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Improved Spherical and Hemispherical Scanning 
Algorithms 

Abstmct-A probe-corrected  hemispherical-scanning  algorithm  has 
been developed which is applicable when  the antenna under test radiates 
negligibly into its rear hemisphere. For a  hundred-wavelengths  diameter 
antenna, hemispherical  scanning  would  be about three  times  more 
efficient  computationally than  prior  full-sphere  scanning algorithms. 
Improvements  have also been made to full-sphere  scanning,  significantly 
increasing  that  algorithm’s computational  efficiency. 

A 
I.  INTRODUCTION 

THEORY OF HEMISPHERICAL scanning to obtain the 
far-field radiation pattern of  a large class of antennas that 

radiate negligibly toward their rear hemisphere is developed. 
For such antennas, full sphere scanning is possible but 
undesirable, since the rear hemisphere data is  essentially 
noise. Our theory of hemispherical scanning parallels full- 
sphere scanning [1]-[3] in that  we transform discrete sets of 
probe-corrected near-field measurements into far-field pat- 
terns. However, only data points  on  a hemisphere, which is 
part of a sphere enclosing the test antenna, are used  in the 
analysis. Consequently, the computational effort to obtain the 
far-field patterns is reduced proportionately. 

Since spherical scanning is an integral part of hemispherical 
theory, we reexamine full-sphere scanning and  adopt  a  number 
of improvements. Some  conceptual  and  mathematical  simplifi- 
cations are introduced, leading to a significant reduction  in 
computational effort. Combined  with  the savings inherent in 
hemispherical scanning and for antennas larger than 50 
wavelengths across, we achieve a reduction  in  computational 
effort by a factor of between 2.75 and 3.5, depending  on 
antenna diameter. 

The outline of this paper is as follows. In Sections II and III 
we examine details of full-sphere scanning. We review the 
prior developments [2], [3] in  Section 11 and outline current 
improvements in Section III. In Section IV we develop the 
theory  of hemispherical scanning. In Section V we estimate 
the  total  computational savings incorporated in our proce- 
dures. In addition, Appendixes I and It provide some 
mathematical details and derivations of full-sphere scanning 
theory to complement the main text. 
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II. SPHERICAL SCANNING FORMALISM-A BRIEF REm 
A  method  of spherical scanning analysis was originally 

formulated by Jensen [l]. In his analysis, as well as in this 
work, multiple reflections between the probe and  test antenna 
are assumed to be negligible. Following Jensen’s formulation, 
Wacker [2] proposed the use of fast Fourier transforms 
(FFT’s) and “circularly symmetric” probes to  make the data 
processing effort tractable. Circular symmetry implies that  the 
probe receiving pattern can be described in terms of cos x and 
sin x azimuthal dependence. As  a  consequence of these 
simplifications, the general mutual coupling equation  between 
a  test antenna and  a probe, which  is derived in  a  companion 
paper [4] by one of  the authors, reduces to 

W ( 4 ,  0, X )  =y 9 ’ eimQdn m p  (6) 
n - 1  m = - n  p = - l  

s= I 

where W(4,8 ,  x) is the signal received by the probe. Here, 4, 
0, and x denote the Euler angles [5] describing the angular 
orientation of the probe relative to the test antenna’s coordi- 
nate system, the prime on the p summation indicates  that the 
term p = 0 is omitted, N - 1 is the  number of significant 
spherical modes  in  the radiation pattern of the test antenna, the 
constants 8”” denote the unknown  modal expansion coeffi- 
cients of the field radiated by the  test antenna, and Rip,, 
denotes  known translated probe receiving coefficients. The 
d;JB) are rotation coefficients expressible in terms of 
associated Legendre functions and are defined in Rose [5,  ch. 
41. The functions containing the Euler angles in (1) express the 
effect of rotating the probe with  respect to the test antenna. 

The analysis of (1) to obtain  the  unknowns Q”” from 
adequately  sampled discrete data W(4, 8,  x) proceeds as 
follows: we interchange the order of the n and m summations, 
so that (1) becomes 

w(4, e, x)= .T ’ W;(e)ei(mO+px), (2) 
1 

m = - N + l  p = - I  

where, for each m and p ,  
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andn = (1, ImI)selectsthelargerofl, Iml astheinitialn 
value. The Fourier coefficients W&@) in (2) and (3) are 
determined using  known orthogonality relations for Fourier 
series. Then the orthogonality relation [5], [6] 

is  used to obtain from (3) the sum 

forp = k 1 , m  = -N+ 1 t o N -   1 , a n d n  2 (mloverthe 
range n = 1,2,  * - , N - 1 .  Assuming that the integral on the 
right-hand side has been evaluated for all indices, we  then 
have two equations (for p = & 1) for each n, m to solve for 
Q""(s = 1 , 2). The far-field pattern r(4, 8, x) of the test 
antenna is then  obtained  by substituting the noy known Q"" 
coefficients into (1) and replacing I? ' with I?&, which are 
far-field ideal-dipole 'receiving coefficlents expressed in the 
test antenna's coordinate system. 

To evaluate the integral in (4), the procedure [2] has been to 
express dzp(8) as [6] 

Sfl. 

where A;,K = d;, I (n/2)  for K = my p .  (Note that Edmonds 
[6] follows a  slightly different convention for d;p(fl), but (5) 
still holds if the A;,K are consistently redefined.) Then from 
(3) we  can express W&(O) as the finite Fourier series 

The Fourier coefficients WT,, are obtained from the measured 
data. The integral (4) is converted into a finite double series 
containing terms that can be integrated analytically  and  then 
summed to give the desired result. In the next  section  a new 
method  of evaluating this integral is developed. 

m. SOME NEW DEVELOPMEWS IN FULL-SPHERE SCANNXNG 
Our overview  of  spherical-scanning up to this  point has 

followed  the development suggested by Wacker [2]. A part of 
his procedure was to substitute ( 5 )  and (6) directly into (4) to 
evaluate the integral. However, a  computational  simplification 
is achieved by first expressing d; +, (e) sin 8 in terms of 
d;,(B), where the latter is  propohonal to the associated 
Legendre function P;(cos e). Thus, making use of the Fano- 
Racah recursion relations [7] for d;p(8) and recursion 
relations between contiguous Legendre functions [8], we 

obtain 

- 1  

n(n + 1) 
d; sin ,- 

and 

* d s'(0) - (n + l).\/(n + m)(n - m) d :;'(e). (8 )  

Consequently, substituting (7) and (8) into (4), the integral 
becomes 

z;p=nd(n+ 1)2-m2V::l 

- (n + l ) J z 2  v:::_., +mp(2n + 1) v;., (9) 

where Z? is the right-hand side of (4) multiplied by h w )  
ip-", and 

1 

2 
V;F E - i - m - 1  w;(e)d;,(e) de. (10) 

0 

The middle term in (9) is zero unless m < n. 
The procedure used to evaluate the V F  integrals is the same 

as that  outlined in the last paragraph of Section II. However, 
we  use the complex conjugate of (5) in (10) to simplify our 
final result (note that d;p(0) is a real function [5]-see 
Appendix II). Moreover, since A; ,, is zero when n - m ' is 
odd, the series representation of d;,(B) via (5) reduces to n + 
1 terms instead  of 2n + 1. For a  given p and m # 0, and n = 
I m I , two integrals of the type in (10) need to be evaluated 
(three for m = 0). But for subsequent n in the range I m I < n 
< N - 1  only V;; is evaluated. Consequently, I F  for n > 
(1 , I m I) is obtained by computing half as many terms as in 
(4). A similar simplification occurs in the computation of the 
far-field pattern r(4,  8, x) using (1) with (5) and (7). 

To obtain d L ( 0 )  via ( 3 ,  we wish to calculate only nonzero 
products of A:, , A: , m .  A three-term backwards recursion 
relationship specifying the nonzero products can be derived 
using linear combinations of formulas in [9] or [lo]. The 
initial conditions valid for fixed n 2 m 2 0 are 

AL2,0Ai+2,m=O 
and 

Starting with the earlier three-term recursion relations one can 
show 
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for all 2 5 m' 5 n. Form'  > Othe magnitudes  of  the terms 
calculated in (1 1) increase as m ' decreases, so the numerical 
stability of ( 1  1) is guaranteed by the theory  of three-term 
recursion relations [ 1 11. 

This completes our overview of the theory of full-sphere 
scanning.  In  the  next  section  we  present a discrete data-point 
formulation for hemispherical scanning. There, part of the 
W;(8) data is shifted  and  then  combined  with an unshifted 
part so that  the complete 8 range 0 < 8 < a contains 
nontrivial data. Our improved full-sphere algorithm is utilized 
to process this combined data, resulting in combined  far-field 
Fourier-transform coefficients. From this it  should  be obvious 
that a discrete data-point algorithm for full-sphere scanning 
falls out  simply from the subsequent presentation. 

IV. HEMISPHERICAL SCANNING 

We have pointed  out  in the Introduction that there exists a 
class of antennas that radiate primarily into one hemisphere. 
All the  mathematical formulas discussed up until now apply 
well to this class of antennas. However, we  can take advantage 
of the fact that  radiation into the back hemisphere is essentially 
negligible. One can rearrange data according to the rn index so 
the full sphere is covered. This is  accomplished by using the 
symmetry  relation [6], d"m,p(8 + a) = (-)n+*d&(8),  
which allows us to think  of terms with  negative m indexes as 
data appearing in the back hemisphere. Consequently, the 
positive  and  negative  rn-index data can be  combined in a single 
equation to cover the whole sphere, 

N- 1 

w;(e)+ wcm(e+a)= d;Je) 
n=(l , lml)  

* (emn + ( - ) n + m p - m , n  > q p n .  
s= 1 

Now we can carry out the full-sphere algorithm just  as before 
using the sum on the left as the known data to obtain a 
corresponding sum of far-field Fourier coefficients. Since 
different m-index quantities are not coupled by the  near-to far- 
field transformation, the individual far-field quantities @;(@ 
and @ym(8 + a) are readily discernible from their sum 
according to which hemisphere 8 is in. Therefore, restricting 
rn to  just positive integer values  (thereby  reducing  the 
parameter range by one half) will  in fact produce the  far-field 
quantity @;(e) for all rn, from which the far-field pattern 
@(4, 8, x) is obtained. 

If we combine the improvements to full-sphere scanning 
analysis presented  in the previous section  with the ideas 
outlined  in the paragraph above, we  can  analyze hemispherical 
data in  an efficient manner. This procedure applies provided 
the axis of the hemisphere coincides with  the polar axis  of  the 
measurement sphere.' The details will  now be presented. 

Since we have assumed, via (l), that the signal received by 
the probe is virtually bandlimited, our algorithms admit either 

' For  the case where  the  radiation  pattern  is  concentrated  near  the  equator, 
one can utilize the  technique [12] of setting  the  Fourier  coefficients W;(O) to 
zero  for m odd  as  though  the  data in the  interval - ?r/2 < 4 < ?r/2 were 
replicated in the interval ?r/2 < q5 < 3u/2. 

a continuous or discrete formulation. We present the discrete 
formulation for ease of computer implementation. 

The range on the spherical angles for the measured data is 0 
5 8 5 a, 0 5 4 < 2a. However, by assumption, data in the 
range a / 2  5 8 5 a is negligible in comparison with data in 
the range 0 5 8 < a12. Now we assume that the received 
signal, W(4,8, x), is known at discrete lattice points  and #I, 
on the surface of the measurement hemisphere for two probe 
rotation angles, x, separated from each other by 90". We now 
have  sufficient information to evaluate the  unknown Qsmn 

coefficients  in (1). For each 8, on the hemisphere we  can write 
discrete Fourier transforms OFT'S) of  the  received  signal  in #I 
and x as 

1 2 M - 1  

w ; ( K A e ) = -  x { W ( / A $ ;  KA8, x=O") 
4 M  / =o  

- i p w ( Z A $ ,  KA8, ~=90"))e-'"''~* (12) 

where A8 = a / N ,   A 4  = a/M, and M 5 N ,  depending  on 
how  rapidly the radiation pattern varies with 4, K = 0, 1, - -, 
N / 2  - 1 , m  = - M +  1, - M +  2,  - - - , M -  1,andp = 
t 1. 

To Fourier transform the data in 8 we  must  specify 
wk(KA8) over the range - a 5 KA8 5 a. We define a new 
spherical coordinate system such  that - a 5 8 5 a, 0 5 4 < 
a and  use  the fact that coordinates 8, #I + a in the old  system 
transform to - 8, #I in the new system. Hence, W(4,  - 8, x) 
= W(#I + a, 8, x + a). Consequently, using (12), we  can 
show  that 

w ; ( - e ) = ( - ) m + w ; ( e ) .  (13) 

Equation (13) specifies how data in the range - n/2 < 8 < 0 
is defined  in terms of data in the range 0 5 8 < d 2 .  This 
effectively doubles the range on K over that  in (12).  Now  by 
assumption data outside the range - a/2 < KA8 < a12 is 
equal to  zero.  We obtain nontrivial data over the full range on 
K and in the process halve the  number  of 8-FFT's that  need to 
be summed by doing the following: we shift the data 
wcm(KA8)  by a radians and combine it  with W;(KAO) (which 
is  unshifted). In this combination, for a given K specifying an 
angle 8, either W;(KA8) or W ~ , [ ( K  + N ) A 8 ]  will  be equal 
to zero. Taking the DFT of this sum  we  obtain for 0 5 rn " 5 
N ,  0 5 m 5 M - 1, andp = t l  

1 2 N - l  

(wz'i +(-)"" w,?')=- { wL(KA8)  
2 N  n = O  

+ W k m [ ( ~ + N ) A 8 ] } e - ' m " " A B .  (14) 

We  simultaneously evaluate these DFT's by pairs, combining 
an  even  and  odd m DFT into a single DFT, as outlined in 
Appendix I. 

The evaluation of the V;" integrals ((10)) requires that we 
obtain W:,, for - N  + 1 m" 5 N - 1. We extend the 
range  on m " from that in (14), using the Fourier transform of 
(13), to obtain 

wy;-*,/ = Wrnk,, = ( - ) m + l w " *  m r r  . (15) 
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The solid line over the two Fourier coefficients in  (14) 
designates ha t  the quantities cannot be separately resolved. 
However, we can use the combined quantities in the series 
representations of two Vy integrals 

N- 1 

' ((3:: - ( - ) m f G I Y P ) =  x ' ~ , r [ l - ( - ) " " + ~ ' ]  
m" =O 

(17) 

In (161, the ranges 0 5 m < M ,  m s n < Napply with p = 
f 1. The prime on the m " summation  in  (17) indicates that 
terms of the form 0/0 are omitted, and E ,  = { l/i;z!. Equation 
(16) represents the double series expansion for evaluating the 
integrd expression. (lo) when its positive and  negative m- 
index versions are combined as indicated. In arriving at (17), 
we combined duplicate terms and terms that cancel each other. 

The individual coefficients on the left-hand sides of (14), 
(16), md (17) could be separated by formulating a  second 
equation  involving the differences rather th& the sums of the 
indicated quantities; This would double the number of 

, equations and FFT's needed  and  it  would produce full-sphere 
scarining. Equally, one could recover full-sphere scanning by 
either deleting the first or second term in the overhead line 
quantities and by having m take both positive  and  negative 
values. 

. The sum in (17) can be rearranged so that  m " goes from 
- N +  1 t o N -  l,withtheresultthatEmfrand(-)m/(m" + 
m ') &e eliminated from the summation. Using such a 
formulation, Larsen [3] noticed that this inner s u m  can be 
interpreted as a lagged product, thereby permitting its efficient 
computation as a 4N-term FFT and permitting an extension of 

. the scheme in Appendix I so as to halve the number of DFT 
computations. Here, we present an alternate formulation using 
2N-terni DFT's. Although an extension of  Appendix I would 
not apply here, our formulation does have an advantage in the 
case of equatorial scanning when  odd  m-index DFT's are 
oinitted. Otherwise, the computational efforts involved are 
similar. Accordingly, we define Y""(K) for 0 s K 2N - 1 
astheDFTofEm,f(W;;f +(-)mnW;,"'P),whenO 5 m" 
N - 1, with zero fill for N 5 m" < 2N. Breaking the right- 
hand side of (17) in two, we have the exact expressions 

N -  I l - ( - ) m " - m '  
' E"// (w:; +(-)"" W,5") m " - m '  

m"=O 

and 

where 

m ' = l - N  

Now from (6)  and 

N -  1 

W;(KAO)= E 

m'=O 

(15) we have 

so that we only  need to evaluate one of YmP(~)  and Ym@( - K) .  

Note from (16) that we require the evaluation of G;? just for 0 
I rn' N - 1. Consequently, one can realize a  modest (on 
the order of 50/10g2N percent) computational savings by 
carrying out each DFT as two N-term FFT's, rather than as 
one 2N-term FFT, by substituting K = 2p + q. Hence, 
combining the above results we obtain 

N -  1 

YmP(2p+q)= ~c~ (E,'/(W:; +(-)"" W , Y )  
m' = O  

. ei(a/hr)qm If z ( 2 d N ) m  " p  l e '  p = o ,  1, ..., N-1 
q=o,  1 

and 

where 

A m P ( ~ ) =  y m p ( ~ ) { B 1 ( - ~ ) + & ( ~ ) ) - {  w k ( K A e )  

+ wt,[(K-tN)Ad])&(K),  K=2p+q. 

We now complete the evaluation of the - ( - )" VimP 
coefficients in (16) obtaining the GZ? - ( - )" G,;"P coeffi- 
cients as shown above and making use of (1 1) for the in situ 
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computation of the deltas as they are needed. Then, from (9), 
we obtain 

(1:';"+(-)"1,"';")==n(n+1)2-m~ 

._ ( V y  -( -)" V,""). 

(21) 

Now from (4) and (9) we obtain the expression m) 
i P - m  Zz s= I QmnR;Fn = 1 ; P .  Considering p = & 1 this can be 
solved for (s = 1, 2).  We define-a corresponding far- 
field quantity Sp = ic-" Z2 Q"nR&,/m). Since 
the probe and test antenna are normally polarization matched 
in the vertical ( y )  direction at 8 = 4 = x = 0, we  choose 
#;* corresponding to a y-directed' ideal dipole; thus, it 
follows from [4] that = 1/4 p5 m) it-". 
Consequently, upon solving S;P in terms of 17 and combin- 
ing results to match (21), we  obtain the matrix equation 

s= 1 

where the elements of the two  column matrices correspond to 
p = + 1  and 

A derivation of the full-sphere scanning equivalent of (22) is 
presented in Appendix II. Equation (22) follows by adding 
together the matrix equatisns for + m and - m indexes and 
using the expression for I?&,. 

The computational effort in obtaining the far field  is 
minimized by reusing the modal summation coefficients 
generated by (1 1). There results 

N- 1 

n=(I ,m,m')  

. ( S  :';" + (-)"S,"';"). (23) 

The notation n = (1 , m, i n " )  denotes that the largest of 1, 
nz, or m" is used as the starting point for the summation. 
Aga in , the rangesOsm$M-  1 , O s m "  s N -  1,and 
p = t 1 apply  in (23).  The modal  summation coefficients 

used in (23) correspond to the Fourier transform of d;,(B). 
Consequently, the far-field Fourier transform Coefficients 
Wzyl are obtained by combining the Fourier trimsfom of (7) 
with the swimation (23).  In terms of (7), the operations 
equivalent to division by sin 8 and differentiation .with respect 
to I3 are respectively  a  backwards recursion relation  and 
multiplication by the Fourier transform variable rn " . The 
backwards recursion starts with the initial conditions 

(o:!, - 0,";") = 0, 

(O:!z + Ui!i")= - ~ W Z ~ ( V ~ ! ' I -  Pi?;;") 
where we have assumed N even. The backwards recursion 
relation, effecting division by sin 8 for rn = N - 3,  N - 4, 
* * - , 0, is given by 

(0:; + ( - ) m " ~ ' , ; " ) = ( O ~ ~ ; + z + ( - ) m n ~ - m , ; "  ml f  +z)  

- 2 q . 4 v : ; + l - ( - ) m  Vm,,+L).  N - - m , p  

The far-field Fourier transform coefficients are then  given by 

(W:; +(-)"" W;;,;")=(uz,;  +(-)""0,;*;") 

-mlr( j7z* i  +(-I"" pi:;"). 

We extend the range on m to negative integers using (15), 
obtaining 

(w-m" +(-)"" W - " I / )  - m,;" - - m , p  

= ( - ) r n + l ( W m , f i  m TI +(-)m" w;:+) 
This permits us to evaluate the DFT 

mk(KA8)+ W P , [ ( K + N ) A ~ ]  = 
N- 1 

m" -N+ I 

(W:$ + ( - ) m "  @ ; ; , ~ ) ~ i n z " ~ 4 8 .  ( 2 4  

This DFT is just the inverse of (14), only this time using far- 
field quantities. As in (14), odd  and  even m Fourier 
coefficients can  be transformed simultaneously, thus halving 
the  number  of 8-FFT's actually carried out. Note  that the 
coefficients on the left-hand side of (24) are resolvable, since 
the + m index coefficients are in  the range - ?r/2 < 8 < a / 2 ,  
while  the - m index coefficients are in the range ~ / 2  < 8 < 
3 ~ / 2 .  

Finally, we obtain the far field of the test antenna from 

M- 1 

r ( 4 ,  8,  x)= e'"@ ' WL(8)ei;"x, (25) 

where4 = iA4, I = 0, 1, -.., 2M - 1; 8 = KAI3, K = 0, 1, - -, N/2;  and x = 0, ~ / 2 .  W(q5, 8, x) corresponds to a 
vector component of  the far-zone electric field  radiated  by the 
test antenna; the particular vector component  is determined by 

1 

m= -M+1 ;"= - 1  
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the  angle x. Thus, since  a y-directed ideal  dipole  was  chosen as 
the far-field receiving probe, I?’($, 8, x = 7r/2) corresponds 
to the 8 component  while - p ( 4 ,  8, x = 0) corresponds to 
the 9 component. 

V. OPERATION COUNT BTJMATION 
By halving the number of terms summed  both to evaluate 

integrals and to calculate far-field Fourier coefficients, our 
full-sphere scanning algorithm saves about 4/3 N 3  arithmetic 
operations over the operation count  of prior formulations, 
where N is  the order of the first negligible spherical mode (for 
the time being, we take M = N ) .  Here, we are simply 
counting the number  of terms summed in four similar 
summations  in two different algorithms and  taking the 
difference. However, our reformulation of these summations 
introduces additional steps  partially offsetting the operation 
count  reduction  by  about 14 N 2  operations, a  negligible 
amount compared to the N3 savings. Here, in order to 
maintain  a consistent estimate that accounts for timing 
differences between  real  and  complex arithmetic on  a  com- 
puter, we  use  a  biased operation count to tabulate a particular 
arithmetic step. Thus, one arithmetic operation is  defined as a 
real-complex multiplication followed  by  a  complex addition, 
one real  multiplication  and  addition is about five-eights of  an 
arithmetic operation, while one complex multiplication  and 
addition is about one and one-quarter operations. These last- 
mentioned estimates are consistent with  timed results on  a 
large-scale main-frame computer. 

We establish a  biased operation count for both  old  and new 
delta-coefficient recursion relations by timing these two 
different algorithms on  a large-scale main-frame  computer  and 
comparing the results with the time required by our previously 
defined standard arithmetic operation. From this, we  find  that 
the  number  of arithmetic operations needed for calculating all 
of the so-called  delta coefficients, the real  multiplication 
coefficients in the summations  mentioned above, can be 
estimated to go from 5 / 8  N 3  operations in  the  old algorithm to 
1/4 N3 operations in our new algorithm, resulting in a  savings 
of 3/8 N3 operations. If  we  assume  that  an N-term FIT 
requires N log2 N operations for its execution, then reformu- 
lating  the full-sphere algorithm results in  a  savings of about 
41/24 N 3  - 5N2 operations. An overall estimate of the 
number of arithmetic operations in our full-sphere  scanning 

xl;(KA8) = wg,(KA8) + w$,+ ,(KA8) 

similar estimate for hemispherical scanning would be 11/12 
N 3  + 12N2(log2 N + 3 1/2) operations. 

In the preceding, we took M = N. If in actuality M 5 N/2, 
then to first order the corresponding operation counts are 
obtained by multiplying the preceding results by 1.5 M / N .  In 
the case of hemispherical scanning with  odd m Fourier 
coefficients  set to zero (radiation out of the equator of the 
measurement sphere), the above M = N operation count for 
full-sphere scanning is halved. 

VI. CONCLUSION 
Hemispherical scanning has been formulated within  a 

compact  set  of equations. In doing this, we have developed  a 
significantly  more efficient algorithm for both hemispherical 
and full-sphere scanning. For example, with N = 360, we 
estimate earlier full-sphere algorithms would require nearly 
one-and-two-thirds  times as many operational steps as our new 
full-sphere algorithm and  nearly three times as many steps as 
our hemispherical algorithm. When  back-hemisphere  radia- 
tion  is negligible, it will  be  nearly one and three-quarters times 
more efficient to use hemispherical scanning than the new full- 
sphere algorithm. Finally, our new formulations using the 
FFT for computing the lagged  product  within the spherical 
algorithm remain exact; i.e., no aliasing errors  are introduced. 

APPENDIX I 
SIMULTANEOUS  EVALUATION BY PAIRS OF 8 FOURIER 

TRANSFORMS 
We  wish to obtain the DFT of W&(8), taking advantage of 

the fact that as function of 8 this is an even function or an odd 
function, depending on whether m is  odd or even, respec- 
tively. This character of the function that we wish to Fourier 
transform is evident from (13), while from (15) we see that the 
Fourier transform coefficients of an even or odd function are 
themselves even or odd. We make  use  of these properties in 
order to cut in  half the total  number  of separate 8 FFT’s that 
must be processed  by the spherical-scanning algorithm. To 
keep our presentation simple, the full-sphere scanning case is 
treated here. The required modifications to (14) in order to 
apply  this technique to single-hemisphere scanning should be 
obvious. 

We define 
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together in (27) results in 

wZ, ' : ' '"=l1 /2[A~(m")+Ar(Ne-m")]  I = O ,  1,  2, - e -  -- NQ 
, 2  

1. 

Two B Dm's are combined together in (23,  so that the total matrix equation 
number of B FFT operations is halved  with  negligible 
additional effort. With minor modifications, this same al- 
gorithm is applied in reverse to halve the number  of inverse 0 

Spl.1 ,;lmlJ 

SI$-' S;lml.-l 1 
Fourier transforms needed to compute the far field. 

APPENDIX 

THE NEAR-FIELD TO FAR-FIELD FOURIER COEFFICIENTS 
TRANSFORMATION i - b l Q l b b  i lm lQ1- lm l f l  

i -  \mi Q21mln i l m l o 2 -  I lmln 1 (29) 
Here, we  wish to eliminate the unknown  modal  expansion 

coefficients Q"" from 

and 

to obtain S;p in terms of I F .  Here, Ripn denotes  known 
translated probe-receiving coefficients, while Riw denotes 
known translated ideal dipole receiving coefficients. The 
values of I r p  are assumed to have already been calculated, and 
we  wish to solve for the S p  coefficients, which  in turn are 
summed to obtain  the radiated far-field Fourier expansion 
coefficients. 

Efficient processing dictates that four cases of the above 
equations be considered simultaneously, corresponding to p 
= k 1 and m = f I m I .  These four cases are most 
expediently  handled  using matrix analysis. By inspection  we 
solve the first equation above for the  unknown  modal 
expansion coefficients, obtaining 

where 

DER^'  2' 
I l n  a - ln-R^; - lnR^i ln '  

We  next write our expression for the SF coefficients as the 

Now, we recognize the 2 x 2 matrix on the extreme right in 
(29) as that  given  by (28); consequently, we  can substitute (28) 
into (29) and so eliminate the unknown Q"" coefficients from 
our expression for S ; p .  However, an elimination of the 2 x 2 
matrix containing the Qsmn coefficients results in equal 
treatment for the positive  and  negative I m I index quantities. 
Accordingly, we can collapse the resulting SF and I;p 
matrices, obtaining 

Equation (30) is valid for determining the  signal  received  by 
an arbitrary (p = k 1 only) antenna with translated receiving 
coefficients R&,, physically located an arbitrary distance 
beyond the measurement sphere. Notice  that (30) reduces to 
S;" = I r p / [ n ( n  + l)] when Ripn = In the event that 
the R b n  coefficients correspond to an ideal dipole located at 
infinity, (30) reduces to a particularly simple form (cf. (22)). 
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