  parameter resolution. Since  detection 
is probably  the  most critical factor in most practical applica- 
tions  of  correlation  processors,  the  maximization  of signal 
processor gain  is the  one  which will be  addressed in this  report. 

A. Maximizing the Signal  Processing  Gain 
It is  well known that  the processing  gain of  a signal  cross 

correlator is directly proportional  to  the  square  root  of  the 
correlator integration  time.3  Consequently,  there is ample 
motivation to increase the integration  time  of  the  correlation 
processor to the  point where any  further  improvement in pro- 
cessing  gain  (achieved by  increased  integration  time) is offset 
by  the degradation  due to the target motional effects. Based 
upon this philosophy, it would  appear desirable to maximize 
the processor gain function 

where c1 is a  proportionality  constant. 
On  the  other  hand,  detection  enhancement  can also be 

achieved through  postcorrelation  integration  (nonphase 
coherent) processing  of the correlation  processor output. 
Though not as sensitive, postcorrelation  summation is also 
time  dependent.  The gain  achieved through  postcorrelation 
integration  of  the  correlator output will generally be pro- 
portional to  the  fourth  root of the  ratio  of  the  total processing 
time to the  correlator (or coherent)  integration  time.  For  a 
total processing time  (coherent  and  incoherent)  of T1 s, then, 

3See for example, A. A. Gerlach,  “Theory and Applications of 
Statistical Wave-Period Processing,” Vol. I, Gordon & Breach  Science 
Publishers Inc., Ch. 3, p. 127, (3.11-31); 1970. 
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the overall processing gain would be 

G~(T)=c~(T~/T)~/~T”~~N(T)=c~(T~T)~~~~N(T). 

(5-2) 

In this  situation,  optimum results will  be achieved by 

In the interests of generality, let  the processor gain func- 
choosing the integration time T which maximizes (5-2). 

tion be 

G(T) = co T4YN(T> (5-3) 

where the decision on  a suitable choice for q can be deferred 
until  the time of application. The procedure will therefore 
be to find the value of T which maximizes (5-3). A suitable 
approach is to solve the  equation 

d 
dT 
- G(T) = 0 

for T. Carrying out  the indicated operations given, 

(5-4) 

(5-5) 

Since YN is a  monotonically decreasing function of a0 , and 
since the  form of Q(T) is known to approximate (over, at 
least, a portion of the range of T) 
q(T)  =aTP (5-6) 

it will  be convenient to solve (5-5) in  terms of the phase 
standard deviation oe(T). 

From (5-5) and (5-6) then, 

d y l v + q Y N - O  (5-7) 
do0 P 0 0  

Using the functional  bounds  on YN given in (3-15) the solu- 
tions to (5-7) are readily determined to be 

00 =m (5  -8  a) 

and 

a0 tan o0 = q / p .  (5-8b) 

A plot  of,the above bounds on ae(T) as a function of the ratio 
q/p  is shown in Fig. 7. For representative choices of q and p ,  
the optimum choice for ae(T) will range from  0.35 to  about 
0.8. 

It should be noted  that  the preceding procedure  for  deter- 
mining an optimum u0 is predicated on the relation given  in 
(5-6). Since this relationship may be  valid for only  a limited 
region of  the parameter T, the resulting processing gain (thus 
derived) may be only  a localized maximum. One is therefore 
cautioned to examine the behavior of oe(T) over  an extended 
range of values of T to see whether the localized maximum is 
equaled or exceeded at larger values of integration  time. 

B. Sensitivity of the Processing Gain to IntegratioM Time 
The purpose of the present analysis is to find the  optimum 

integration time for  a  correlation processor from the stand- 
point of maximizing the overall detection processing gain. 
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Fig. 7. Optimum standard deviation ug(T) as a function of the 

ratio qlp .  

Although  the procedures for accomplishing this objective have 
been developed, the true value of these procedures will  be 
dependent  on  the sensitivity of the processing gain to  the 
correlation integration time.  The reason for this is that  the 
optimum  integration time is dependent  on  a  number of uncon- 
trollable parameters (target location, speed, course, motional 
behavior, etc.) which are neither  known precisely nor  station- 
ary with time. Consequently, the determination of the  opti- 
mum  integration time will (in many situations) be  a best esti- 
mate, based upon limited knowledge about the relevant param- 
eters involved in  the  optimization equation. Therefore, it will 
be worthwhile to study  the sensitivity of the processing  gain 
as a  function of the correlator  integration time to determine 
the effect of imprecisions in  the selection of this processing 
parameter. 

From (5-3) the signal processing gain can be normalized to 
unity for  the  optimum choice of integration time. Thus, 

GN(T) = (T/TO>*YN(T>/YN(TO) (5-9) 

where To is the optimum  integration time for  the  correlator 
processor. (For a given standard deviation function oe(T), 
the value of To may be determined using the relations derived 
in  the previous analysis.) 

For purposes of the gain sensitivity study,  two of the earlier 
examples have been chosen where the  standard deviation 
oO(T) is first directly proportional to T and then  to T2 ( p  = 1 
and 2). Equation (5-9) has been computed  in each case for 
values of q equal to & and 3. The results are shown in Fig. 8. 
The upper graph [Fig. 8(a)] illustrates the case where oe(T) is 
directly  proportional to  the integration  time, and the lower 
graph [Fig. 8(b)] illustrates the case where Q(T) is propor- 
tional to  the square of the integration  time.  From these curves 
it is evident that the processing gain is more highly sensitive to 
the integration time when Q ( T )  is proportional to  the square 
of T. The sensitivity is also greater for the higher value of q 
(when p is held constant). In any case, the processor gain 
sensitivity is sufficiently low so that a reasonable error  in the 
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Fig. 8. (a) Standard  deviation ae(T) proportional to integration  time: 

a&")= 0.81 ET. (b) Standard  deviation  proportional to square of 
integration  time: q ( T )  = 0.81 (~02')~. 

estimate  of E (or eo) can be  made  without suffering an in- 
tolerable loss in system processing  gain. For  a 1 dB  loss toler- 
ance in processing gain, the variation in ET can  range from 
about +44 percent (4  = 3) to  about +60 percent (4  = i), in 
the case  where ue(T) is proportional to T.  For  the  other case, 
the variation in eo T can range from  about +34 percent (q = 3) 
to  about 49 percent (q  = i), under  the same  loss restriction. 

VI. CONCLUSIONS 
Correlation signal  processing has  proven  its value in a  number 

of practical applications involving motional target vehicles. 
Although generally  successful  over temporal limits of integra- 
tion  which are relatively short,  little was known  about  the 
maximum  integration to which  coherent signal  processing 
could be usefully applied. The  subject  paper  addressed this 
problem  from  the  standpoint  of  the  correlation  degradation 
experienced as a result of  the target motion.  The  expected 
correlation  degradation was determined to be a  complex  func- 
tion of 1) the  correlator  integration  time, 2) the  mean fre- 
quency of the  source signal, 3) the source-sensor  system 
geometry,  and 4) the  nature  and characteristics of  the target 
motion. 

Two important aspects of the target motion were found 
significant. These were the mean target track relative to the 
source-sensor  geometry,  and  the target dynamic instabilities 
relative to the  mean track. The  mean target track  induces 
correlation degradation as a result of  the  systematic changes in 
the  source-sensor  geometry over time.  This  degradation 
increases severely with  correlator  integration  time  for  the 
higher value of  integration  time (see  Fig. 6 ) .  This  phenom- 
enon creates an  absolute  upper  bound on  the  useful  coherence 
integration  time  which  can  be  employed in any  physical 
system. 

Regarding the target dynamic instabilities, the  induced 
correlation  degradation was found to be dependent  on  the 
standard  deviations  of the target course and/or speed,  and  on 
the spectral distribution  of  these  dynamic deviations. The 
correlator  degradation is most severe when  the spectral power 
(of the  dynamic  deviations) is highly  concentrated  at  the 
lower  frequency  of 1/T Hz (where T is the  correlator integra- 
tion  time).  Conversely,  the  correlator  degradation  becomes 
less  severe  as the spectral power  becomes  more  highly  concen- 
trated  at  the upper  frequencies (see Table I11 and Figs. 4 and 
5) .  When the spectral power  has  a  lower  bound limit of vo Hz, 
the correlation  degradation will become essentially bounded 
(independent  of  the  correlation  integration  time) as T becomes 
greater than  about l / v o  s (see  Table I11 and Fig. 5) .  

The selection of an optimum  integration  time  for  a correla- 
tion  processor was investigated from  the  standpoint  of  maxi- 
mizing the  processor gain for signal detection in an incoherent 
signal background.  Examples  of  the  optimum relations are 
plotted in Fig. 8. The sensitivity of  the  optimum relations is 
sufficiently low so that  a reasonable  error in the  estimate  of 
the  system  parameters  can  be  made  without suffering an 
intolerable loss in system processing  gain. 

In summary, it can be concluded that target motion poses  a 
fundamental limitation on  the  useful  integration  time  for 
correlation  processors. 

APPENDIX 

MOTION INDUCED  TIME  SCALE-FACTOR  DISTORTION 

When a signal source is in motion in a  transmission  media, 
the ideal signal  received at  a  remote  sensor in the medium will 
be a  distorted replica of  the  source signal. The received  signal, 
in this circumstance,  can  be  represented as the original signal 
whose time scale  is transformed (or distorted) in a  manner 
which is functionally  dependent on  the  source  motional 
dynamics. 

Fig.  A-1 depicts the general system  geometry  under  consider- 
ation. The source o is proceeding along a target track while 
transmitting  a signal p(t). An observer, at position x, will 
receive a signal p,(t) which is dependent  on both the signal 
p(t)  and  the target motional  dynamics.  The  problem being 
addressed is to determine  the signal p,(t) and to show that, if 
we ignore signal attenuation  and translation (time delay), the 
received  signal can be  written  simply as u(kt), where  the  time 
scale-factor k can be defined in terms  of  the  system  geometry 
and  the  motional  dynamics  of  the source. 

Differential Time Approach 

Consider first the differential time  approach.  Aboard  the 
moving vehicle, the  source signal  will change  from u( t )  to 
u(t  t d t )  over the differential time d t .  At the receiving sensor 
X, the  time differential for  the same change in  the received 
signal (ignoring  attenuation  and  time  delays) will  generally 
be compressed  or  expanded  due to the  component  of  source 
motion along the  transmission  path.  Thus,  the differential 
time d t  will be  transformed into  a differential time d(kt) .  The 
time scale-factor k will  be functionally  dependent  on  the  com- 
ponent of velocity u, (see Fig. A-1).  From the figure, it is 
evident that 
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X 
SIGNAL ux ( t  1 

Fig. A-1. System geometry. 

d(kt) = kdt t tdk = (-41) 

or 

It is convenient to write k ( t )  as 1 t S ( t )  where 6 ( t )  is the 
time scale-factor shift variable. Consequently, 

6 =+I: dt .  

The time scale-factor shift is, thus, a  form of running time 
average of  the function vx/c. 

Time Delay Approach 
A second approach to the  problem, which more clearly 

Referring to Fig. A-1 and ignoring propagation loss, it is 
defines the boundary  conditions, will now be presented. 

clear that  the received  signal ux( t )  will  be 

where R,(t) is the propagation range from the source to  the 
receiving sensor and c is the average propagation velocity along 
the transmission path. 

From Newtonian mechanics, the range variable may  be 
written as 

where t o  represents an arbitrary time along the source mo- 
tional  track,  and Rx( to)  is the  state variable associated with 
the choice of the initial time to .  The functional argument in 
the right-hand side  of (A4) may  therefore be written 

kt - To = (1 + 6 ) t  - To 

Jto c C 

Thus, it is evident that, if  we ignore signal attenuation and 
delay time,  a moving source signal u( t )  is transformed into a 
temporally  distorted replica u(kt)  at the receiving sensor 
where 

The choice of the initial time to i s  arbitrary and is reflected in 
the time delay state variable Rx(to)/c. Stated another way, 
this implies that one may arbitrarily choose (or thumbtack) 
the initial reference time for the source function. This then, 
gives the  time delay state Rx(to)/c as an initial or boundary 
condition.  Subsequently, no  further change  in this time delay 
value is required if one correctly utilizes the time scale factor 
variable. As a consequence, if the source dynamics or mo- 
tional variables are known precisely beyond an initial time to, 
one may correlate any known source signal  over an indefinite 
period of time without further need to re-reference the time 
delay alignment. The general form of the time scale-factor 
shift variable  is simply 

t 
a = + [  U”d7 C 

where a is an arbitrary  constant. 
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A Fast Fourier  Transform (FFT) 
Processor 

Based Sonar  Signal 

ROBERT C. TRIDER 

Abstract-The design for  a  convolution  processor is presented, which 
employs  a single  highly  parallel implementation of the  fast  Fourier 
transform  (FFT)  algorithm.  This processor is eminently  suited  for 
real-time  matched filtering of coded signals encountered  in  sonar sys- 
tems. Computer  simulations have shown that this processor,  which 
uses fixed  point  arithmetic  and  modest word  sizes, can efficiently 
handle signals with  multiple  targets  and  relatively large Doppler shifts. 
The parallel architecture  provides  a  throughput  rate  sufficient  for 
computing both forward  and inverse transforms in the  one processor. 
The  system is flexible  permitting  frequency  domain  adaptive  beam- 
forming,  attractive  in  many  sonar  applications. 

INTRODUCTION 

T HIS paper  presents  a design for  a signal  processing system 
which  has  the  speed  and versatility to handle  a wide  vari- 

ety of  underwater  acoustic  research  systems.  The design ap- 
proach is  novel in that a fixed  point  highly parallel fast Fourier 
transform  (FFT)  structure is employed.  This  approach differs 
from that  reported in radar  applications [l] , [2] where a 
cascaded pipeline structure is used. The  parallel  design  is 
feasible because  of significant differences between  sonar  and 
radar signal  processing requirements.  The  differences  allow 
the same processor to be used in both forward  and inverse 
transform  modes  and  permit  frequency  domain  techniques 
to be used in beamforming  and signal filtering. 

The basic requirements  of  the  processor are beamforming 
(the  combining  of  various  element outputs in the  hydrophone 
array to form directional receiving beams)  and signal filtering. 
In passive sonar applications this filtering is primarily  narrow- 
band spectral analysis.  Active systems also depend  on similar 
spectral analysis when  long CW tones are transmitted as  in 
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Doppler sonars. In addition, when coded  waveforms are used, 
such as linear frequency  modulated (LFM)  pulses, the  proces- 
sor must  carry out matched filtering or correlation  detection. 

These  same basic requirements are common to radar  and so- 
nar,  but  the practical differences are sufficient to support  quite 
different processor design philosophies. For example,  the  time 
bandwidth (TW) products  which  can be supported  by  the  under- 
water  acoustic  channel are approximately  one  order  of mag- 
nitude less than  employed in radar. A practical TW limit of 
about  200 is implied  from  various  channel  measurements [3]. 
Experiments have shown  maximum  coherence  bandwidths  of 
200 Hz and  coherence  times  of about 1 s to be typical of  open 
ocean  conditions  at  usual active sonar  frequencies. 

Another significant difference is the relatively large Doppler 
shifts encountered in sonar. Even with relatively Doppler- 
tolerant signals such as  LFM,  several replicas must  be used in 
the correlation or  matched filter receiver to span  the  antici- 
pated range of target speeds. 

It  has  therefore  been possible to exploit  the  advantages  of a 
fast, parallel structured FFT as the  central  part  of  the  proces- 
sor. The inherent  advantage  of basing a  general-purpose signal 
processor about an FFT is the simplification and processing 
freedom that exist when  signals  are  in the  frequency  domain. 
Beamforming and  matched filtering use a  number  of identical 
arithmetic  operations.  Likewise,  beamforming  and  matched 
filtering coefficients are  simple arrays of  complex  numbers 
which can  be changed easily to handle  different  hydrophone 
arrays  and  transmitted waveforms. 

Adaptive  beamforming is also  easily  realized in the frequency 
domain  through  dynamic changes in the beamforming coeffi- 
cients. Such  adaptive  techniques are of  interest in sonar  be- 
cause of the frequency  dependent directional characteristics 
shown  by noise and  reverberation. 

In  order to take  advantage  of the frequency  domain in this 
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